1
|
Ferrari S, Galla R, Mulè S, Uberti F. Analysis of the Beneficial Effects of Probiotics on the Gut-Prostate Axis Using Prostatic Co-Culture Model. Foods 2024; 13:3647. [PMID: 39594064 PMCID: PMC11593767 DOI: 10.3390/foods13223647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The link between the gut environment and the prostate has recently been proposed as a potential therapeutic approach for treating benign prostatic hyperplasia (BPH). Therefore, this study examined the advantages of a novel oral probiotic supplement to improve intestinal health and treat BPH. A 3D intestinal barrier model that simulated oral intake was used to analyse the combined regulative abilities of Bifidobacterium longum and Bifidobacterium psychaerophilum. Then, a co-culture prostatic model was used to investigate the biological consequences of the combination under conditions mimicking BPH. The results show the connection between the gut microbiome and prostate disease since the probiotics successfully modulate the primary mechanism involved in the pathogenesis of BPH. Indeed, after the intestinal passage, the mediators released from B. longum and B. psychaerophilum induced a substantial decrease in reactive oxidative species of about 6 times and inflammation (about 5 times regarding interleukine-6 and 10) and a sharp increase in testosterone and serotonin levels (about 95%). Further, proliferation and BPH principal mediators (such as androgen and dihydrotestosterone) were highly affected and nearly restored to physiological levels. Thus, BPH can be directly affected by probiotic supplementation; specifically, B. longum and B. psychaerophilum, in combination, seem able to promote the mitigation of this disease.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy
- Noivita Srls, Spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy
| |
Collapse
|
2
|
Wen F, Chen R, Wang M, Zhang Y, Dong W, Zhang Y, Yang R. Ovotransferrin, an alternative and potential protein for diverse food and nutritional applications. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39023034 DOI: 10.1080/10408398.2024.2381094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ovotransferrin(OVT)is a protein found in many types of egg white and has a wide range of functional properties. It has 50% homology with human/bovine lactoferrin, and is expected to be one of the most important alternative proteins for use in food and nutritional applications. This paper mainly reviews the structural characteristics and chemical properties of OVT, as well as its extraction and purification methods. It also systematically describes the various biological activities of OVT and its applications in food and medical industries. The challenges and limitations in the research of OVT were suggested. This review recommends some possible methods such as nanoparticle carriers and microencapsulation to improve the bioavailability and stability of OVT. In addition, this review highlights several strategies to overcome the limitations of OVT in terms of preparation and purification. This review systematically summarizes the recent advances in OVT and will provide guidance for the its development for food and nutritional applications.
Collapse
Affiliation(s)
- Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Ferrari S, Mulè S, Rosso G, Parini F, Galla R, Molinari C, Uberti F. An Innovative Probiotic-Based Supplement to Mitigate Molecular Factors Connected to Depression and Anxiety: An In Vitro Study. Int J Mol Sci 2024; 25:4774. [PMID: 38731995 PMCID: PMC11083558 DOI: 10.3390/ijms25094774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The gut-brain axis is a bidirectional relationship between the microbiota and the brain; genes related to the brain and gut synaptic formation are similar. Research on the causal effects of gut microbiota on human behavior, brain development, and function, as well as the underlying molecular processes, has emerged in recent decades. Probiotics have been shown in several trials to help reduce anxiety and depressive symptoms. Because of this, probiotic combinations have been tested in in vitro models to see whether they might modulate the gut and alleviate depression and anxiety. Therefore, we sought to determine whether a novel formulation might affect the pathways controlling anxiety and depression states and alter gut barrier activities in a 3D model without having harmful side effects. Our findings indicate that B. bifidum novaBBF7 10 mg/mL, B. longum novaBLG2 5 mg/mL, and L. paracasei TJB8 10 mg/mL may influence the intestinal barrier and enhance the synthesis of short-chain fatty acids. Additionally, the probiotics studied did not cause neuronal damage and, in combination, exert a protective effect against the condition of anxiety and depression triggered by L-Glutamate. All these findings show that probiotics can affect gut function to alter the pathways underlying anxiety and depression.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Simone Mulè
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Giorgia Rosso
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Francesca Parini
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Rebecca Galla
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
- Noivita Srls, Spin Off of the University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Claudio Molinari
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| | - Francesca Uberti
- Laboratory of Physiology, Department for Sustainable Development and Ecological Transition, 13100 Vercelli, Italy (F.P.); (C.M.)
| |
Collapse
|
4
|
Mulè S, Rosso G, Botta M, Brovero A, Ferrari S, Galla R, Molinari C, Uberti F. Design of Mixed Medicinal Plants, Rich in Polyphenols, Vitamins B, and Palmitoylethanolamide-Based Supplement to Help Reduce Nerve Pain: A Preclinical Study. Int J Mol Sci 2024; 25:4790. [PMID: 38732008 PMCID: PMC11083932 DOI: 10.3390/ijms25094790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Neuropathy affects 7-10% of the general population and is caused by a lesion or disease of the somatosensory system. The limitations of current therapies highlight the necessity of a new innovative approach to treating neuropathic pain (NP) based on the close correlation between oxidative stress, inflammatory process, and antioxidant action. The advantageous outcomes of a novel combination composed of Hop extract, Propolis, Ginkgo Biloba, Vitamin B, and palmitoylethanolamide (PEA) used as a treatment was evaluated in this study. To assess the absorption and biodistribution of the combination, its bioavailability was first examined in a 3D intestinal barrier model that replicated intestinal absorption. Further, a 3D nerve tissue model was developed to study the biological impacts of the combination during the essential pathways involved in NP. Our findings show that the combination could cross the intestinal barrier and reach the peripheral nervous system, where it modulates the oxidative stress, inflammation levels, and myelination mechanism (increased NRG, MPZ, ERB, and p75 levels) under Schwann cells damaging. This study proves the effectiveness of Ginkgo Biloba, Propolis, Hop extract, Vitamin B, and PEA in avoiding nerve damage and suggests a potential alternative nutraceutical treatment for NP and neuropathies.
Collapse
Affiliation(s)
- Simone Mulè
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Giorgia Rosso
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Mattia Botta
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Arianna Brovero
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy;
| | - Sara Ferrari
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Rebecca Galla
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
- Noivita Srls, Spin Off, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Francesca Uberti
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| |
Collapse
|
5
|
Fanzaga M, Bollati C, Ranaldi G, Sucato S, Fustinoni S, Roda G, Lammi C. Bioavailability Assessment of an Iron Formulation Using Differentiated Human Intestinal Caco-2 Cells. Foods 2023; 12:3016. [PMID: 37628015 PMCID: PMC10453055 DOI: 10.3390/foods12163016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, there has been growing interest in exploring alternative and innovative delivery systems to improve the efficacy of iron supplements, satisfying iron needs and lowering side effects. To address this issue, this study aimed at demonstrating the advantages of Ferro Supremo formulation (composed of encapsulated iron, vitamins, and micronutrients), in terms of capacity to improve iron intestinal absorption, in comparison with standard FeSO4. Hence, differentiated Caco-2 cells have been used for assessing the in vitro bioavailability and safety of FS and FeSO4. MTT experiments demonstrated that both FS and FeSO4 are not able to impair the viability of Caco-2 cells. Furthermore, the quantitative and qualitative analysis, conducted by atomic absorption spectrometry and fluorescence determinations, revealed that FS can enter, accumulate in the cytoplasm, and be transported by intestinal cells four times more efficiently than FeSO4. Our findings indicate that this formulation can be considered a valuable and efficiently good choice as food supplements for improving iron deficiency.
Collapse
Affiliation(s)
- Melissa Fanzaga
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.F.); (C.B.); (G.R.)
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.F.); (C.B.); (G.R.)
| | - Giulia Ranaldi
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy;
| | - Sabrina Sucato
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.S.); (S.F.)
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.S.); (S.F.)
- IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, 20122 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.F.); (C.B.); (G.R.)
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.F.); (C.B.); (G.R.)
| |
Collapse
|
6
|
Ferrari S, Galla R, Mulè S, Rosso G, Brovero A, Macchi V, Ruga S, Uberti F. The Role of Bifidobacterium bifidum novaBBF7, Bifidobacterium longum novaBLG2 and Lactobacillus paracasei TJB8 to Improve Mechanisms Linked to Neuronal Cells Protection against Oxidative Condition in a Gut-Brain Axis Model. Int J Mol Sci 2023; 24:12281. [PMID: 37569657 PMCID: PMC10419296 DOI: 10.3390/ijms241512281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Despite the identification of several innovative targets for avoiding cognitive decline, there has yet to be a widely accepted approach that deals with minimising the deterioration of cognitive function. In this light, recent studies suggest that regulating the gut-brain axis with probiotics is a potential therapeutic strategy to support brain health. For this reason, in vitro models were used to examine the efficacy of different probiotic combinations to enhance intestinal homeostasis and positively affect the brain. Therefore, the new formulation has been evaluated for its capacity to modify intestinal barrier functions in a 3D in vitro model without any adverse effects and directly impact the mechanisms underlying cognitive function in a gut-brain axis model. According to our findings, B. bifidum novaBBF7 10 mg/mL, B. longum novaBLG2 5 mg/mL and L. paracasei TJB8 10 mg/mL may successfully modify the intestinal barrier and improve SCFA production. Successively, the probiotics studied caused no harm at the neuronal level, as demonstrated by iNOS, mitochondrial potential, and cell viability tests, confirming their safety features and enhancing antioxidant mechanisms and antineuroinflammation activity. Additionally, the damage caused by oxidative stress was also healed, and critical pathways that result in cognitive impairment were changed by synergetic action, supporting the hypothesis that brain ageing and neurodegeneration are slowed down. All these findings demonstrate the ability of probiotics to affect cognitive processes and their ability to sustain the mechanisms underlying cognitive function by acting on intestinal function.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Noivita Srls, Spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Valentina Macchi
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Sara Ruga
- Noivita Srls, Spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
7
|
Novel Approach to the Treatment of Neuropathic Pain Using a Combination with Palmitoylethanolamide and Equisetum arvense L. in an In Vitro Study. Int J Mol Sci 2023; 24:ijms24065503. [PMID: 36982577 PMCID: PMC10053612 DOI: 10.3390/ijms24065503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Neuropathic pain is a typical patient disorder resulting from damage and dysfunction of the peripheral neuraxis. Injury to peripheral nerves in the upper extremities can result in a lifelong reduction in quality of life and a devastating loss of sensory and motor function. Since some standard pharmaceutical therapies can cause dependence or intolerance, nonpharmacological treatments have gained great interest in recent years. In this context, the beneficial effects of a new combination of palmitoylethanolamide and Equisetum arvense L. are evaluated in the present study. The bioavailability of the combination was initially analyzed in a 3D intestinal barrier simulating oral intake to analyze its absorption/biodistribution and exclude cytotoxicity. In a further step, a 3D nerve tissue model was performed to study the biological effects of the combination during the key mechanisms leading to peripheral neuropathy. Our results demonstrate that the combination successfully crossed the intestinal barrier and reached the target site, modulating the nerve recovery mechanism after Schwann cell injury and offering the initial response of relieving pain. This work supported the efficacy of palmitoylethanolamide and Equisetum arvense L. in reducing neuropathy and modifying the major pain mechanisms, outlining a possible alternative nutraceutical approach.
Collapse
|
8
|
Developing New Cyclodextrin-Based Nanosponges Complexes to Improve Vitamin D Absorption in an In Vitro Study. Int J Mol Sci 2023; 24:ijms24065322. [PMID: 36982396 PMCID: PMC10049479 DOI: 10.3390/ijms24065322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Vitamin D plays an important role in numerous cellular functions due to the ability to bind the Vitamin D receptor (VDR), which is present in different tissues. Several human diseases depend on low vitamin D3 (human isoform) serum level, and supplementation is necessary. However, vitamin D3 has poor bioavailability, and several strategies are tested to increase its absorption. In this work, the complexation of vitamin D3 in Cyclodextrin-based nanosponge (CD-NS, in particular, βNS-CDI 1:4) was carried out to study the possible enhancement of bioactivity. The βNS-CDI 1:4 was synthesized by mechanochemistry, and the complex was confirmed using FTIR-ATR and TGA. TGA demonstrated higher thermostability of the complexed form. Subsequently, in vitro experiments were performed to evaluate the biological activity of Vitamin D3 complexed in the nanosponges on intestinal cells and assess its bioavailability without cytotoxic effect. The Vitamin D3 complexes enhance cellular activity at the intestinal level and improve its bioavailability. In conclusion, this study demonstrates for the first time the ability of CD-NS complexes to improve the chemical and biological function of Vitamin D3.
Collapse
|
9
|
New Hyaluronic Acid from Plant Origin to Improve Joint Protection—An In Vitro Study. Int J Mol Sci 2022; 23:ijms23158114. [PMID: 35897688 PMCID: PMC9332867 DOI: 10.3390/ijms23158114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: In recent decades, hyaluronic acid (HA) has attracted great attention as a new treatment option for osteoarthritis. Classical therapies are not able to stop the cartilage degeneration process nor do they favor tissue repair. Nowadays, it is accepted that high molecular weight HA can reduce inflammation by promoting tissue regeneration; therefore, the aim of this study was to verify the efficacy of a new high molecular weight HA of plant origin (called GreenIuronic®) in maintaining joint homeostasis and preventing the harmful processes of osteoarthritis. Methods: The bioavailability of GreenIuronic® was investigated in a 3D intestinal barrier model that mimics human oral intake while excluding damage to the intestinal barrier. Furthermore, the chemical significance and biological properties of GreenIuronic® were investigated in conditions that simulate osteoarthritis. Results: Our data demonstrated that GreenIuronic® crosses the intestinal barrier without side effects as it has a chemical–biological profile, which could be responsible for many specific chondrocyte functions. Furthermore, in the osteoarthritis model, GreenIuronic® can modulate the molecular mechanism responsible for preventing and restoring the degradation of cartilage. Conclusion: According to our results, this new form of HA appears to be well absorbed and distributed to chondrocytes, preserving their biological activities. Therefore, the oral administration of GreenIuronic® in humans can be considered a valid strategy to obtain beneficial therapeutic effects during osteoarthritis.
Collapse
|
10
|
Gao L, Liu L, Liu P, Zhao Y, Zhang S, Xu H. Preparation and related properties of melanin iron supplement. Food Funct 2022; 13:4009-4022. [PMID: 35315843 DOI: 10.1039/d1fo03293c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, BM-Fe (black sesame melanin-iron complex) was prepared and characterized. The results showed that the carboxyl hydroxyl group of BSM (black sesame melanin) participated in the chelation of iron ions. EDS (energy dispersive spectroscopy) and XPS (X-ray photoelectron spectroscopy) results confirmed the presence of iron ions in BM-Fe. The results of DLS (dynamic light scattering) showed that the average particle sizes of BSM and BM-Fe were 844.9 nm and 294.3 nm, respectively, indicating that the structure of BM-Fe with a smaller particle size was formed after the binding of iron ions with the active group on BSM. Finally, the in vitro iron dissolution, iron ion identification, in vitro iron ion reduction, antioxidant activity, cytotoxicity and moisture resistance properties of BM-Fe and FST (ferrous sulfate tablets, a commonly used iron supplement) were comprehensively compared. The results showed that BSM combined with iron instead of physically mixing, and BM-Fe was easily reduced in the gastrointestinal environment. BM-Fe had good bioavailability and retained the excellent characteristics (such as oxidation resistance and biocompatibility) of BSM, and had the potential to be applied in the treatment of iron-deficiency-related diseases. In summary, BM-Fe prepared in this study not only retained the excellent characteristics of BSM but also had a good effect on iron supplementation, high bioavailability and low side effects. Comprehensive analysis showed that the performance of BM-Fe prepared in this study was similar to or even better than that of the control (FST). Thus, BM-Fe is expected to become a new comprehensive multi-functional iron supplement and has a broad developmental prospect.
Collapse
Affiliation(s)
- Li Gao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.,School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Linlin Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Panpan Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Yinghu Zhao
- School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Shuli Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| | - Hongyu Xu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China
| |
Collapse
|
11
|
Galla R, Grisenti P, Farghali M, Saccuman L, Ferraboschi P, Uberti F. Ovotransferrin Supplementation Improves the Iron Absorption: An In Vitro Gastro-Intestinal Model. Biomedicines 2021; 9:biomedicines9111543. [PMID: 34829772 PMCID: PMC8615417 DOI: 10.3390/biomedicines9111543] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Transferrins constitute the most important iron regulation system in vertebrates and some invertebrates. Soluble transferrins, such as bovine lactoferrin and hen egg white ovotransferrin, are glycoproteins with a very similar structure with lobes that complex with iron. In this in vitro study, a comparison of bovine lactoferrin and ovotransferrin was undertaken to confirm the comparability of biological effects. An in vitro gastric barrier model using gastric epithelial cells GTL-16 and an in vitro intestinal barrier model using CaCo-2 cells was employed to evaluate iron absorption and barrier integrity. An analysis of the molecular pathways involving DMT-1 (divalent metal transporter 1), ferritin and ferroportin was also carried out. These in vitro data demonstrate the activity of both 15% saturated and 100% saturated ovotransferrin on the iron regulation system. Compared with the commercial bovine lactoferrin, both 15% saturated and 100% saturated ovotransferrin were found to act in a more physiological manner. Based on these data, it is possible to hypothesise that ovotransferrin may be an excellent candidate for iron supplementation in humans; in particular, 15% saturated ovotransferrin is the overall best performing product. In vivo studies should be performed to confirm this in vitro data.
Collapse
Affiliation(s)
- Rebecca Galla
- Laboratory Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (R.G.); (M.F.); (L.S.)
| | - Paride Grisenti
- Bioseutica B.V., Landbouwweg 83, 3899 BD Zeewolde, The Netherlands;
| | - Mahitab Farghali
- Laboratory Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (R.G.); (M.F.); (L.S.)
| | - Laura Saccuman
- Laboratory Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (R.G.); (M.F.); (L.S.)
| | - Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Saldini 50, 20133 Milan, Italy;
| | - Francesca Uberti
- Laboratory Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (R.G.); (M.F.); (L.S.)
- Correspondence: ; Tel.: +39-03-2166-0653
| |
Collapse
|
12
|
Morsanuto V, Galla R, Molinari C, Uberti F. A New Palmitoylethanolamide Form Combined with Antioxidant Molecules to Improve Its Effectivess on Neuronal Aging. Brain Sci 2020; 10:brainsci10070457. [PMID: 32708932 PMCID: PMC7408069 DOI: 10.3390/brainsci10070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
Palmitoylethanolamide is a nutraceutical compound naturally produced in many plants and animal source foods, but the natural form is poorly water-soluble. It has demonstrated an anti-inflammatory role as a neuroprotective mediator, acting on several molecular targets of the central nervous system involved on brain aging process. In healthy adults, palmitoylethanolamide is an endogenous PPAR-α (peroxisome proliferator-activated receptor α) agonist through which it performs anti-inflammatory activity and provides its effects by activating the cannabinoid receptor. The different formulations of palmitoylethanolamide (micronized palmitoylethanolamide, FM-LipoMatrix® palmitoylethanolamide and FM-LipoMatrix® palmitoylethanolamide plus lipoic acid and vitamin D3) were analyzed starting from intestinal barrier, to verify their bioavailability, to in primary astrocytes in which cell viability, reactive oxygen species (ROS) and nitric oxide (NO) production, NFKB activity, MAPK, p53 and PPARα activities were investigated. Additionally, cannabinoid and estrogen receptors were analyzed using the western blot technique. The combination of palmitoylethanolamide in FM-LipoMatrix®, lipoic acid and vitamin D3 shows better absorption predicting an improvement on plasma concentration; this formulation also shows a reduction in ROS and NO production and the data show the interaction of palmitoylethanolamide with cannabinoids and estrogen receptors inhibiting neuroinflammatory markers. All these data support the hypothesis of a new potential strategy to restore brain function and slow down brain aging in humans.
Collapse
|
13
|
Molinari C, Morsanuto V, Ruga S, Notte F, Farghali M, Galla R, Uberti F. The Role of BDNF on Aging-Modulation Markers. Brain Sci 2020; 10:E285. [PMID: 32397504 PMCID: PMC7287884 DOI: 10.3390/brainsci10050285] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
An important link between brain aging and a class of growth/survival factors called neurotrophins has recently been demonstrated. In particular, brain-derived neurotrophic factor (BDNF) plays a fundamental role during age-related synaptic loss, preventing cerebral atrophy and cognitive decline. The aim of the present study was to investigate whether the use of low dose BDNF sequentially kinetic activated (SKA) was able to counteract some mechanisms underlying the degeneration and aging of nervous tissue by increasing endogenous protection mechanisms. Both in vitro and in vivo experiments were performed to assess the ability of BDNF SKA to protect and regenerate survival-related molecular pathways, studying intestinal absorption in vitro and brain function in vivo. Our pioneering results show that BDNF SKA is able to induce the endogenous production of BDNF, using its receptor TrkB and influencing the apolipoprotein E expression. Moreover, BDNF SKA exerted effects on β-Amyloid and Sirtuin 1 proteins, confirming the hypothesis of a fine endogenous regulatory effect exerted by BDNF SKA in maintaining the health of both neurons and astrocytes. For this reason, a change in BDNF turnover is considered as a positive factor against brain aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (V.M.); (S.R.); (F.N.); (M.F.); (R.G.)
| |
Collapse
|
14
|
Study of Magnesium Formulations on Intestinal Cells to Influence Myometrium Cell Relaxation. Nutrients 2020; 12:nu12020573. [PMID: 32098378 PMCID: PMC7071389 DOI: 10.3390/nu12020573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Magnesium is involved in a wide variety of physiological processes including direct relaxation of smooth muscle. A magnesium imbalance can be considered the primary cause or consequence of many pathophysiological conditions. The smooth muscle tissue of the uterus, i.e., the myometrium, undergoes numerous physiological changes during life, fundamental for uterine activities, and it receives proven benefits from magnesium supplementation. However, magnesium supplements have poor absorption and bioavailability. Furthermore, no data are available on the direct interaction between intestinal absorption of magnesium and relaxation of the myometrium. Methods: Permeability in human intestinal cells (Caco-2 cells) and direct effects on myometrial cells (PHM1-41 cells) of two different forms of magnesium, i.e., sucrosomial and bisglycinate, were studied in order to verify the magnesium capacity of modulate contractility. Cell viability, reactive oxygen species (ROS) and nitric oxide (NO) production, magnesium concentration, contractility, and pathways involved were analyzed. Results: Data showed a better influence of buffered chelate bisglycinate on intestinal permeability and myometrial relaxation over time with a maximum effect at 3 h and greater availability compared to the sucrosomial form. Conclusions: Magnesium-buffered bisglycinate chelate showed better intestinal absorption and myometrial contraction, indicating a better chance of effectiveness in human applications.
Collapse
|
15
|
Zein Beta-Cyclodextrin Micropowders for Iron Bisglycinate Delivery. Pharmaceutics 2020; 12:pharmaceutics12010060. [PMID: 31940787 PMCID: PMC7023128 DOI: 10.3390/pharmaceutics12010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Given the limited number of materials available to design delivery platforms for nutrients, the rational combination of raw materials already approved as food ingredients and their processing through nano-micro technology can offer a unique tool for innovation. Here, we propose a nano-in-micro strategy to produce powders based on the hydrophobic protein zein, useful for the oral delivery of a hydrophilic iron source (iron bisglycinate) in anaemic patients. Iron-loaded powders were prepared through a two-step strategy consisting in the formation of a zein pseudolatex followed by a spray-drying step. To extend the manipulation space for zein and entrap iron bisglycinate, β-cyclodextrin (βCD) was selected as helping excipient. Addition of βCD allowed iron loading in the pseudolatex and greatly increased product yields after the drying process as compared to zein alone. Iron-loaded micro-sized powders were characterised by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the role of βCD as a compatibilizer for the zein-iron system. Remarkably, micropowders released only 20% of FeBIS in a simulated gastric fluid, whereas release in a simulated intestinal fluid was almost completed in 7 h. In summary, βCD association to zein is a novel strategy to expand applications in the oral delivery of iron bisglycinate and, prospectively, to micronutrient chelates.
Collapse
|
16
|
Cheng C, Huang DC, Zhao LY, Cao CJ, Chen GT. Preparation and in vitro absorption studies of a novel polysaccharide‑iron (III) complex from Flammulina velutipes. Int J Biol Macromol 2019; 132:801-810. [DOI: 10.1016/j.ijbiomac.2019.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
|
17
|
Role of Combined Lipoic Acid and Vitamin D3 on Astrocytes as a Way to Prevent Brain Ageing by Induced Oxidative Stress and Iron Accumulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2843121. [PMID: 30944691 PMCID: PMC6421749 DOI: 10.1155/2019/2843121] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/03/2019] [Indexed: 01/21/2023]
Abstract
Brain ageing is a complex multifactorial process characterized by gradual and continuous loss of neuronal functions. It is hypothesized that at the basis of brain ageing as well as age-related diseases, there is an impairment of the antioxidant defense system leading to an increase of oxidative stress. In this study, two different biological aspects involved in brain ageing and neurodegeneration have been investigated: oxidative stress and iron accumulation damage. In primary mouse astrocytes, the stimulation with 50 μM lipoic acid (LA) and 100 nM vitamin D (vitD) was first investigated in a time-course study to determine the dosages to be used in combination and then in a permeability test using an in vitro blood-brain barrier. In a second set of experiments, the role of oxidative stress was investigated pretreating astrocytes with 200 μM H2O2 for 30 min. The ability of vitD and LA alone and combined together to prevent or repair the damage caused by oxidative stress was investigated after 24 h of stimulation by the MTT test, mitochondrial membrane potential measurement, and Western blot analysis. To induce neurodegeneration, cells were pretreated with 300 μM catalytic iron for 6 days and then treated with vitD and LA alone and combined for additional 6 days to investigate the protection exerted by combination, analyzing viability, ROS production, iron concentration, and activation of intracellular pathways. In our study, the combination of LA and vitD showed beneficial effects on viability of astrocytes, since the substances are able to cross the brain barrier. In addition, combined LA and vitD attenuated the H2O2-induced apoptosis through the mitochondrial-mediated pathway. The combination was also able to counteract the adverse conditions caused by iron, preventing its accumulation. All these data support the hypothesis of the synergistic and cooperative activity exerted by LA and vitD in astrocytes indicating a possible new strategy to slow down ageing.
Collapse
|