1
|
Hang L, Zhang Y, Zhang Z, Jiang H, Xia L. Metabolism Serves as a Bridge Between Cardiomyocytes and Immune Cells in Cardiovascular Diseases. Cardiovasc Drugs Ther 2025; 39:661-676. [PMID: 38236378 DOI: 10.1007/s10557-024-07545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Metabolic disorders of cardiomyocytes play an important role in the progression of various cardiovascular diseases. Metabolic reprogramming can provide ATP to cardiomyocytes and protect them during diseases, but this transformation also leads to adverse consequences such as oxidative stress, mitochondrial dysfunction, and eventually aggravates myocardial injury. Moreover, abnormal accumulation of metabolites induced by metabolic reprogramming of cardiomyocytes alters the cardiac microenvironment and affects the metabolism of immune cells. Immunometabolism, as a research hotspot, is involved in regulating the phenotype and function of immune cells. After myocardial injury, both cardiac resident immune cells and heart-infiltrating immune cells significantly contribute to the inflammation, repair and remodeling of the heart. In addition, metabolites generated by the metabolic reprogramming of immune cells can further affect the microenvironment, thereby affecting the function of cardiomyocytes and other immune cells. Therefore, metabolic reprogramming and abnormal metabolite levels may serve as a bridge between cardiomyocytes and immune cells, leading to the development of cardiovascular diseases. Herein, we summarize the metabolic relationship between cardiomyocytes and immune cells in cardiovascular diseases, and the effect on cardiac injury, which could be therapeutic strategy for cardiovascular diseases, especially in drug research.
Collapse
Affiliation(s)
- Lixiao Hang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, China
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zheng Zhang
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Haiqiang Jiang
- Department of Laboratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, No.130 Renmin Middle Road, Wuxi, 214400, Jiangyin, China.
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, China.
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
2
|
Dar MI, Hussain Y, Pan X. Roles of circadian clocks in macrophage metabolism: implications in inflammation and metabolism of lipids, glucose, and amino acids. Am J Physiol Endocrinol Metab 2025; 328:E723-E741. [PMID: 40193204 DOI: 10.1152/ajpendo.00009.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 05/06/2025]
Abstract
Macrophages are essential immune cells that play crucial roles in inflammation and tissue homeostasis and are important regulators of metabolic processes, such as the metabolism of glucose, lipids, and amino acids. The regulation of macrophage metabolism by circadian clock genes has been emphasized in many studies. Changes in metabolic profiles occurring after the perturbation of macrophage circadian cycles may underlie the etiology of several diseases. Specifically, chronic inflammatory disorders, such as atherosclerosis, diabetes, cardiovascular diseases, and liver dysfunction, are associated with poor macrophage metabolism. Developing treatment approaches that target metabolic and immunological ailments requires an understanding of the complex relationships among clock genes, disease etiology, and macrophage metabolism. This review explores the molecular mechanisms through which clock genes regulate lipid, amino acid, and glucose metabolism in macrophages and discusses their potential roles in the development and progression of metabolic disorders. The findings underscore the importance of maintaining circadian homeostasis in macrophage function as a promising avenue for therapeutic intervention in diseases involving metabolic dysregulation, given its key roles in inflammation and tissue homeostasis. Moreover, reviewing the therapeutic implications of circadian rhythm in macrophages can help minimize the side effects of treatment. Novel strategies may be beneficial in treating immune-related diseases caused by shifted and blunted circadian rhythms via light exposure, jet lag, seasonal changes, and shift work or disruption to the internal clock (such as stress or disease).
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| |
Collapse
|
3
|
Xiong Y, Knoedler S, Alfertshofer M, Kim BS, Jiang D, Liu G, Rinkevich Y, Mi B. Mechanisms and therapeutic opportunities in metabolic aberrations of diabetic wounds: a narrative review. Cell Death Dis 2025; 16:341. [PMID: 40280905 PMCID: PMC12032273 DOI: 10.1038/s41419-025-07583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Metabolic aberrations are fundamental to the complex pathophysiology and challenges associated with diabetic wound healing. These alterations, induced by the diabetic environment, trigger a cascade of events that disrupt the normal wound-healing process. Key factors in this metabolic alternation include chronic hyperglycemia, insulin resistance, and dysregulated lipid and amino acid metabolism. In this review, we summarize the underlying mechanisms driving these metabolic changes in diabetic wounds, while emphasizing the broad implications of these disturbances. Additionally, we discuss therapeutic approaches that target these metabolic anomalies and how their integration with existing wound-healing treatments may yield synergistic effects, offering promising avenues for innovative therapies.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Michael Alfertshofer
- Department of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, 80336, Munich, Germany
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dongsheng Jiang
- Precision Research Centre for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany.
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Chen X, Li L, Deng Y, Liao J, Meng H, Liang L, Hu J, Xie D, Liang G. Inhibition of glutaminase 1 reduces M1 macrophage polarization to protect against monocrotaline-induced pulmonary arterial hypertension. Immunol Lett 2025; 272:106974. [PMID: 39765314 DOI: 10.1016/j.imlet.2025.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
(1) BACKGROUND: Metabolic abnormalities and immune inflammation are key elements within pathogenesis of pulmonary arterial hypertension (PAH). And in PAH patients, aberrant glutamine metabolism has been observed; however, the function of glutaminase 1 (GLS1) in macrophage is still unknown. So we aims to investigate GLS1's impact upon macrophages in PAH. (2) METHODS: We firstly constructed an monocrotaline (MCT)-induced PAH rat model. Briefly, the PAH rats were treated with the GLS1 inhibitor BPTES, and various index were evaluated, including hemodynamics, right ventricular function, pulmonary vascular remodeling, macrophage markers, and glutamine metabolism. After that, we polarized bone marrow-derived macrophages (BMDMs) into M1 phenotype and then subjected to BPTES intervention. Finally, we assessed macrophage phenotype, inflammatory markers, and glutamine metabolism indicators, along with the impact of BMDM supernatant on the behavior of pulmonary arterial smooth muscle cells (PASMCs). (3) RESULTS: GLS1 was significantly upregulated in both PAH patients and rats. Treatment with the GLS1 inhibitor BPTES markedly improved pulmonary arterial pressure, right ventricular function, and pulmonary vascular remodeling in PAH rats, while inhibiting M1 macrophage polarization, NLRP3 activation, and the release of pro-inflammatory cytokines. This, in turn, alleviated the proliferation and migration of PASMCs induced by inflammatory stimuli. (4) CONCLUSION: We propose that targeting GLS1 to reduce M1 macrophage polarization and inflammatory responses may represent a promising therapeutic approach for PAH.
Collapse
Affiliation(s)
- Xing Chen
- First Affiliated Hospital of Guangxi Medical University, China.
| | - Lixiang Li
- First Affiliated Hospital of Guangxi Medical University, China.
| | - Yan Deng
- First Affiliated Hospital of Guangxi Medical University, China.
| | - Juan Liao
- First Affiliated Hospital of Guangxi Medical University, China.
| | - Hui Meng
- First Affiliated Hospital of Guangxi Medical University, China.
| | - Limei Liang
- First Affiliated Hospital of Guangxi Medical University, China.
| | - Jie Hu
- First Affiliated Hospital of Guangxi Medical University, China.
| | - Dongwei Xie
- First Affiliated Hospital of Guangxi Medical University, China.
| | - Guizi Liang
- First Affiliated Hospital of Guangxi Medical University, China.
| |
Collapse
|
5
|
Xie B, Li J, Lou Y, Chen Q, Yang Y, Zhang R, Liu Z, He L, Cheng Y. Reprogramming macrophage metabolism following myocardial infarction: A neglected piece of a therapeutic opportunity. Int Immunopharmacol 2024; 142:113019. [PMID: 39217876 DOI: 10.1016/j.intimp.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Given the global prevalence of myocardial infarction (MI) as the leading cause of mortality, there is an urgent need to devise novel strategies that target reducing infarct size, accelerating cardiac tissue repair, and preventing detrimental left ventricular (LV) remodeling. Macrophages, as a predominant type of innate immune cells, undergo metabolic reprogramming following MI, resulting in alterations in function and phenotype that significantly impact the progression of MI size and LV remodeling. This article aimed to delineate the characteristics of macrophage metabolites during reprogramming in MI and elucidate their targets and functions in cardioprotection. Furthermore, we summarize the currently proposed regulatory mechanisms of macrophage metabolic reprogramming and identify the regulators derived from endogenous products and natural small molecules. Finally, we discussed the challenges of macrophage metabolic reprogramming in the treatment of MI, with the goal of inspiring further fundamental and clinical research into reprogramming macrophage metabolism and validating its potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Yanmei Lou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Qi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Ying Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| | - Liu He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China.
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| |
Collapse
|
6
|
Kang M, Jia H, Feng M, Ren H, Gao J, Liu Y, Zhang L, Zhou MS. Cardiac macrophages in maintaining heart homeostasis and regulating ventricular remodeling of heart diseases. Front Immunol 2024; 15:1467089. [PMID: 39372400 PMCID: PMC11449765 DOI: 10.3389/fimmu.2024.1467089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Macrophages are most important immune cell population in the heart. Cardiac macrophages have broad-spectrum and heterogeneity, with two extreme polarization phenotypes: M1 pro-inflammatory macrophages (CCR2-ly6Chi) and M2 anti-inflammatory macrophages (CCR2-ly6Clo). Cardiac macrophages can reshape their polarization states or phenotypes to adapt to their surrounding microenvironment by altering metabolic reprogramming. The phenotypes and polarization states of cardiac macrophages can be defined by specific signature markers on the cell surface, including tumor necrosis factor α, interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), C-C chemokine receptor type (CCR)2, IL-4 and arginase (Arg)1, among them, CCR2+/- is one of most important markers which is used to distinguish between resident and non-resident cardiac macrophage as well as macrophage polarization states. Dedicated balance between M1 and M2 cardiac macrophages are crucial for maintaining heart development and cardiac functional and electric homeostasis, and imbalance between macrophage phenotypes may result in heart ventricular remodeling and various heart diseases. The therapy aiming at specific target on macrophage phenotype is a promising strategy for treatment of heart diseases. In this article, we comprehensively review cardiac macrophage phenotype, metabolic reprogramming, and their role in maintaining heart health and mediating ventricular remodeling and potential therapeutic strategy in heart diseases.
Collapse
Affiliation(s)
- Mengjie Kang
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| | - Hui Jia
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
| | - Mei Feng
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| | - Haolin Ren
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjia Gao
- Department of Cardiology, Second Affiliated Hospital, Shenyang Medical College, Shenyang, China
| | - Yueyang Liu
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| |
Collapse
|
7
|
Zhang Z, Wang Y, Xia L, Zhang Y. Roles of Critical Amino Acids Metabolism in The Interactions Between Intracellular Bacterial Infection and Macrophage Function. Curr Microbiol 2024; 81:280. [PMID: 39031203 DOI: 10.1007/s00284-024-03801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Macrophages, as crucial participants in the innate immune system, respond to pathogenic challenges through their dynamic metabolic adjustments, demonstrating the intimate interplay between cellular metabolism and immune function. Bacterial infection of macrophages causes changes in macrophage metabolism, affecting both macrophage function and bacterial virulence and intracellular survival. This review explores the reprogramming of amino acid metabolism in macrophages in response to bacterial infection, with a particular focus on the influence of critical amino acids such as serine, glutamine, and arginine on the immune functions of macrophages; highlights the roles of these metabolic pathways in macrophage functions such as phagocytosis, inflammatory response, immune regulation, and pathogen clearance; reveals how pathogens exploit and manipulate the amino acid metabolism within macrophages to support their own growth and replication, thereby showcasing the intricate interplay between macrophages and pathogens. It provides a foundation for understanding the interactions between macrophages amino acid metabolism and pathogens, offering potential strategies and therapeutic targets for the development of novel anti-infection therapies.
Collapse
Affiliation(s)
- Zuowei Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, 212013, Jiangsu, China
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yurou Wang
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
8
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
9
|
Teh HX, Phang SJ, Looi ML, Kuppusamy UR, Arumugam B. Molecular pathways of NF-ĸB and NLRP3 inflammasome as potential targets in the treatment of inflammation in diabetic wounds: A review. Life Sci 2023; 334:122228. [PMID: 37922981 DOI: 10.1016/j.lfs.2023.122228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Diabetic wounds are slow healing wounds characterized by disordered healing processes and frequently take longer than three months to heal. One of the defining characteristics of impaired diabetic wound healing is an abnormal and unresolved inflammatory response, which is primarily brought on by abnormal macrophage innate immune signaling activation. The persistent inflammatory state in a diabetic wound may be attributed to inflammatory pathways such as nuclear factor kappa B (NF-ĸB) and nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which have long been associated with inflammatory diseases. Despite the available treatments for diabetic foot ulcers (DFUs) that include debridement, growth factor therapy, and topical anti-bacterial agents, successful wound healing is still hampered. Further understanding of the molecular mechanism of these pathways could be useful in designing potential therapeutic targets for diabetic wound healing. This review provides an update and novel insights into the roles of NF-ĸB and NLRP3 pathways in the molecular mechanism of diabetic wound inflammation and their potential as therapeutic targets in diabetic wound healing.
Collapse
Affiliation(s)
- Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mee Lee Looi
- Centre for Future Learning, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bavani Arumugam
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
11
|
Zhao T, Zhang Z, Li Y, Sun Z, Liu L, Deng X, Guo J, Zhu D, Cao S, Chai Y, Nikolaevna UV, Maratbek S, Wang Z, Zhang H. Brucella abortus modulates macrophage polarization and inflammatory response by targeting glutaminases through the NF-κB signaling pathway. Front Immunol 2023; 14:1180837. [PMID: 37325614 PMCID: PMC10266586 DOI: 10.3389/fimmu.2023.1180837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives The mechanism of Brucella infection regulating macrophage phenotype has not been completely elucidated until now. This study aimed to determine the mechanism of Brucella abortus in the modulation of macrophage phenotype using RAW264.7 cells as a model. Materials and methods RT-qPCR, ELISA and flow cytometry were used to detect the inflammatory factor production and phenotype conversion associated with M1/M2 polarization of macrophages by Brucella abortus infection. Western blot and immunofluorescence were used to analyze the role of nuclear factor kappa B (NF-κB) signaling pathway in regulation of Brucella abortus-induced macrophage polarization. Chromatin immunoprecipitation sequencing (Chip-seq), bioinformatics analysis and luciferase reporter assay were used to screen and validate NF-κB target genes associated with macrophage polarization and further verify its function. Results The results demonstrate that B. abortus induces a macrophage phenotypic switch and inflammatory response in a time-dependent manner. With the increase of infection time, B. abortus infection-induced M1-type increased first, peaked at 12 h, and then decreased, whereas the M2-type decreased first, trough at 12 h, and then increased. The trend of intracellular survival of B. abortus was consistent with that of M2 type. When NF-κB was inhibited, M1-type polarization was inhibited and M2-type was promoted, and the intracellular survival of B. abortus increased significantly. Chip-seq and luciferase reporter assay results showed that NF-κB binds to the glutaminase gene (Gls). Gls expression was down-regulated when NF-κB was inhibited. Furthermore, when Gls was inhibited, M1-type polarization was inhibited and M2-type was promoted, the intracellular survival of B. abortus increased significantly. Our data further suggest that NF-κB and its key target gene Gls play an important role in controlling macrophage phenotypic transformation. Conclusions Taken together, our study demonstrates that B. abortus infection can induce dynamic transformation of M1/M2 phenotype in macrophages. Highlighting NF-κB as a central pathway that regulates M1/M2 phenotypic transition. This is the first to elucidate the molecular mechanism of B. abortus regulation of macrophage phenotype switch and inflammatory response by regulating the key gene Gls, which is regulated by the transcription factor NF-κB.
Collapse
Affiliation(s)
- Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zedan Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yitao Li
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Usevich Vera Nikolaevna
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- College of Veterinary, Ural State Agricultural University, Yekaterinburg, Russia
| | - Suleimenov Maratbek
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- College of Veterinary, National Agricultural University of Kazakhstan, Nur Sultan, Kazakhstan
| | - Zhen Wang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
12
|
Castellanos DB, Martín-Jiménez CA, Pinzón A, Barreto GE, Padilla-González GF, Aristizábal A, Zuluaga M, González Santos J. Metabolomic Analysis of Human Astrocytes in Lipotoxic Condition: Potential Biomarker Identification by Machine Learning Modeling. Biomolecules 2022; 12:biom12070986. [PMID: 35883542 PMCID: PMC9313230 DOI: 10.3390/biom12070986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The association between neurodegenerative diseases (NDs) and obesity has been well studied in recent years. Obesity is a syndrome of multifactorial etiology characterized by an excessive accumulation and release of fatty acids (FA) in adipose and non-adipose tissue. An excess of FA generates a metabolic condition known as lipotoxicity, which triggers pathological cellular and molecular responses, causing dysregulation of homeostasis and a decrease in cell viability. This condition is a hallmark of NDs, and astrocytes are particularly sensitive to it, given their crucial role in energy production and oxidative stress management in the brain. However, analyzing cellular mechanisms associated with these conditions represents a challenge. In this regard, metabolomics is an approach that allows biochemical analysis from the comprehensive perspective of cell physiology. This technique allows cellular metabolic profiles to be determined in different biological contexts, such as those of NDs and specific metabolic insults, including lipotoxicity. Since data provided by metabolomics can be complex and difficult to interpret, alternative data analysis techniques such as machine learning (ML) have grown exponentially in areas related to omics data. Here, we developed an ML model yielding a 93% area under the receiving operating characteristic (ROC) curve, with sensibility and specificity values of 80% and 93%, respectively. This study aimed to analyze the metabolomic profiles of human astrocytes under lipotoxic conditions to provide powerful insights, such as potential biomarkers for scenarios of lipotoxicity induced by palmitic acid (PA). In this work, we propose that dysregulation in seleno-amino acid metabolism, urea cycle, and glutamate metabolism pathways are major triggers in astrocyte lipotoxic scenarios, while increased metabolites such as alanine, adenosine, and glutamate are suggested as potential biomarkers, which, to our knowledge, have not been identified in human astrocytes and are proposed as candidates for further research and validation.
Collapse
Affiliation(s)
- Daniel Báez Castellanos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110311, Colombia; (D.B.C.); (A.A.)
| | - Cynthia A. Martín-Jiménez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329-4208, USA;
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | | | - Andrés Aristizábal
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110311, Colombia; (D.B.C.); (A.A.)
| | - Martha Zuluaga
- Escuela de Ciencias Básicas Tecnologías e Ingenierías, Universidad Nacional Abierta y a Distancia, Dosquebradas 661001, Colombia;
| | - Janneth González Santos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110311, Colombia; (D.B.C.); (A.A.)
- Correspondence: ; Tel.: +57-60-1-3208320
| |
Collapse
|
13
|
Relevance of NLRP3 Inflammasome-Related Pathways in the Pathology of Diabetic Wound Healing and Possible Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9687925. [PMID: 35814271 PMCID: PMC9262551 DOI: 10.1155/2022/9687925] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Wound healing is a major secondary complication in type 2 diabetes, which results in significant disability and mortality, imposing a significant clinical and social burden. Sustained activation of the Nod-like receptor protein (NLRP) inflammasome in wounds is responsible for excessive inflammatory responses and aggravates wound damage. The activation of the NLRP3 inflammasome is regulated by a two-step process: the priming/licensing (signal 1) step involved in transcription and posttranslation and the protein complex assembly (signal 2) step triggered by danger molecules. This review focuses on the advances made in understanding the pathophysiological mechanisms underlying wound healing in the diabetic microenvironment. Simultaneously, this review summarizes the molecular mechanisms of the main regulatory pathways associated with signal 1 and signal 2, which trigger the NLRP3 inflammasome complex assembly in the development of diabetic wounds (DW). Activation of the NLRP3 inflammasome-related pathway, involving the disturbance in Nrf2 and the NF-κB/NLRP3 inflammasome, TLR receptor-mediated activation of the NF-κB/NLRP3 inflammasome, and various stimuli inducing NLRP3 inflammasome assembly play a pivotal role in DW healing. Furthermore, therapeutics targeting the NLRP3 inflammasome-related pathways may promote angiogenesis, reprogram immune cells, and improve DW healing.
Collapse
|
14
|
Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium tuberculosis Infection. mBio 2022; 13:e0127422. [PMID: 35762591 PMCID: PMC9426538 DOI: 10.1128/mbio.01274-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to Mycobacterium tuberculosis infection, macrophages mount proinflammatory and antimicrobial responses similar to those observed in M1 macrophages activated by lipopolysaccharide (LPS) and interferon gamma (IFN-γ). A metabolic reprogramming to hypoxia-inducible-factor 1 (HIF-1)-mediated uptake of glucose and its metabolism by glycolysis is required for M1-like polarization, but little is known about other metabolic programs driving the M1-like polarization during infection. We report that glutamine serves as a carbon and nitrogen source for the metabolic reprogramming to M1-like macrophages. Widely targeted metabolite screening identified an association of glutamine and/or glutamate with highly affected metabolic pathways of M1-like macrophages. Moreover, stable isotope-assisted metabolomics of U13C glutamine and U13C glucose revealed that glutamine, rather than glucose, is catabolized in both the oxidative and reductive tricarboxylic acid (TCA) cycles of M1-like macrophages, thereby generating signaling molecules that include succinate, biosynthetic precursors such as aspartate, and itaconate. U15N glutamine-tracing metabolomics further revealed participation of glutamine nitrogen in synthesis of intermediates of purine and pyrimidine metabolism plus amino acids, including aspartate. These findings were corroborated by diminished M1 polarization from chemical inhibition of glutaminase (GLS), the key enzyme in the glutaminolysis pathway, and by genetic deletion of GLS in infected macrophages. Thus, the catabolism of glutamine is an integral component of metabolic reprogramming in activating macrophages and it coordinates with elevated cytosolic glycolysis to satisfy the cellular demand for bioenergetic and biosynthetic precursors of M1-like macrophages. Knowledge of these new immunometabolic features of M1-like macrophages should advance the development of host-directed therapies for tuberculosis.
Collapse
|
15
|
Lima-Silva LF, Lee J, Moraes-Vieira PM. Soluble Carrier Transporters and Mitochondria in the Immunometabolic Regulation of Macrophages. Antioxid Redox Signal 2022; 36:906-919. [PMID: 34555943 PMCID: PMC9271333 DOI: 10.1089/ars.2021.0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Immunometabolic regulation of macrophages is a growing area of research across many fields. Here, we review the contribution of solute carriers (SLCs) in regulating macrophage metabolism. We also highlight key mechanisms that regulate SLC function, their effects on mitochondrial activity, and how these intracellular activities contribute to macrophage fitness in health and disease. Recent Advances: SLCs serve as a major drug absorption pathway and represent a novel category of therapeutic drug targets. SLC dynamics affect cellular nutritional sensors, such as AMP-activated protein kinase and mammalian target of rapamycin, and consequently alter the cellular metabolism and mitochondrial dynamics within macrophages to adapt to a new functional phenotype. Critical Issues: SLC function affects macrophage phenotype, but their mechanisms of action and how their functions contribute to host health remain incompletely defined. Future Directions: Few studies focus on the impact of solute transporters on macrophage function. Identifying which SLCs are present in macrophages and determining their functional roles may reveal novel therapeutic targets with which to treat metabolic and inflammatory diseases. Antioxid. Redox Signal. 36, 906-919.
Collapse
Affiliation(s)
- Lincon Felipe Lima-Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Post Graduate Program in Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil.,Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
16
|
Wang N, Ru Y, Yang Z, Sun C, Li S, Min Y, Zhao X, Lu Y, Hsing AW, Zhu S. Metabolomic Profiles of Plasma Retinol-Associated Dyslipidemia in Men and Women. Front Nutr 2021; 8:740435. [PMID: 34869520 PMCID: PMC8635783 DOI: 10.3389/fnut.2021.740435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background and Aims: Studies of both animals and humans show that a high intake of vitamin A is associated with a lower risk of dyslipidemia. However, an association of plasma retinol levels with dyslipidemia is unclear. Therefore, the aim of this study is to investigate an association between plasma retinol and dyslipidemia and to identify related metabolites and pathways in the general population. Methods: We included 250 participants aged 20-80 years from the Wellness Living Laboratory (WELL) China cohort. Associations between plasma retinol levels and dyslipidemia were analyzed using adjusted logistic models. Related metabolites were identified using ANCOVA, adjusted for the false discovery rate (FDR) and used for pathway analyses. Because there are sex differences in plasma retinol levels, all analyses were conducted separately by sex. Results: Plasma retinol was significantly higher in men than in women. A positive association between plasma retinol and dyslipidemia was found in both sexes. In men, the 2nd and 3rd tertiles showed significantly higher proportions of dyslipidemia than the 1st tertile (1st tertile vs. 2nd tertile: p = 0.026; 1st tertile vs. 3rd tertile: p = 0.003). In women, the 3rd tertile showed a significantly higher proportion of dyslipidemia than the 1st and 2nd tertile (3rd tertile vs. 1st tertile: p = 0.002, 3rd tertile vs. 2nd tertile: p = 0.002). Overall, 75 and 30 metabolites were significantly associated with retinol levels in men and women, respectively. According to these metabolites, lipid metabolic pathways, including glycerophospholipid, arachidonic acid, linoleic acid, alpha-linolenic acid, and glycosylphosphatidylinositol (GPI), as well as steroid hormone biosynthesis pathways were found to overlap across the sexes. These pathways showed that elevated retinol levels might be associated with hormone metabolism and inflammation status. Conclusions: We found a positive association between plasma retinol levels and dyslipidemia. Related metabolomic profiles and interrupted pathways showed that such an increase might be associated with steroid hormone synthesis and inflammation. In addition, large, population-based longitudinal studies and intervention studies are needed to confirm the role of retinol in lipid metabolism and the prevention of cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Ninglin Wang
- Chronic Disease Research Institute, The Children's Hospital and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Ru
- Chronic Disease Research Institute, The Children's Hospital and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiying Yang
- Chronic Disease Research Institute, The Children's Hospital and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Changxuan Sun
- Chronic Disease Research Institute, The Children's Hospital and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shanshan Li
- Chronic Disease Research Institute, The Children's Hospital and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Min
- Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Xueyin Zhao
- Chronic Disease Research Institute, The Children's Hospital and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Lu
- Department of Biomedical Data Sciences, Stanford School of Medicine, Stanford, CA, United States
| | - Ann W. Hsing
- Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford University, Stanford, CA, United States
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, United States
| | - Shankuan Zhu
- Chronic Disease Research Institute, The Children's Hospital and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Xu D, Wang S, Feng M, Shete V, Chu Y, Kamil A, Yang C, Liu H, Xia H, Wang X, Sun G, Yang Y. Serum Metabolomics Reveals Underlying Mechanisms of Cholesterol-Lowering Effects of Oat Consumption: A Randomized Controlled Trial in a Mildly Hypercholesterolemic Population. Mol Nutr Food Res 2021; 65:e2001059. [PMID: 33793078 DOI: 10.1002/mnfr.202001059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/15/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The purpose of this study is to examine the effects of oat supplementation on serum lipid in a population of adults with mild hypercholesterolemia and reveal the underlying mechanisms with serum untargeted metabolomics. METHODS AND RESULTS In this placebo-controlled trial, 62 participants from Nanjing, China, with mild elevations in cholesterol are randomly assigned to receive 80 g oats (containing 3 g beta-glucan) or rice daily for 45 days. Fasting blood samples are collected at the beginning, middle, and end of the trial. Compared with the rice group, oat consumption significantly decreases serum total cholesterol (TC) (-8.41%, p = 0.005), low-density lipoprotein cholesterol (LDL-c) (-13.93%, p = 0.001), and non high-density lipoprotein cholesterol (non-HDL-c) (-10.93%, p = 0.017) levels. There are no significant between-group differences in serum triglyceride (TG), apolipoprotein B (Apo B), glycated albumin, or fasting blood glucose levels. An orthogonal partial least squares discriminant analysis (OPLS-DA) suggests a clear separation in metabolic profiles between the groups after the intervention. Twenty-one metabolites in the oat group are significantly different from those in the rice group, among which 14 metabolites show a decreased trend. In comparison, seven metabolites show an increased trend. Correlations analysis from both groups indicate that most metabolites [e.g., sphinganine and phosphatidylcholine (PC)(20:5(5Z,8Z,11Z,14Z,17Z)/20:1(11Z))] have positive correlations with serum cholesterol levels. Kyoto Encyclopedia of Gene and Genomes pathway analysis suggests that oat consumption regulated glycerophospholipid, alanine, aspartate and glutamate, sphingolipid, and retinol metabolism. CONCLUSION Oat consumption has beneficial effects on serum lipids profiles. The underlying mechanisms involve glycerophospholipid, alanine, aspartate and glutamate, sphingolipid, and retinol metabolism in adults.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P.R. China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P.R. China
| | | | | | | | | | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P.R. China
| | - Hechun Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P.R. China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P.R. China
| | - Xin Wang
- Beijing Research Institute for Nutritional Resources, Beijing, 100000, P.R. China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P.R. China
| | - Yuexin Yang
- National Institute for Nutrition and Health, Center for Disease Control and Prevention, Beijing, 100000, P.R. China
| |
Collapse
|
18
|
Hackett EE, Sheedy FJ. An Army Marches on Its Stomach: Metabolic Intermediates as Antimicrobial Mediators in Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2020; 10:446. [PMID: 32984072 PMCID: PMC7477320 DOI: 10.3389/fcimb.2020.00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The cells of the immune system are reliant on their metabolic state to launch effective responses to combat mycobacterial infections. The bioenergetic profile of the cell determines the molecular fuels and metabolites available to the host, as well as to the bacterial invader. How cells utilize the nutrients in their microenvironment—including glucose, lipids and amino acids—to sustain their functions and produce antimicrobial metabolites, and how mycobacteria exploit this to evade the immune system is of great interest. Changes in flux through metabolic pathways alters the intermediate metabolites present. These intermediates are beginning to be recognized as key modulators of immune signaling as well as direct antimicrobial effectors, and their impact on tuberculosis infection is becoming apparent. A better understanding of how metabolism impacts immunity to Mycobacterium tuberculosis and how it is regulated and thus can be manipulated will open the potential for novel therapeutic interventions and vaccination strategies.
Collapse
Affiliation(s)
- Emer E Hackett
- Macrophage Homeostasis, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Frederick J Sheedy
- Macrophage Homeostasis, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Daemen S, Schilling JD. The Interplay Between Tissue Niche and Macrophage Cellular Metabolism in Obesity. Front Immunol 2020; 10:3133. [PMID: 32038642 PMCID: PMC6987434 DOI: 10.3389/fimmu.2019.03133] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is associated with the development of metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. The presence of chronic, low-grade inflammation appears to be an important mechanistic link between excess nutrients and clinical disease. The onset of these metabolic disorders coincides with changes in the number and phenotype of macrophages in peripheral organs, particularly in the liver and adipose tissue. Macrophage accumulation in these tissues has been implicated in tissue inflammation and fibrosis, contributing to metabolic disease progression. Recently, the concept has emerged that changes in macrophage metabolism affects their functional phenotype, possibly triggered by distinct environmental metabolic cues. This may be of particular importance in the setting of obesity, where both liver and adipose tissue are faced with a high metabolic burden. In the first part of this review we will discuss current knowledge regarding macrophage dynamics in both adipose tissue and liver in obesity. Then in the second part, we will highlight data linking macrophage metabolism to functional phenotype with an emphasis on macrophage activation in metabolic disease. The importance of understanding how tissue niche influences macrophage function in obesity will be highlighted. In addition, we will identify important knowledge gaps and outstanding questions that are relevant for future research in this area and will facilitate the identification of novel targets for therapeutic intervention in associated metabolic diseases.
Collapse
Affiliation(s)
- Sabine Daemen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joel D Schilling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, Ouatu A, Floria M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J Diabetes Res 2020; 2020:3920196. [PMID: 32832560 PMCID: PMC7424491 DOI: 10.1155/2020/3920196] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) remain as one of the most global problematic metabolic diseases with rapidly increasing prevalence and incidence. Epidemiological studies noted that T2DM patients have by two-fold increase to develop NAFLD, and vice versa. This complex and intricate association is supported and mediated by insulin resistance (IR). In this review, we discuss the NAFLD immunopathogenesis, connection with IR and T2DM, the role of screening and noninvasive tools, and mostly the impact of the current antidiabetic drugs on steatosis liver and new potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Minela Aida Maranduca
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Internal Medicine Clinic, Emergency Military Clinical Hospital, Iasi, Romania
| |
Collapse
|
21
|
Kalugotla G, He L, Weber KJ, Daemen S, Reller A, Razani B, Schilling JD. Frontline Science: Acyl-CoA synthetase 1 exacerbates lipotoxic inflammasome activation in primary macrophages. J Leukoc Biol 2019; 106:803-814. [PMID: 31166619 DOI: 10.1002/jlb.3hi0219-045rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity and diabetes are associated with macrophage dysfunction and increased NLRP3 inflammasome activation. Saturated fatty acids (FAs) are abundant in these metabolic disorders and have been associated with lysosome dysfunction and inflammasome activation in macrophages. However, the interplay between cellular metabolic pathways and lipid-induced toxicity in macrophages remains poorly understood. In this study, we investigated the role of the lipid metabolic enzyme long chain acyl-CoA synthetase (ACSL1) in primary macrophages. ACSL1 is upregulated in TLR4-activated macrophages via a TIR (toll/IL-1R) domain-containing adapter inducing IFN-β (TRIF)-dependent pathway, and knockout of this enzyme decreased NLRP3 inflammasome activation. The mechanism of this response was not related to inflammasome priming, lipid uptake, or endoplasmic reticulum (ER) stress generation. Rather, ACSL1 was associated with mitochondria where it modulated fatty acid metabolism. The development of lysosome damage with palmitate exposure likely occurs via the formation of intracellular crystals. Herein, we provide evidence that loss of ACSL1 in macrophages decreases FA crystal formation thereby reducing lysosome damage and IL-1β release. These findings suggest that targeting lipid metabolic pathways in macrophages may be a strategy to reduce lipotoxity and to decrease pathologic inflammation in metabolic disease.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Li He
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kassandra J Weber
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sabine Daemen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abigail Reller
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Babak Razani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel D Schilling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Zhang S, Bories G, Lantz C, Emmons R, Becker A, Liu E, Abecassis MM, Yvan-Charvet L, Thorp EB. Immunometabolism of Phagocytes and Relationships to Cardiac Repair. Front Cardiovasc Med 2019; 6:42. [PMID: 31032261 PMCID: PMC6470271 DOI: 10.3389/fcvm.2019.00042] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide. Myocardial ischemia is a major contributor to cardiovascular morbidity and mortality. In the case of acute myocardial infarction, subsequent cardiac repair relies upon the acute, and coordinated response to injury by innate myeloid phagocytes. This includes neutrophils, monocytes, macrophage subsets, and immature dendritic cells. Phagocytes function to remove necrotic cardiomyocytes, apoptotic inflammatory cells, and to remodel extracellular matrix. These innate immune cells also secrete cytokines and growth factors that promote tissue replacement through fibrosis and angiogenesis. Within the injured myocardium, macrophages polarize from pro-inflammatory to inflammation-resolving phenotypes. At the core of this functional plasticity is cellular metabolism, which has gained an appreciation for its integration with phagocyte function and remodeling of the transcriptional and epigenetic landscape. Immunometabolic rewiring is particularly relevant after ischemia and clinical reperfusion given the rapidly changing oxygen and metabolic milieu. Hypoxia reduces mitochondrial oxidative phosphorylation and leads to increased reliance on glycolysis, which can support biosynthesis of pro-inflammatory cytokines. Reoxygenation is permissive for shifts back to mitochondrial metabolism and fatty acid oxidation and this is ultimately linked to pro-reparative macrophage polarization. Improved understanding of mechanisms that regulate metabolic adaptations holds the potential to identify new metabolite targets and strategies to reduce cardiac damage through nutrient signaling.
Collapse
Affiliation(s)
- Shuang Zhang
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gael Bories
- UMR INSERM U1065/UNS, C3M, Bâtiment Universitaire ARCHIMED, Nice, France
| | - Connor Lantz
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Russel Emmons
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amanda Becker
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, United States
| | - Esther Liu
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Michael M. Abecassis
- Comprehensive Transplant Center, Northwestern Feinberg School of Medicine, Chicago, IL, United States
| | | | - Edward B. Thorp
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
23
|
Egnatchik RA, Leamy AK, Sacco SA, Cheah YE, Shiota M, Young JD. Glutamate-oxaloacetate transaminase activity promotes palmitate lipotoxicity in rat hepatocytes by enhancing anaplerosis and citric acid cycle flux. J Biol Chem 2018; 294:3081-3090. [PMID: 30563841 DOI: 10.1074/jbc.ra118.004869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte lipotoxicity is characterized by aberrant mitochondrial metabolism, which predisposes cells to oxidative stress and apoptosis. Previously, we reported that translocation of calcium from the endoplasmic reticulum to mitochondria of palmitate-treated hepatocytes activates anaplerotic flux from glutamine to α-ketoglutarate (αKG), which subsequently enters the citric acid cycle (CAC) for oxidation. We hypothesized that increased glutamine anaplerosis fuels elevations in CAC flux and oxidative stress following palmitate treatment. To test this hypothesis, primary rat hepatocytes or immortalized H4IIEC3 rat hepatoma cells were treated with lipotoxic levels of palmitate while modulating anaplerotic pathways leading to αKG. We found that culture media supplemented with glutamine, glutamate, or dimethyl-αKG increased palmitate lipotoxicity compared with media that lacked these anaplerotic substrates. Knockdown of glutamate-oxaloacetate transaminase activity significantly reduced the lipotoxic effects of palmitate, whereas knockdown of glutamate dehydrogenase (Glud1) had no effect on palmitate lipotoxicity. 13C flux analysis of H4IIEC3 cells co-treated with palmitate and the pan-transaminase inhibitor aminooxyacetic acid confirmed that reductions in lipotoxic markers were associated with decreases in anaplerosis, CAC flux, and oxygen consumption. Taken together, these results demonstrate that lipotoxic palmitate treatments enhance anaplerosis in cultured rat hepatocytes, causing a shift to aberrant transaminase metabolism that fuels CAC dysregulation and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Masakazu Shiota
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37235
| | - Jamey D Young
- From Chemical and Biomolecular Engineering and .,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
24
|
Ke C, Zhu X, Zhang Y, Shen Y. Metabolomic characterization of hypertension and dyslipidemia. Metabolomics 2018; 14:117. [PMID: 30830367 DOI: 10.1007/s11306-018-1408-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypertension and dyslipidemia are two main risk factors for cardiovascular diseases (CVD). Moreover, their coexistence predisposes individuals to a considerably increased risk of CVD. However, the regulatory mechanisms involved in hypertension and dyslipidemia as well as their interactions are incompletely understood. OBJECTIVES The aims of our study were to identify metabolic biomarkers and pathways for hypertension and dyslipidemia, and compare the metabolic patterns between hypertension and dyslipidemia. METHODS In this study, we performed metabolomic investigations into hypertension and dyslipidemia based on a "healthy" UK population. Metabolomic data from the Husermet project were acquired by gas chromatography-mass spectrometry and ultra-performance liquid chromatography-mass spectrometry. Both univariate and multivariate statistical methods were used to facilitate biomarker selection and pathway analysis. RESULTS Serum metabolic signatures between individuals with and without hypertension or dyslipidemia exhibited considerable differences. Using rigorous selection criteria, 26 and 46 metabolites were identified as potential biomarkers of hypertension and dyslipidemia respectively. These metabolites, mainly involved in fatty acid metabolism, glycerophospholipid metabolism, alanine, aspartate and glutamate metabolism, are implicated in insulin resistance, vascular remodeling, macrophage activation and oxidised LDL formation. Remarkably, hypertension and dyslipidemia exhibit both common and distinct metabolic patterns, revealing their independent and synergetic biological implications. CONCLUSION This study identified valuable biomarkers and pathways for hypertension and dyslipidemia, and revealed common and different metabolic patterns between hypertension and dyslipidemia. The information provided in this study could shed new light on the pathologic mechanisms and offer potential intervention targets for hypertension and dyslipidemia as well as their related diseases.
Collapse
Affiliation(s)
- Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Xiaohong Zhu
- Suzhou Industrial Park Centers for Disease Control and Prevention (Institute of Health Inspection and Supervision), Suzhou, 215021, Jiangsu, People's Republic of China
| | - Yuxia Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Yueping Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
25
|
Weber KJ, Sauer M, He L, Tycksen E, Kalugotla G, Razani B, Schilling JD. PPARγ Deficiency Suppresses the Release of IL-1β and IL-1α in Macrophages via a Type 1 IFN-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2018; 201:2054-2069. [PMID: 30143592 DOI: 10.4049/jimmunol.1800224] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
Obesity and diabetes modulate macrophage activation, often leading to prolonged inflammation and dysfunctional tissue repair. Increasing evidence suggests that the NLRP3 inflammasome plays an important role in obesity-associated inflammation. We have previously shown that activation of the lipotoxic inflammasome by excess fatty acids in macrophages occurs via a lysosome-dependent pathway. However, the mechanisms that link cellular lipid metabolism to altered inflammation remain poorly understood. PPARγ is a nuclear receptor transcription factor expressed by macrophages that is known to alter lipid handling, mitochondrial function, and inflammatory cytokine expression. To undercover novel links between metabolic signaling and lipotoxic inflammasome activation, we investigated mouse primary macrophages deficient in PPARγ. Contrary to our expectation, PPARγ knockout (KO) macrophages released significantly less IL-1β and IL-1α in response to lipotoxic stimulation. The suppression occurred at the transcriptional level and was apparent for multiple activators of the NLRP3 inflammasome. RNA sequencing revealed upregulation of IFN-β in activated PPARγKO macrophages, and this was confirmed at the protein level. A blocking Ab against the type 1 IFNR restored the release of IL-1β to wild type levels in PPARγKO cells, confirming the mechanistic link between these events. Conversely, PPARγ activation with rosiglitazone selectively suppressed IFN-β expression in activated macrophages. Loss of PPARγ also resulted in diminished expression of genes involved in sterol biosynthesis, a pathway known to influence IFN production. Together, these findings demonstrate a cross-talk pathway that influences the interplay between metabolism and inflammation in macrophages.
Collapse
Affiliation(s)
- Kassandra J Weber
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Madeline Sauer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Li He
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Gowri Kalugotla
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Babak Razani
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joel D Schilling
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
26
|
Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Front Immunol 2018; 9:1605. [PMID: 30050539 PMCID: PMC6052888 DOI: 10.3389/fimmu.2018.01605] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Lack of immune system cells or impairment in differentiation of immune cells is the basis for many chronic diseases. Metabolic changes could be the root cause for this immune cell impairment. These changes could be a result of altered transcription, cytokine production from surrounding cells, and changes in metabolic pathways. Immunity and mitochondria are interlinked with each other. An important feature of mitochondria is it can regulate activation, differentiation, and survival of immune cells. In addition, it can also release signals such as mitochondrial DNA (mtDNA) and mitochondrial ROS (mtROS) to regulate transcription of immune cells. From current literature, we found that mitochondria can regulate immunity in different ways. First, alterations in metabolic pathways (TCA cycle, oxidative phosphorylation, and FAO) and mitochondria induced transcriptional changes can lead to entirely different outcomes in immune cells. For example, M1 macrophages exhibit a broken TCA cycle and have a pro-inflammatory role. By contrast, M2 macrophages undergo β-oxidation to produce anti-inflammatory responses. In addition, amino acid metabolism, especially arginine, glutamine, serine, glycine, and tryptophan, is critical for T cell differentiation and macrophage polarization. Second, mitochondria can activate the inflammatory response. For instance, mitochondrial antiviral signaling and NLRP3 can be activated by mitochondria. Third, mitochondrial mass and mobility can be influenced by fission and fusion. Fission and fusion can influence immune functions. Finally, mitochondria are placed near the endoplasmic reticulum (ER) in immune cells. Therefore, mitochondria and ER junction signaling can also influence immune cell metabolism. Mitochondrial machinery such as metabolic pathways, amino acid metabolism, antioxidant systems, mitochondrial dynamics, mtDNA, mitophagy, and mtROS are crucial for immune functions. Here, we have demonstrated how mitochondria coordinate to alter immune responses and how changes in mitochondrial machinery contribute to alterations in immune responses. A better understanding of the molecular components of mitochondria is necessary. This can help in the development of safe and effective immune therapy or prevention of chronic diseases. In this review, we have presented an updated prospective of the mitochondrial machinery that drives various immune responses.
Collapse
Affiliation(s)
- Anusha Angajala
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States.,Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Sangbin Lim
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Joshua B Phillips
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Jin-Hwan Kim
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ming Tan
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
27
|
The mitochondrial respiratory chain: A metabolic rheostat of innate immune cell-mediated antibacterial responses. Mitochondrion 2018; 41:28-36. [DOI: 10.1016/j.mito.2017.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/23/2023]
|
28
|
Gibson MS, Domingues N, Vieira OV. Lipid and Non-lipid Factors Affecting Macrophage Dysfunction and Inflammation in Atherosclerosis. Front Physiol 2018; 9:654. [PMID: 29997514 PMCID: PMC6029489 DOI: 10.3389/fphys.2018.00654] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and a leading cause of human mortality. The lesional microenvironment contains a complex accumulation of variably oxidized lipids and cytokines. Infiltrating monocytes become polarized in response to these stimuli, resulting in a broad spectrum of macrophage phenotypes. The extent of lipid loading in macrophages influences their phenotype and consequently their inflammatory status. In response to excess atherogenic ligands, many normal cell processes become aberrant following a loss of homeostasis. This can have a direct impact upon the inflammatory response, and conversely inflammation can lead to cell dysfunction. Clear evidence for this exists in the lysosomes, endoplasmic reticulum and mitochondria of atherosclerotic macrophages, the principal lesional cell type. Furthermore, several intrinsic cell processes become dysregulated under lipidotic conditions. Therapeutic strategies aimed at restoring cell function under disease conditions are an ongoing coveted aim. Macrophages play a central role in promoting lesional inflammation, with plaque progression and stability being directly proportional to macrophage abundance. Understanding how mixtures or individual lipid species regulate macrophage biology is therefore a major area of atherosclerosis research. In this review, we will discuss how the myriad of lipid and lipoprotein classes and products used to model atherogenic, proinflammatory immune responses has facilitated a greater understanding of some of the intricacies of chronic inflammation and cell function. Despite this, lipid oxidation produces a complex mixture of products and with no single or standard method of derivatization, there exists some variation in the reported effects of certain oxidized lipids. Likewise, differences in the methods used to generate macrophages in vitro may also lead to variable responses when apparently identical lipid ligands are used. Consequently, the complexity of reported macrophage phenotypes has implications for our understanding of the metabolic pathways, processes and shifts underpinning their activation and inflammatory status. Using oxidized low density lipoproteins and its oxidized cholesteryl esters and phospholipid constituents to stimulate macrophage has been hugely valuable, however there is now an argument that only working with low complexity lipid species can deliver the most useful information to guide therapies aimed at controlling atherosclerosis and cardiovascular complications.
Collapse
Affiliation(s)
- Mark S Gibson
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Neuza Domingues
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Otilia V Vieira
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
29
|
Kumar V. Targeting macrophage immunometabolism: Dawn in the darkness of sepsis. Int Immunopharmacol 2018; 58:173-185. [PMID: 29625385 DOI: 10.1016/j.intimp.2018.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
Sepsis is known since the time (470 BC) of great Greek physician, Hippocrates. Advancement in modern medicine and establishment of separate branches of medical science dealing with sepsis research have improved its outcome. However, mortality associated with sepsis still remains higher (25-30%) that further increases to 40-50% in the presence of septic shock. For example, sepsis-associated deaths account more in comparison to deaths-associated with myocardial-infarction and certain cancers (i.e. breast and colorectal cancer). However, it is now well established that profound activation of innate immune cells including macrophages play a very important role in the immunopathogenesis of sepsis. Macrophages are sentinel cells of the innate immune system with their location varying from peripheral blood to various target organs including lungs, liver, brain, kidneys, skin, testes, vascular endothelium etc. Thus, profound and dysregulated activation of these cells during sepsis can directly impact the outcome of sepsis. However, the emergence of the concept of immunometabolism as a major controller of immune response has raised a new hope for identifying new targets for immunomodulatory therapeutic approaches. Thus this present review starts with an introduction of sepsis as a major medical problem worldwide and signifies the role of dysregulated innate immune response including macrophages in its immunopathogenesis. Thereafter, subsequent sections describe changes in immunometabolic stage of macrophages (both M1 and M2) during sepsis. The article ends with the discussion of novel macrophage-specific therapeutic targets targeting their immunometabolism during sepsis and epigenetic regulation of macrophage immunometabolism and vice versa.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
30
|
Jiang D, Chen S, Sun R, Zhang X, Wang D. The NLRP3 inflammasome: Role in metabolic disorders and regulation by metabolic pathways. Cancer Lett 2018; 419:8-19. [PMID: 29339210 DOI: 10.1016/j.canlet.2018.01.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Inflammasomes are large multimolecular complexes present in the cytosol of stimulated immune cells; they mediate the activation of caspase-1, leading to cellular pyroptosis. So far, a variety of studies on inflammasomes have emerged, and the best-studied is the NLRP3 inflammasome that is involved in many inflammatory responses. Furthermore, its relationship with metabolism is gaining increasing attention in this field. In this review, we discuss the importance of the NLRP3 inflammasome in metabolic disorders and its close association with metabolic pathways.
Collapse
Affiliation(s)
| | | | | | - Xue Zhang
- Department of Pathology and Pathophysiology, China.
| | - Di Wang
- Institute of Immunology, China.
| |
Collapse
|
31
|
Lee HT, Lin CS, Pan SC, Wu TH, Lee CS, Chang DM, Tsai CY, Wei YH. Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients. Mitochondrion 2018; 44:65-74. [PMID: 29337141 DOI: 10.1016/j.mito.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/31/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
We evaluated plasma glutamine levels and basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB) of peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients and healthy controls (HCs). Lower plasma glutamine levels correlated with higher SLE disease activity indexes (p=0.025). Incubated in DMEM containing 100mg/dL glucose, SLE-PBMCs displayed lower mOCRB (p=0.018) but similar ECARB (p=0.467) to those of HC-PBMCs, and their mOCRB got elevated (p<0.001) without altering ECARB (p=0.239) by supplementation with 2 or 4mM glutamine. We conclude that impaired mitochondrial respiration of SLE-PBMCs could be improved by glutamine under euglycemic condition.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Sung Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Siao-Cian Pan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| | - Tsai-Hung Wu
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chyou-Shen Lee
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Deh-Ming Chang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Youh Tsai
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yau-Huei Wei
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan.
| |
Collapse
|
32
|
Ko CW, Counihan D, Wu J, Hatzoglou M, Puchowicz MA, Croniger CM. Macrophages with a deletion of the phosphoenolpyruvate carboxykinase 1 ( Pck1) gene have a more proinflammatory phenotype. J Biol Chem 2018; 293:3399-3409. [PMID: 29317502 DOI: 10.1074/jbc.m117.819136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/17/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (Pck1) is a metabolic enzyme that is integral to the gluconeogenic and glyceroneogenic pathways. However, Pck1's role in macrophage metabolism and function is unknown. Using stable isotopomer MS analysis in a mouse model with a myeloid cell-specific Pck1 deletion, we show here that this deletion increases the proinflammatory phenotype in macrophages. Incubation of LPS-stimulated bone marrow-derived macrophages (BMDM) with [U-13C]glucose revealed reduced 13C labeling of citrate and malate and increased 13C labeling of lactate in Pck1-deleted bone marrow-derived macrophages. We also found that the Pck1 deletion in the myeloid cells increases reactive oxygen species (ROS). Of note, this altered macrophage metabolism increased expression of the M1 cytokines TNFα, IL-1β, and IL-6. We therefore conclude that Pck1 contributes to M1 polarization in macrophages. Our findings provide important insights into the factors determining the macrophage inflammatory response and indicate that Pck1 activity contributes to metabolic reprogramming and polarization in macrophages.
Collapse
Affiliation(s)
| | | | - Jing Wu
- Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Maria Hatzoglou
- Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
33
|
Litwinoff EMS, Gold MY, Singh K, Hu J, Li H, Cadwell K, Schmidt AM. Myeloid ATG16L1 does not affect adipose tissue inflammation or body mass in mice fed high fat diet. Obes Res Clin Pract 2017; 12:174-186. [PMID: 29103907 DOI: 10.1016/j.orcp.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND An influx of lipid-loaded macrophages characterizes visceral adipose tissue (VAT) inflammation, which is an important factor in the development of insulin resistance (IR) in obesity. Depletion of macrophage lipids accompanies increased whole body insulin sensitivity, but the underlying mechanism is unknown. Deficiency of autophagy protein ATG16L1 is associated with increases in inflammatory diseases and lipid metabolism, but the connection between ATG16L1, IR, and obesity remains elusive. We hypothesize that myeloid ATG16L1 contributes to lipid loading in macrophages and to IR. METHODS Wild-type (WT) bone marrow derived macrophages (BMDMs) were treated with fatty acids and assessed for markers of autophagy. Myeloid-deficient Atg16l1 and littermate control male mice were fed high fat diet (HFD) or low fat diet (LFD) for 3 months starting at 8 weeks of age. Mice were assessed for body mass, fat and lean mass, glucose and insulin sensitivity, food consumption and adipose inflammation. Fluorescence-activated cell sorted VAT macrophages were assessed for lipid content and expression of autophagy related genes. RESULTS VAT and VAT macrophages from HFD-fed WT mice did not show differences in autophagy protein and gene expression compared to tissue from LFD-fed mice. Fatty acid-treated BMDMs increased neutral lipid content but did not change autophagy protein expression. HFD-fed Atg16l1 myeloid-deficient and littermate mice demonstrated no differences in body mass, glucose or insulin sensitivity, food consumption, fat or lean mass, macrophage lipid content, or adipose tissue inflammation. CONCLUSION ATG16L1 does not contribute to obesity, IR, adipose tissue inflammation or lipid loading in macrophages in mice fed HFD.
Collapse
Affiliation(s)
- Evelyn M S Litwinoff
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Merav Y Gold
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Karan Singh
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Jiyuan Hu
- Departments of Population Health (Biostatistics) and Environmental Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Huilin Li
- Departments of Population Health (Biostatistics) and Environmental Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, and the Department of Microbiology, NYU Langone Health, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Kimmel Center for Biology and Medicine at the Skirball Institute, and the Department of Microbiology, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
34
|
Bettencourt IA, Powell JD. Targeting Metabolism as a Novel Therapeutic Approach to Autoimmunity, Inflammation, and Transplantation. THE JOURNAL OF IMMUNOLOGY 2017; 198:999-1005. [PMID: 28115589 DOI: 10.4049/jimmunol.1601318] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
Immune cell activation and differentiation occurs concurrently with metabolic reprogramming. This ensures that activated cells generate the energy and substrates necessary to perform their specified function. Likewise, the metabolic programs among different cells of the immune system vary. By targeting different metabolic pathways, these differences allow for selective regulation of immune responses. Further, the relative susceptibility of cells to a metabolic inhibitor is dictated by their metabolic demands; cellular selectivity is based on demand. Therefore, where differences exist in metabolic pathways between healthy and pathogenic cells, there is opportunity for selective regulation with agents lacking intrinsic specificity. There are now a host of studies demonstrating how inhibitors of metabolism (e.g., glycolysis, glutamine metabolism, and fatty acid oxidation) can regulate immune responses and treat immune-mediated pathogenesis. In this brief review we detail how inhibitors of metabolism can be employed to regulate immune responses in both autoimmunity and transplantation.
Collapse
Affiliation(s)
- Ian A Bettencourt
- Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Jonathan D Powell
- Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
35
|
Mills EL, Kelly B, O'Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol 2017; 18:488-498. [PMID: 28418387 DOI: 10.1038/ni.3704] [Citation(s) in RCA: 766] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Recent evidence indicates that mitochondria lie at the heart of immunity. Mitochondrial DNA acts as a danger-associated molecular pattern (DAMP), and the mitochondrial outer membrane is a platform for signaling molecules such as MAVS in RIG-I signaling, and for the NLRP3 inflammasome. Mitochondrial biogenesis, fusion and fission have roles in aspects of immune-cell activation. Most important, Krebs cycle intermediates such as succinate, fumarate and citrate engage in processes related to immunity and inflammation, in both innate and adaptive immune cells. These discoveries are revealing mitochondrial targets that could potentially be exploited for therapeutic gain in inflammation and cancer.
Collapse
Affiliation(s)
- Evanna L Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Beth Kelly
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Renner K, Singer K, Koehl GE, Geissler EK, Peter K, Siska PJ, Kreutz M. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment. Front Immunol 2017; 8:248. [PMID: 28337200 PMCID: PMC5340776 DOI: 10.3389/fimmu.2017.00248] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic T lymphocytes and NK cells play an important role in eliminating malignant tumor cells and the number and activity of tumor-infiltrating T cells represent a good marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint blockade, has received considerable attention during the last couple of years. However, for the majority of patients, immune control of their tumors is gray theory as malignant cells use effective mechanisms to outsmart the immune system. Increasing evidence suggests that changes in tumor metabolism not only ensure an effective energy supply and generation of building blocks for tumor growth but also contribute to inhibition of the antitumor response. Immunosuppression in the tumor microenvironment is often based on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and NK cell activation leads to an increased demand for glucose and amino acids, a well-known feature shown by tumor cells. These close metabolic interdependencies result in metabolic competition, limiting the proliferation, and effector functions of tumor-specific immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead to local immunosuppression, thereby facilitating tumor progression and metastasis. In this review, we describe the metabolic interplay between immune cells and tumor cells and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic (re)education of tumor cells is not only an approach to kill tumor cells directly but could overcome metabolic immunosuppression in the tumor microenvironment and thereby facilitate immunotherapy.
Collapse
Affiliation(s)
- Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg , Regensburg , Germany
| | - Gudrun E Koehl
- Department of Surgery, University Hospital Regensburg , Regensburg , Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg , Regensburg , Germany
| | - Katrin Peter
- Internal Medicine III, University Hospital Regensburg , Regensburg , Germany
| | - Peter J Siska
- Internal Medicine III, University Hospital Regensburg , Regensburg , Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany
| |
Collapse
|
37
|
Johar DR, Bernstein LH. Biomarkers of stress-mediated metabolic deregulation in diabetes mellitus. Diabetes Res Clin Pract 2017; 126:222-229. [PMID: 28273645 DOI: 10.1016/j.diabres.2017.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/19/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
Abstract
This review illustrates the relationship of oxidative and nitrative stress to diabetes mellitus and its complications. This is of considerable interest because diabetes mellitus is a lifetime systemic metabolic disease that may have childhood or adult onset and affects not only a triad of pancreatic islet cell insulin, pituitary insulin-like growth hormone, and liver steatosis, it has a long-term association with adiposity, atherosclerosis, coronary vascular disease, kidney disease of the nature afferent arteriolar sclerosis and nodular glomerulosclerosis, cerebrovascular disease, and amyloid deposition in the pancreas and kidney. Only at the end of the 20th century do we gain insight into oxidative and nitrative stress and their consequences. Of special interest here is the fact that reactive oxygen and nitrogen radicals are with us generated throughout the life cycle, and the roles for glutathione and Fe3+ are key elements in the metabolic picture, which brings into the picture dietary factors. More research is required to demonstrate the clinical relivance of naturally-occuring whole-food antioxidants in ameliorating human diabetic complications in vivo.
Collapse
Affiliation(s)
- Dina R Johar
- Department of Biochemistry and Nutrition, Faculty of Women for Arts, Sciences and Education, Ain Shams University, Heliopolis, Cairo, Egypt; Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
38
|
Abstract
Macrophages are heterogeneous cells that play a key role in inflammatory and tissue reparative responses. Over the past decade it has become clear that shifts in cellular metabolism are important determinants of macrophage function and phenotype. At the same time, our appreciation of macrophage diversity in vivo has also been increasing. Factors such as cell origin and tissue localization are now recognized as important variables that influence macrophage biology. Whether different macrophage populations also have unique metabolic phenotypes has not been extensively explored. In this article, we will discuss the importance of understanding how macrophage origin can modulate metabolic programming and influence inflammatory responses.
Collapse
|
39
|
Santulli G. Dietary Components and Metabolic Dysfunction: Translating Preclinical Studies into Clinical Practice. Nutrients 2016; 8:632. [PMID: 27754375 PMCID: PMC5084019 DOI: 10.3390/nu8100632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/08/2016] [Indexed: 12/14/2022] Open
Abstract
The importance of diet in the pathophysiology of metabolic syndrome is well acknowledged [1-3] and may be crucial in the determination of cardiovascular risk and the development of cardiovascular complications [4-7].[...].
Collapse
Affiliation(s)
- Gaetano Santulli
- Herbert and Florence Irving Medical Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|