1
|
Cao L, Guo M, Zhou Y, Zhang J, Tie S, Li X, Tian P, Wu Y, Gu S. Weizmannia coagulans BC99 Improves Strength Performance by Enhancing Protein Digestion and Regulating Skeletal Muscle Quality in College Students of Physical Education Major. Nutrients 2024; 16:3990. [PMID: 39683384 DOI: 10.3390/nu16233990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The dietary proteins are one of the most important factors determining health conditions in humans. The sufficient digestion and absorption of dietary proteins in the digestive tract has positive effects on performance and recovery in sportspeople and athletes. Improving protein digestibility is a strategy for maintaining health status and optimal performance in sport and exercise activities. Objectives: The aim of the present study is to verify whether Weizmannia coagulans BC 99 (BC99) can increase muscle mass and strength. Methods: This randomized double-blind, controlled trial assigned 72 male college students to receive probiotics (n = 36, 20.25 ± 1.03 years; 179.00 ± 5.94 cm; 73.55 ± 8.73 kg, protein powder with BC99) or the placebo (n = 36, 20.19 ± 0.79 years; 179.25 ± 5.16 cm; 73.61 ± 8.24 kg, protein powder) for 12 weeks. At the baseline and final stages of the study, strength tests and body composition assessment were performed. Blood and stool samples were taken at the end of the 12-week intervention, and digestive enzymatic activity of stool samples, biochemical parameters, amino acids and hormone level of plasma were analyzed. Results: BC99 administration significantly improved strength performance, skeletal muscle mass, activity of pepsin and trypsin, the concentrations of branched chain amino acids and essential amino acids, reduced activities of creatine kinase and lactic dehydrogenase and urea nitrogen (BUN) level and increased testosterone and glucagon-like peptide-1 level in male college students. Conclusions: Therefore, BC99 supplementation can be an important nutritional strategy to improve strength performance, body composition, protein digestion and body metabolism in healthy young males.
Collapse
Affiliation(s)
- Li Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
| | - Minghan Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yiqing Zhou
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Pingping Tian
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| |
Collapse
|
2
|
Valenzuela PL, Alejo LB, Montalvo-Pérez A, Ojanguren D, Górriz M, Pagola I, Ozcoidi LM, Lucia A, Barranco-Gil D. Pre-sleep protein supplementation in professional cyclists during a training camp: a three-arm randomized controlled trial. J Int Soc Sports Nutr 2023; 20:2166366. [PMID: 36686220 PMCID: PMC9848340 DOI: 10.1080/15502783.2023.2166366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The effects of pre-sleep protein supplementation on endurance athletes remain unclear, particularly whether its potential benefits are due to the timing of protein intake or solely to an increased total protein intake. We assessed the effects of pre-sleep protein supplementation in professional cyclists during a training camp accounting for the influence of protein timing. Methods Twenty-four professional U23 cyclists (19 ± 1 years, peak oxygen uptake: 79.8 ± 4.9 ml/kg/min) participated in a six-day training camp. Participants were randomized to consume a protein supplement (40 g of casein) before sleep (n = 8) or in the afternoon (n = 8), or an isoenergetic placebo (40 g of carbohydrates) before sleep (n = 8). Indicators of fatigue/recovery (Hooper index, Recovery-Stress Questionnaire for Athletes, countermovement jump), body composition, and performance (1-, 5-, and 20-minute time trials, as well as the estimated critical power) were assessed as study outcomes. Results The training camp resulted in a significant (p < 0.001) increase in training loads (e.g. training stress score of 659 ± 122 per week during the preceding month versus 1207 ± 122 during the training camp), which induced an increase in fatigue indicators (e.g. time effect for Hooper index p < 0.001) and a decrease in performance (e.g. time effect for critical power p = 0.002). Protein intake was very high in all the participants (>2.5 g/kg on average), with significantly higher levels found in the two protein supplement groups compared to the placebo group (p < 0.001). No significant between-group differences were found for any of the analyzed outcomes (all p > 0.05). Conclusions Protein supplementation, whether administered before sleep or earlier in the day, exerts no beneficial effects during a short-term strenuous training period in professional cyclists, who naturally consume a high-protein diet.
Collapse
Affiliation(s)
- Pedro L. Valenzuela
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain,Department of Systems Biology, University of Alcala, Madrid, Spain
| | - Lidia B. Alejo
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Diego Ojanguren
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Itziar Pagola
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Alejandro Lucia
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - David Barranco-Gil
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain,CONTACT David Barranco-Gil Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Teixeira FJ, Matias CN, Faleiro J, Giro R, Pires J, Figueiredo H, Carvalhinho R, Monteiro CP, Reis JF, Valamatos MJ, Teixeira VH, Schoenfeld BJ. A Novel Plant-Based Protein Has Similar Effects Compared to Whey Protein on Body Composition, Strength, Power, and Aerobic Performance in Professional and Semi-Professional Futsal Players. Front Nutr 2022; 9:934438. [PMID: 35938106 PMCID: PMC9355667 DOI: 10.3389/fnut.2022.934438] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 01/10/2023] Open
Abstract
IntroductionThe effects of dietary protein on body composition and physical performance seemingly depend on the essential amino acid profile of the given protein source, although controversy exists about whether animal protein sources may possess additional anabolic properties to plant-based protein sources.PurposeTo compare the effects of a novel plant-based protein matrix and whey protein supplementation on body composition, strength, power, and endurance performance of trained futsal players.MethodsFifty male futsal players were followed during 8 weeks of supplementation, with 40 completing the study either with plant-based protein (N = 20) or whey protein (N = 20). The following measures were assessed: bone mineral content, lean body mass, and fat mass; muscle thickness of the rectus femoris; total body water; blood glucose, hematocrit, C-reactive protein, aspartate aminotransferase, alanine aminotransferase, creatine kinase, creatinine, and estimated glomerular filtration rate; salivary cortisol; maximal strength and 1-RM testing of the back squat and bench press exercises; muscle power and countermovement jump; VO2max and maximal aerobic speed. Subjects were asked to maintain regular dietary habits and record dietary intake every 4 weeks through 3-day food records.ResultsNo differences in any variable were observed between groups at baseline or pre- to post-intervention. Moreover, no time*group interaction was observed in any of the studied variables, and a time effect was only observed regarding fat mass reduction.ConclusionsSupplementing with either a novel plant-based protein matrix or whey protein did not affect any of the variables assessed in high-level futsal players over 8 wks. These results suggest that whey protein does not possess any unique anabolic properties over and above those of plant-based proteins when equated to an essential amino acid profile in the population studied. Furthermore, when consuming a daily protein intake >1.6 g/kg BW.day−1, additional protein supplementation does not affect body composition or performance in trained futsal players, regardless of protein type/source.
Collapse
Affiliation(s)
- Filipe J. Teixeira
- Bettery Lifelab, Bettery S.A., Lisboa, Portugal
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, Barcarena, Portugal
- Interdisciplinary Center for the Study of Human Performance, Universidade de Lisboa, Cruz-Quebrada, Portugal
- *Correspondence: Filipe J. Teixeira
| | - Catarina N. Matias
- Bettery Lifelab, Bettery S.A., Lisboa, Portugal
- Centro de Investigação em Desporto, Educação Física, Exercício e Saúde, Universidade Lusófona, Lisbon, Portugal
| | - João Faleiro
- Bettery Lifelab, Bettery S.A., Lisboa, Portugal
- Athletic Club Oulu Football Club, Oulu, Finland
| | - Rita Giro
- Bettery Lifelab, Bettery S.A., Lisboa, Portugal
| | - Joana Pires
- Grupo de Ativistas em Tratamentos, Lisboa, Portugal
| | | | - Raquel Carvalhinho
- Bettery Lifelab, Bettery S.A., Lisboa, Portugal
- Departamento de Saúde do Futebol Clube do Porto, Porto, Portugal
| | - Cristina P. Monteiro
- Interdisciplinary Center for the Study of Human Performance, Universidade de Lisboa, Cruz-Quebrada, Portugal
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz-Quebrada, Portugal
| | - Joana F. Reis
- Interdisciplinary Center for the Study of Human Performance, Universidade de Lisboa, Cruz-Quebrada, Portugal
- Laboratory of Physiology and Biochemistry of Exercise, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz-Quebrada, Portugal
| | - Maria J. Valamatos
- Interdisciplinary Center for the Study of Human Performance, Universidade de Lisboa, Cruz-Quebrada, Portugal
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz-Quebrada, Portugal
| | - Vítor H. Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Futebol Clube do Porto, Porto, Portugal
| | - Brad J. Schoenfeld
- Health Sciences Department, Lehman College, City University of New York, Bronx, NY, United States
| |
Collapse
|
4
|
Carbohydrate and Protein Co-Ingestion Postexercise Does Not Improve Next-Day Performance in Trained Cyclists. Int J Sport Nutr Exerc Metab 2021; 31:466-474. [PMID: 34453013 DOI: 10.1123/ijsnem.2021-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg-1·2 hr-1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg-1·2 hr-1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L-1·2 hr-1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L-1·2 hr-1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.
Collapse
|
5
|
|
6
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
7
|
Huecker M, Sarav M, Pearlman M, Laster J. Protein Supplementation in Sport: Source, Timing, and Intended Benefits. Curr Nutr Rep 2020; 8:382-396. [PMID: 31713177 DOI: 10.1007/s13668-019-00293-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide background on the present literature regarding the utility and effectiveness of protein supplements, including protein source and nutrient timing. RECENT FINDINGS In the setting of adequate dietary protein consumption, research suggests some benefit particularly in sport or exercise activities. Protein supplements command a multi-billion-dollar market with prevalent use in sports. Many individuals, including athletes, do not consume optimal dietary protein on a daily basis. High-protein diets are remarkably safe in healthy subjects, especially in the short term. Some objective outcomes are physiologic and may not translate to clinically relevant outcomes. Athletes should, however, consider long-term implications when consuming high quantities of protein in dietary or supplement form.
Collapse
Affiliation(s)
- Martin Huecker
- Dept of Emergency Medicine, University of Louisville School of Medicine, 530 S Jackson St C1H17, Louisville, KY, 40202, USA.
| | - Menaka Sarav
- Division of Nephrology and Hypertension, NorthShore University HealthSystem-University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Michelle Pearlman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Miami Health Systems, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
8
|
Lee JH, Lee HS, Kim H, Kwon YJ, Lee JW. Association of milk consumption frequency on muscle mass and strength: an analysis of three representative Korean population studies. Eur J Nutr 2019; 59:3257-3267. [PMID: 31858213 DOI: 10.1007/s00394-019-02164-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Sarcopenia is an involuntary loss of muscle mass, strength, and physical performance associated with aging. Sarcopenia contributes to adverse health outcomes. Milk contains essential amino acids important for maintaining muscle. We investigated the relationships among milk consumption frequency (MCF), muscle mass, and strength in Korean adults. METHODS We analyzed the data from 16,173 adults in the 2008-2011 Korean National Health and Nutrition Examination Survey (KNHANES), 13,537 adults in the 2014-2016 KNHANES, and 8254 adults in the Korean Genome and Epidemiology Study (KoGES). MCF was divided into two groups: (1) MCF less than once per day (MCF < 1 group) and (2) MCF greater than or equal to once per day (MCF ≥ 1 group). Low skeletal muscle mass index (LSMI) was defined using the Foundation for the National Institutes of Health sarcopenia project criteria for low muscle mass. Muscle strength was measured using the hand-grip strength test. RESULTS The odds ratio (95% confidence interval) for LSMI in the MCF < 1 group was 1.250 (1.013-1.543) after adjusting for confounding factors, compared with the MCF ≥ 1 group (2008-2011 KNHANES). The adjusted mean for hand-grip strength was higher in the MCF ≥ 1 group (2014-2016 KNHANES). After a mean follow-up of 9 years, fat-free mass/body mass index was higher in the MCF ≥ 1 group than the MCF < 1 group (KoGES). CONCLUSION We found that MCF ≥ 1 was significantly associated with higher skeletal muscle index and muscle strength than lower MCF. Milk consumption could help prevent sarcopenia in adults.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.,Department of Medicine, Graduate School of Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyungmi Kim
- Department of Nutrition and Dietetics, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Yu-Jin Kwon
- Department of Medicine, Graduate School of Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 225 Geumhak-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17046, Republic of Korea.
| | - Ji-Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
9
|
Intake of Animal Protein Blend Plus Carbohydrate Improves Body Composition With no Impact on Performance in Endurance Athletes. Int J Sport Nutr Exerc Metab 2019; 29:474-480. [PMID: 30676135 DOI: 10.1123/ijsnem.2018-0359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022]
Abstract
The impact of animal protein blend supplements in endurance athletes is scarcely researched. The authors investigated the effect of ingesting an admixture providing orange juice and protein (PRO) from beef and whey versus carbohydrate alone on body composition and performance over a 10-week training period in male endurance athletes. Participants were randomly assigned to a protein (CHO + PRO, n = 15) or a nonprotein isoenergetic carbohydrate (CHO, n = 15) group. Twenty grams of supplement mixed with orange juice was ingested postworkout or before breakfast on nontraining days. Measurements were performed pre- and postintervention on body composition (by dual-energy X-ray absorptiometry), peak oxygen consumption (V˙O2peak), and maximal aerobic speed. Twenty-five participants (CHO + PRO, n = 12; CHO, n = 13) completed the study. Only the CHO + PRO group significantly (p < .05) reduced whole-body fat (mean ± SD) (-1.02 ± 0.6 kg), total trunk fat (-0.81 ± 0.9 kg), and increased total lower body lean mass (+0.52 ± 0.7 kg), showing close to statistically significant increases of whole-body lean mass (+0.57 ± 0.8 kg, p = .055). Both groups reduced (p < .05) visceral fat (CHO + PRO, -0.03 ± 0.1 kg; CHO, -0.03 ± 0.5 kg) and improved the speed at maximal aerobic speed (CHO + PRO, +0.56 ± 0.5 km/hr; CHO, +0.35 ± 0.5 km/hr). Although consuming animal protein blend mixed with orange juice over 10 weeks helped to reduce fat mass and to increase lean mass, no additional performance benefits in endurance runners were observed.
Collapse
|
10
|
Roberson PA, Romero MA, Osburn SC, Mumford PW, Vann CG, Fox CD, McCullough DJ, Brown MD, Roberts MD. Skeletal muscle LINE-1 ORF1 mRNA is higher in older humans but decreases with endurance exercise and is negatively associated with higher physical activity. J Appl Physiol (1985) 2019; 127:895-904. [PMID: 31369326 DOI: 10.1152/japplphysiol.00352.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The long interspersed nuclear element-1 (L1) is a retrotransposon that constitutes 17% of the human genome and is associated with various diseases and aging. Estimates suggest that ~100 L1 copies are capable of copying and pasting into other regions of the genome. Herein, we examined if skeletal muscle L1 markers are affected by aging or an acute bout of cycling exercise in humans. Apparently healthy younger (23 ± 3 y, n = 15) and older participants (58 ± 8 y, n = 15) donated a vastus lateralis biopsy before 1 h of cycling exercise (PRE) at ~70% of heart rate reserve. Second (2 h) and third (8 h) postexercise muscle biopsies were also obtained. L1 DNA and mRNA expression were quantified using three primer sets [5' untranslated region (UTR), L1.3, and ORF1]. 5'UTR and L1.3 DNA methylation as well as ORF1 protein expression were also quantified. PRE 5'UTR, ORF1, or L1.3 DNA were not different between age groups (P > 0.05). ORF1 mRNA was greater in older versus younger participants (P = 0.014), and cycling lowered this marker at 2 h versus PRE (P = 0.027). 5'UTR and L1.3 DNA methylation were higher in younger versus older participants (P < 0.05). Accelerometry data collected during a 2-wk period before the exercise bout indicated higher moderate-to-vigorous physical activity (MVPA) levels per day was associated with lower PRE ORF1 mRNA in all participants (r = -0.398, P = 0.032). In summary, skeletal muscle ORF1 mRNA is higher in older apparently healthy humans, which may be related to lower DNA methylation patterns. ORF1 mRNA is also reduced with endurance exercise and is negatively associated with higher daily MVPA levels.NEW & NOTEWORTHY The long interspersed nuclear element-1 (L1) gene is highly abundant in the genome and encodes for an autonomous retrotransposon, which is capable of copying and pasting itself into other portions of the genome. This is the first study in humans to demonstrate that certain aspects of skeletal muscle L1 activity are altered with aging. Additionally, this is the first study in humans to demonstrate that L1 ORF1 mRNA levels decrease after a bout of endurance exercise, regardless of age.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Danielle J McCullough
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, Alabama
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, Alabama
| |
Collapse
|
11
|
Poffé C, Ramaekers M, Van Thienen R, Hespel P. Ketone ester supplementation blunts overreaching symptoms during endurance training overload. J Physiol 2019; 597:3009-3027. [PMID: 31039280 PMCID: PMC6851819 DOI: 10.1113/jp277831] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Overload training is required for sustained performance gain in athletes (functional overreaching). However, excess overload may result in a catabolic state which causes performance decrements for weeks (non-functional overreaching) up to months (overtraining). Blood ketone bodies can attenuate training- or fasting-induced catabolic events. Therefore, we investigated whether increasing blood ketone levels by oral ketone ester (KE) intake can protect against endurance training-induced overreaching. We show for the first time that KE intake following exercise markedly blunts the development of physiological symptoms indicating overreaching, and at the same time significantly enhances endurance exercise performance. We provide preliminary data to indicate that growth differentiation factor 15 (GDF15) may be a relevant hormonal marker to diagnose the development of overtraining. Collectively, our data indicate that ketone ester intake is a potent nutritional strategy to prevent the development of non-functional overreaching and to stimulate endurance exercise performance. ABSTRACT It is well known that elevated blood ketones attenuate net muscle protein breakdown, as well as negate catabolic events, during energy deficit. Therefore, we hypothesized that oral ketones can blunt endurance training-induced overreaching. Fit male subjects participated in two daily training sessions (3 weeks, 6 days/week) while receiving either a ketone ester (KE, n = 9) or a control drink (CON, n = 9) following each session. Sustainable training load in week 3 as well as power output in the final 30 min of a 2-h standardized endurance session were 15% higher in KE than in CON (both P < 0.05). KE inhibited the training-induced increase in nocturnal adrenaline (P < 0.01) and noradrenaline (P < 0.01) excretion, as well as blunted the decrease in resting (CON: -6 ± 2 bpm; KE: +2 ± 3 bpm, P < 0.05), submaximal (CON: -15 ± 3 bpm; KE: -7 ± 2 bpm, P < 0.05) and maximal (CON: -17 ± 2 bpm; KE: -10 ± 2 bpm, P < 0.01) heart rate. Energy balance during the training period spontaneously turned negative in CON (-2135 kJ/day), but not in KE (+198 kJ/day). The training consistently increased growth differentiation factor 15 (GDF15), but ∼2-fold more in CON than in KE (P < 0.05). In addition, delta GDF15 correlated with the training-induced drop in maximal heart rate (r = 0.60, P < 0.001) and decrease in osteocalcin (r = 0.61, P < 0.01). Other measurements such as blood ACTH, cortisol, IL-6, leptin, ghrelin and lymphocyte count, and muscle glycogen content did not differentiate KE from CON. In conclusion, KE during strenuous endurance training attenuates the development of overreaching. We also identify GDF15 as a possible marker of overtraining.
Collapse
Affiliation(s)
- Chiel Poffé
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Monique Ramaekers
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Ruud Van Thienen
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Peter Hespel
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
- Bakala Academy‐Athletic Performance CenterKU LeuvenLeuvenBelgium
| |
Collapse
|
12
|
Forbes SC, Bell GJ. Whey Protein Isolate Supplementation While Endurance Training Does Not Alter Cycling Performance or Immune Responses at Rest or After Exercise. Front Nutr 2019; 6:19. [PMID: 30881958 PMCID: PMC6406070 DOI: 10.3389/fnut.2019.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
This study examined whey protein isolate supplementation combined with endurance training on cycling performance, aerobic fitness and immune cell responses. Eighteen male cyclists were randomly assigned to either placebo (PLA) or whey protein supplementation (WS; 1.0 g·kg body mass−1·d−1 in addition to their dietary intake). Both groups completed the identical endurance training program, 4 days per week for 6 weeks. Blood samples were obtained at rest and after 5 and 60 min of recovery from a simulated 40 km cycling time trial (TT) and were repeated after training. Baseline dietary intake of protein prior to supplementation was 1.52 ± 0.45 and 1.46 ± 0.44 g·kg body mass−1·d−1 for the WS and PLA groups, respectively. There were similar improvements in TT performance (WS: 71.47 ± 12.17 to 64.38 ± 8.09 min; PLA: 72.33 ± 12.79 to 61.13 ± 8.97 min), and peak oxygen uptake (WS: 52.3 ± 6.1 to 56.1 ± 5.4 mL·kg−1·min−1; PLA: 50.0 ± 7.1 to 54.9 ± 5.1 mL·kg−1·min−1) after training in both groups. White blood cells (WBC) and neutrophil counts were elevated 5 min after the TT and further increased after 60 min (P < 0.05). The exercise-induced increase in WBC and neutrophil counts at 5 and 60 min after the TT were attenuated after training compared to before training (P < 0.05). Lymphocytes increased 5 min after the TT and decreased below rest after 60 min of recovery (P < 0.05). Following training lymphocytes were lower after 60 min of recovery compared to before training. There was no change in natural killer cell activity with exercise, training or between groups. It was concluded that whey protein isolate supplementation while endurance training did not differentially change cycling performance or the immune response at rest or after exercise. However, endurance training did alter performance, aerobic fitness and some post exercise immune cell counts.
Collapse
Affiliation(s)
- Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Gordon J Bell
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Roberson PA, Romero MA, Mumford PW, Osburn SC, Haun CT, Vann CG, Kluess HA, Roberts MD. Protein Supplementation Throughout 10 Weeks of Progressive Run Training Is Not Beneficial for Time Trial Improvement. Front Nutr 2018; 5:97. [PMID: 30456213 PMCID: PMC6230989 DOI: 10.3389/fnut.2018.00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 12/24/2022] Open
Abstract
Introduction: Protein supplementation is proposed to promote recovery and adaptation following endurance exercise. While prior literature demonstrates improved performance when supplementing protein during or following endurance exercise, chronic supplementation research is limited. Methods: Runners (VO2peak = 53.6 ± 8.9 ml/kg/min) were counter-balanced into a placebo group (PLA; n = 8) or protein group (PRO; n = 9) based on sex and VO2peak, and underwent 10 weeks of progressive endurance training. Prior to training, body composition, blood cell differentials, non-invasive mitochondrial capacity using near-infrared spectroscopy, and a 5 km treadmill time trial (TT) were evaluated. Progressive training then commenced (5–10% increase in weekly volume with a recovery week following 3 weeks of training) whereby PRO supplemented with 25 g of whey protein following workouts and prior to sleep (additional 50 g daily). PLA supplemented similarly with a < 1 g sugar pill per day. Following training, participants were reanalyzed for the aforementioned tests. Results: VO2peak and initial 5 km TT were not significantly different between groups. PRO consumed significantly more dietary protein throughout the training period (PRO = 132 g/d or 2.1 g/kg/day; PLA = 84 g/d or 1.2 g/kg/day). Running volume increased significantly over time, but was not significantly different between groups throughout training. Blood measures were unaltered with training or supplementation. Mitochondrial capacity trended toward improving over time (time p = 0.063) with no difference between groups. PLA increased lean mass 0.7 kg (p < 0.05) while PRO experienced infinitesimal change (−0.1 kg, interaction p = 0.049). PLA improved 5 km TT performance 6.4% (1 min 31 s), while PRO improved only 2.7% (40 s) (interaction p = 0.080). Conclusion: This is the first evidence to suggest long-term protein supplementation during progressive run training is not beneficial for runners.
Collapse
Affiliation(s)
- Paul A Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Matthew A Romero
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Petey W Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Cody T Haun
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Heidi A Kluess
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| |
Collapse
|
14
|
Shamim B, Hawley JA, Camera DM. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle. Sports Med 2018; 48:1329-1343. [DOI: 10.1007/s40279-018-0883-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr 2017; 14:20. [PMID: 28642676 PMCID: PMC5477153 DOI: 10.1186/s12970-017-0177-8] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
Abstract
The International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows:An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise.For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4-2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein.Higher protein intakes (2.3-3.1 g/kg/d) may be needed to maximize the retention of lean body mass in resistance-trained subjects during hypocaloric periods.There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass).Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20-40 g.Acute protein doses should strive to contain 700-3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs).These protein doses should ideally be evenly distributed, every 3-4 h, across the day.The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely diminishes with increasing time post-exercise.While it is possible for physically active individuals to obtain their daily protein requirements through the consumption of whole foods, supplementation is a practical way of ensuring intake of adequate protein quality and quantity, while minimizing caloric intake, particularly for athletes who typically complete high volumes of training. Rapidly digested proteins that contain high proportions of essential amino acids (EAAs) and adequate leucine, are most effective in stimulating MPS. Different types and quality of protein can affect amino acid bioavailability following protein supplementation. Athletes should consider focusing on whole food sources of protein that contain all of the EAAs (i.e., it is the EAAs that are required to stimulate MPS). Endurance athletes should focus on achieving adequate carbohydrate intake to promote optimal performance; the addition of protein may help to offset muscle damage and promote recovery. Pre-sleep casein protein intake (30-40 g) provides increases in overnight MPS and metabolic rate without influencing lipolysis.
Collapse
Affiliation(s)
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | - Paul J. Cribb
- Metabolic Precision Certifications, Queensland, Australia
| | | | | | | | | | - Arny A. Ferrando
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Shawn M. Arent
- IFNH Center for Health & Human Performance, Department of Kinesiology & Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Jeffrey R. Stout
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL USA
| | - Paul J. Arciero
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866 USA
| | - Michael J. Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, USA
- Biokinetics, Exercise and Leisure Studies, University of KwaZulu-Natal, Durban, 4000 South Africa
| | - Lem W. Taylor
- Human Performance Laboratory, University of Mary Hardin-Baylor UMHB, Belton, TX 76513 USA
| | - Colin D. Wilborn
- Human Performance Laboratory, University of Mary Hardin-Baylor UMHB, Belton, TX 76513 USA
| | - Doug S. Kalman
- Department of Nutrition & Endocrinology, QPS, Miami, FL USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Darryn S. Willoughby
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX USA
| | - Jay R. Hoffman
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
16
|
McKenzie AI, D'Lugos AC, Saunders MJ, Gworek KD, Luden ND. Fiber Type-Specific Satellite Cell Content in Cyclists Following Heavy Training with Carbohydrate and Carbohydrate-Protein Supplementation. Front Physiol 2016; 7:550. [PMID: 27899900 PMCID: PMC5110549 DOI: 10.3389/fphys.2016.00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/01/2016] [Indexed: 12/25/2022] Open
Abstract
The central purpose of this study was to evaluate the fiber type-specific satellite cell and myonuclear responses of endurance-trained cyclists to a block of intensified training, when supplementing with carbohydrate (CHO) vs. carbohydrate-protein (PRO). In a crossover design, endurance-trained cyclists (n = 8) performed two consecutive training periods, once supplementing with CHO (de facto “control” condition) and the other with PRO. Each training period consisted of 10 days of intensified cycle training (ICT–120% increase in average training duration) followed by 10 days of recovery (RVT–reduced volume training; 33% volume reduction vs. normal training). Skeletal muscle biopsies were obtained from the vastus lateralis before and after ICT and again following RVT. Immunofluorescent microscopy was used to quantify SCs (Pax7+), myonuclei (DAPI+), and myosin heavy chain I (MyHC I). Data are expressed as percent change ± 90% confidence limits. The 10-day block of ICTCHO increased MyHC I SC content (35 ± 28%) and myonuclear density (16 ± 6%), which remained elevated following RVTCHO (SC = 69 ± 50% vs. PRE; Nuclei = 17 ± 15% vs. PRE). MyHC II SC and myonuclei were not different following ICTCHO, but were higher following RVTCHO (SC = +33 ± 31% vs. PRE; Nuclei = 15 ± 14% vs. PRE), indicating a delayed response compared to MyHC I fibers. The MyHC I SC pool increased following ICTPRO (37 ± 37%), but without a concomitant increase in myonuclei. There were no changes in MyHC II SC or myonuclei following ICTPRO. Collectively, these trained endurance cyclists possessed a relatively large pool of SCs that facilitated rapid (MyHC I) and delayed (MyHC II) satellite cell proliferation and myonuclear accretion under carbohydrate conditions. The current findings strengthen the growing body of evidence demonstrating alterations in satellite cell number in the absence of hypertrophy. Satellite cell pool expansion is typically viewed as an advantageous response to exercise. However, when coupled with our previous report that PRO possibly enhanced whole muscle recovery and increased MyHC I and II fiber size, the limited satellite cell/myonuclear response observed with carbohydrate-protein seem to indicate that protein supplementation may have minimized the necessity for satellite cell involvement, thereby suggesting that protein may benefit skeletal muscle during periods of heavy training.
Collapse
Affiliation(s)
- Alec I McKenzie
- Human Performance Laboratory, James Madison University Harrisonburg, VA, USA
| | - Andrew C D'Lugos
- Human Performance Laboratory, James Madison University Harrisonburg, VA, USA
| | - Michael J Saunders
- Human Performance Laboratory, James Madison University Harrisonburg, VA, USA
| | - Keith D Gworek
- Human Performance Laboratory, James Madison University Harrisonburg, VA, USA
| | - Nicholas D Luden
- Human Performance Laboratory, James Madison University Harrisonburg, VA, USA
| |
Collapse
|