1
|
Hussein SA, Tolba MF, Michel HE, Albohy A, Azab SS. In silico and In vivo protective effect of biochanin-A mitigating doxorubicin- induced cognitive deficits and neuroinflammation: Insights to the role of p-Tau and miR-132. Neurotoxicology 2025; 107:22-36. [PMID: 39848501 DOI: 10.1016/j.neuro.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Doxorubicin (DOX)-induced chemobrain has been reported in several studies. Its main culprit is the induction of massive amounts of reactive oxygen species (ROS), hence triggering damage to brain tissues and thus leading to neuroinflammation. Biochanin A (BIO-A) is known to be an antioxidant, anti-inflammatory, and neuroprotective agent. An in silico study was designed to examine the potential neuroprotective effect of BIO-A. An in vivo study was used to evaluate the modulatory effect of BIO-A on cognitive impairment engendered by DOX. The insilico investigation proved the putative neuroprotective effect of BIO-A. In the in vivo study, BIO-A treatment counteracted DOX-induced memory deficits, as evidenced by improved spatial memory in rats compared to the DOX-only group. BIO-A also reversed DOX-triggered hippocampal neurodegeneration and neuroinflammation, supported by a significant decrease in tissue contents of NF-κB (p65) by 32 % and NLRP3 by 36 % versus the DOX-only group. BIO-A also abrogated DOX-induced neurodegneration, as evidenced by increasing SIRT1 content by 2-fold and BDNF content by 2-fold versus the DOX-only group in hippocampal tissues. In addition, BIO-A ameliorated DOX-augmented apoptosis in the hippocampus, as evidenced by lowering caspase-3 content in the hippocampus by 26 % versus the DOX-only group. Regarding tauopathy, BIO-A reversed DOX-increased tauopathy by 35 % versus the DOX-only group. The neuroprotectant miR-132 was increased by BIO-A in hippocampal tissues by 4-fold, contrary to the DOX-only group. Thus, BIO-A treatment modulated DOX-induced behavioral, histological, and molecular changes in the hippocampi of rats. Further studies are recommended to evaluate BIO-A in early clinical trials for the purpose of protection against chemobrain in cancer patients.
Collapse
Affiliation(s)
- Sarah A Hussein
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mai F Tolba
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Min Q, Chen X, Yifei G, Baifeng S, Zichuan W, Xiaolong S, Huajiang C, Wen Y, Yang L. FOXO3a overexpression ameliorates intervertebral disc degeneration by decreasing NLRP3-mediated pyroptosis. Int Immunopharmacol 2025; 144:113596. [PMID: 39579536 DOI: 10.1016/j.intimp.2024.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Qi Min
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Xu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Gu Yifei
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Sun Baifeng
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Wu Zichuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Shen Xiaolong
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Chen Huajiang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China
| | - Yuan Wen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China.
| | - Liu Yang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, China.
| |
Collapse
|
3
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
4
|
Byeon HE, Choi SE, Kim Y, Choi S, Lee SJ, Kim DH, Mo JS, Jeon JY. HDAC11 Regulates Palmitate-induced NLRP3 Inflammasome Activation by Inducing YAP Expression in THP-1 Cells and PBMCs. Endocrinology 2024; 165:bqae011. [PMID: 38366363 DOI: 10.1210/endocr/bqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 02/18/2024]
Abstract
Histone deacetylase 11 (HDAC11) has been implicated in the pathogenesis of metabolic diseases characterized by chronic low-grade inflammation, such as obesity. However, the influence of HDAC11 on inflammation and the specific effect of HDAC11 on the palmitic acid (PA)-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation are poorly understood. The effect of PA treatment on HDAC11 activity and the NLRP3 inflammasome was investigated in human peripheral blood mononuclear cells and THP-1 cells. The PA-induced responses of key markers of NLRP3 inflammasome activation, including NLRP3 gene expression, caspase-1 p10 activation, cleaved IL-1β production, and extracellular IL-1β release, were assessed as well. The role of HDAC11 was explored using a specific inhibitor of HDAC11 and by knockdown using small interfering (si)HDAC11 RNA. The relationship between HDAC11 and yes-associated protein (YAP) in the PA-induced NLRP3 inflammasome was investigated in THP-1 cells with HDAC11 or YAP knockdown. Following PA treatment, HDAC11 activity and protein levels increased significantly, concomitant with activation of the NLRP3 inflammasome. Notably, PA-induced the upregulation of NLRP3, caspase-1 p10 activation, the production of cleaved IL-1β, and the release of IL-1β into the extracellular space, all of which were attenuated by FT895 treatment and by HDAC11 knockdown. In THP-1 cells, PA induced the expression of YAP and its interaction with NLRP3, resulting in NLRP3 inflammasome activation, whereas both were inhibited by FT895 and siHDAC11 RNA. These findings demonstrate a pivotal role for HDAC11 in the PA-induced activation of the NLRP3 inflammasome. HDAC11 inhibition thus represents a promising therapeutic strategy for mitigating NLRP3 inflammasome-related inflammation in the context of obesity.
Collapse
Affiliation(s)
- Hye-Eun Byeon
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yujin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Suji Choi
- Department of Biological Sciences, Hyupsung University, Hwasung-si, Gyeonggi-do 18330, Republic of Korea
| | - Soo-Jin Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Dong Hyun Kim
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Jung-Soon Mo
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| |
Collapse
|
5
|
Keramidas P, Papachristou E, Papi RM, Mantsou A, Choli-Papadopoulou T. Inhibition of PERK Kinase, an Orchestrator of the Unfolded Protein Response (UPR), Significantly Reduces Apoptosis and Inflammation of Lung Epithelial Cells Triggered by SARS-CoV-2 ORF3a Protein. Biomedicines 2023; 11:1585. [PMID: 37371681 DOI: 10.3390/biomedicines11061585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
SARS-CoV-2 ORF3a accessory protein was found to be involved in virus release, immunomodulation and exhibited a pro-apoptotic character. In order to unravel a potential ORF3a-induced apoptotic and inflammatory death mechanism, lung epithelial cells (A549) were transfected with in vitro synthesized ORF3a mRNA. The protein's dynamic involvement as "stress factor" for the endoplasmic reticulum, causing the activation of PERK kinase and other UPR-involved proteins and therefore the upregulation of their signaling pathway executioners (ATF6, XBP-1s, PERK, phospho eIF2a, ATF4, CHOP, GADD34), has been clearly demonstrated. Furthermore, the overexpression of BAX and BH3-only pro-apoptotic protein PUMA, the upregulation of Bcl-2 family genes (BAX, BAK, BID, BAD), the reduced expression of Bcl-2 in mRNA and protein levels, and lastly, the cleavage of PARP-1 and caspase family members (caspase-3,-8 and -9) indicate that ORF3a displays its apoptotic character through the mitochondrial pathway of apoptosis. Moreover, the upregulation of NFκB, phosphorylation of p65 and IκΒα and the elevated expression of pro-inflammatory cytokines (IL-1b, IL-6, IL-8 and IL-18) in transfected cells with ORF3a mRNA indicate that this protein causes the inflammatory response through NFκB activation and therefore triggers lung injury. An intriguing finding of our study is that upon treatment of the ORF3a-transfected cells with GSK2606414, a selective PERK inhibitor, both complications (apoptosis and inflammatory response) were neutralized, and cell survival was favored, whereas treatment of transfected cells with z-VAD (a pan-caspase inhibitor) despite inhibiting cell death, could not ameliorate the inflammatory response of transfected A549 cells. Given the above, we point out that PERK kinase is a "master tactician" and its activation constitutes the main stimulus for the emergence of ORF3a apoptotic and inflammatory nature and therefore could serve as potential target for developing novel therapeutic approaches against COVID-19.
Collapse
Affiliation(s)
- Panagiotis Keramidas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Aglaia Mantsou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Puleo MG, Miceli S, Di Chiara T, Pizzo GM, Della Corte V, Simonetta I, Pinto A, Tuttolomondo A. Molecular Mechanisms of Inflammasome in Ischemic Stroke Pathogenesis. Pharmaceuticals (Basel) 2022; 15:1168. [PMID: 36297283 PMCID: PMC9612213 DOI: 10.3390/ph15101168] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (also called cerebral ischemia) is one of the leading causes of death and severe disability worldwide. NLR inflammasomes play a crucial role in sensing cell damage in response to a harmful stimuli and modulating the inflammatory response, promoting the release of pro-inflammatory cytokines such as IL-18 and IL-1β following ischemic injury. Therefore, a neuroprotective effect is achieved by inhibiting the expression, assembly, and secretion of inflammasomes, thus limiting the extent of brain detriment and neurological sequelae. This review aims to illustrate the molecular characteristics, expression levels, and assembly of NLRP3 (nucleotide-binding oligomerization domain-like receptor [NLR] family pyrin-domain-containing 3) inflammasome, the most studied in the literature, in order to discover promising therapeutic implications. In addition, we provide some information regarding the contribution of NLRP1, NLRP2, and NLRC4 inflammasomes to ischemic stroke pathogenesis, highlighting potential therapeutic strategies that require further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
7
|
Pan L, Yan B, Zhang J, Zhao P, Jing Y, Yu J, Hui J, Lu Q. Mesenchymal stem cells-derived extracellular vesicles-shuttled microRNA-223-3p suppress lipopolysaccharide-induced cardiac inflammation, pyroptosis, and dysfunction. Int Immunopharmacol 2022; 110:108910. [DOI: 10.1016/j.intimp.2022.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
|
8
|
Association of the nutritional risk index for Japanese hemodialysis with mortality and dietary nutritional intake in patients undergoing hemodialysis during long-term hospitalization. Clin Exp Nephrol 2022; 26:1200-1207. [PMID: 36040556 DOI: 10.1007/s10157-022-02259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/24/2022] [Indexed: 11/03/2022]
Abstract
AIM The nutritional risk index for Japanese hemodialysis (NRI-JH) is a nutritional screening tool for predicting mortality in patients undergoing hemodialysis; however, its utility in patients undergoing hemodialysis during long-term hospitalization who have a high risk of protein-energy wasting, is unclear. METHODS This retrospective study assessed hospitalized patients undergoing hemodialysis during long-term care at a single hospital. The NRI-JH was calculated using body mass index, serum albumin level, total cholesterol level, and serum creatinine level. The patients were categorized into three risk groups-low, medium, and high. Dietary energy and protein intake were evaluated by dietitians. The association of NRI-JH risk with nutritional intake and mortality were examined. RESULTS In total, 133 patients were analyzed. The NRI-JH risk was low in 24%, medium in 26%, and high in 50% of the patients. The patients in the high-risk group were older and had lower energy and protein intakes than those in the low- and medium-risk groups. High-risk patients showed shorter survival times than low- and medium-risk patients, and a high NRI-JH risk was associated with a high mortality rate (hazard ratio [HR], 2.12; 95% confidence interval [CI], 1.08-4.77; p < 0.05). The association weakened when protein intake and C-reactive protein level were added as covariates (HR, 2.01; 95% CI, 0.95-4.28, p = 0.07). CONCLUSIONS High NRI-JH risk was associated with low dietary nutritional intake and poor survival in patients undergoing hemodialysis during long-term hospitalization. Nutritional status evaluation and nutritional interventions may improve prognosis in this population.
Collapse
|
9
|
Xu W, Qian L, Yuan X, Lu Y. MicroRNA-223-3p inhibits oxidized low-density lipoprotein-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3. Clin Hemorheol Microcirc 2022; 81:241-253. [PMID: 35275525 DOI: 10.3233/ch-211232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have emerged as crucial players in the initiation and development of atherosclerosis (AS), and the low miR-223-3p level is observed in AS patients. However, the function and mechanism behind miR-223-3p in AS progression have not been fully elucidated. METHOD In the present study, THP-1 cells treated with oxidized low-density lipoprotein (ox-LDL) were employed as the cell model of AS. The expression levels of miR-223-3p, NLR family pyrin domain containing 3 (NLRP3), caspase-1, pro-caspase-1, cleaved interleukin 18 (IL-18), cleaved IL-1β, and forkhead box O3 (FOXO3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot (WB) analyses. The relationship between miR-223-3p and FOXO3 or NLRP3 was determined using a dual-luciferase reporter assay. The production of IL-1β, IL-18, IL-6, and TNF-α was examined by Enzyme-linked immunosorbent assay (ELISA). RESULTS MiR-223-3p was decreased in AS patients and ox-LDL-induced THP-1 cells, and its upregulation downregulated the abundance of NLRP3, caspase-1, cleaved IL-18, cleaved IL-1β, IL-1β, IL-6, and TNF-α in THP-1 cells treated with ox-LDL or not, and the depletion of miR-223-3p revealed an opposite phenomenon. NLPR3 and FOXO3 were identified as two authentic targets of miR-223-3p. Knockdown of NLRP3 or FOXO3 reversed the stimulatory effect of the miR-223-3p inhibitor on the inflammatory responses of THP-1 cells. CONCLUSIONS Our data indicate that miR-223-3p inhibited ox-LDL-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3 in THP-1 cells, which offered a prospective therapeutic target for AS therapy.
Collapse
Affiliation(s)
- Wei Xu
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Lei Qian
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Xiaoyan Yuan
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Yong Lu
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Liang T, Zhang Y, Wu S, Chen Q, Wang L. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front Pharmacol 2022; 13:845185. [PMID: 35250595 PMCID: PMC8889079 DOI: 10.3389/fphar.2022.845185] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. The typical pathological characteristics of AD are extracellular senile plaques composed of amyloid ß (Aβ) protein, intracellular neurofibrillary tangles formed by the hyperphosphorylation of the microtubule-associated protein tau, and neuron loss. In the past hundred years, although human beings have invested a lot of manpower, material and financial resources, there is no widely recognized drug for the effective prevention and clinical cure of AD in the world so far. Therefore, evaluating and exploring new drug targets for AD treatment is an important topic. At present, researchers have not stopped exploring the pathogenesis of AD, and the views on the pathogenic factors of AD are constantly changing. Multiple evidence have confirmed that chronic neuroinflammation plays a crucial role in the pathogenesis of AD. In the field of neuroinflammation, the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key molecular link in the AD neuroinflammatory pathway. Under the stimulation of Aβ oligomers and tau aggregates, it can lead to the assembly and activation of NLRP3 inflammasome in microglia and astrocytes in the brain, thereby causing caspase-1 activation and the secretion of IL-1β and IL-18, which ultimately triggers the pathophysiological changes and cognitive decline of AD. In this review, we summarize current literatures on the activation of NLRP3 inflammasome and activation-related regulation mechanisms, and discuss its possible roles in the pathogenesis of AD. Moreover, focusing on the NLRP3 inflammasome and combining with the upstream and downstream signaling pathway-related molecules of NLRP3 inflammasome as targets, we review the pharmacologically related targets and various methods to alleviate neuroinflammation by regulating the activation of NLRP3 inflammasome, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suyuan Wu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lin Wang,
| |
Collapse
|
11
|
Non-coding RNAs: The key regulators in NLRP3 inflammasome-mediated inflammatory diseases. Int Immunopharmacol 2021; 100:108105. [PMID: 34481143 DOI: 10.1016/j.intimp.2021.108105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Inflammasomes are multiprotein complexes responding to various microbes and endogenous danger signals, contributing to initiating the innate protective response of inflammatory diseases. NLRP3 inflammasome is a crucial regulator of pro-inflammatory cytokines (IL-1β and IL-18) production through activating caspase-1. Non-coding RNAs (ncRNAs) are a class of RNA transcripts lacking the ability to encode peptides or proteins. Its dysregulation leads to the development and progression of inflammation in diseases. Recently, accumulating evidence has indicated that NLRP3 inflammasome activation could be modulated by ncRNAs (lncRNAs, miRNAs, and circRNAs) in a variety of inflammatory diseases. This review focuses on the substantial role and function of ncRNAs in the NLRP3 inflammasome activation, providing novel insight for the future therapeutic approach of inflammatory diseases.
Collapse
|
12
|
Braga TT, Davanso MR, Mendes D, de Souza TA, de Brito AF, Cruz MC, Hiyane MI, de Lima DS, Nunes V, de Fátima Giarola J, Souto DEP, Próchnicki T, Lauterbach M, Biscaia SMP, de Freitas RA, Curi R, Pontillo A, Latz E, Camara NOS. Sensing soluble uric acid by Naip1-Nlrp3 platform. Cell Death Dis 2021; 12:158. [PMID: 33547278 PMCID: PMC7864962 DOI: 10.1038/s41419-021-03445-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 01/30/2023]
Abstract
Uric acid (UA), a product of purine nucleotide degradation able to initiate an immune response, represents a breakpoint in the evolutionary history of humans, when uricase, the enzyme required for UA cleavage, was lost. Despite being inert in human cells, UA in its soluble form (sUA) can increase the level of interleukin-1β (IL-1β) in murine macrophages. We, therefore, hypothesized that the recognition of sUA is achieved by the Naip1-Nlrp3 inflammasome platform. Through structural modelling predictions and transcriptome and functional analyses, we found that murine Naip1 expression in human macrophages induces IL-1β expression, fatty acid production and an inflammation-related response upon sUA stimulation, a process reversed by the pharmacological and genetic inhibition of Nlrp3. Moreover, molecular interaction experiments showed that Naip1 directly recognizes sUA. Accordingly, Naip may be the sUA receptor lost through the human evolutionary process, and a better understanding of its recognition may lead to novel anti-hyperuricaemia therapies.
Collapse
Affiliation(s)
- Tarcio Teodoro Braga
- Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil.
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil.
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany.
| | - Mariana Rodrigues Davanso
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
- Department of Physiology and Biophysics, Institute of Biomedical Sciences I, University of Sao Paulo, São Paulo, SP, Brazil
| | - Davi Mendes
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, São Paulo, SP, Brazil
| | - Tiago Antonio de Souza
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, São Paulo, SP, Brazil
| | | | - Mario Costa Cruz
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | - Meire Ioshie Hiyane
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | - Dhemerson Souza de Lima
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | - Vinicius Nunes
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | | | - Denio Emanuel Pires Souto
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
- Department of Chemistry, Federal University of Parana, Curitiba, PR, Brazil
| | - Tomasz Próchnicki
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
| | - Mario Lauterbach
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
| | | | | | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences I, University of Sao Paulo, São Paulo, SP, Brazil
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Alessandra Pontillo
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- Centre for Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, SP, Brazil
- Nephrology Division, Federal University of São Paulo, São Paulo, SP, Brazil
- Renal Physiopathology Laboratory, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Liu JH, Cao L, Zhang CH, Li C, Zhang ZH, Wu Q. Dihydroquercetin attenuates lipopolysaccharide-induced acute lung injury through modulating FOXO3-mediated NF-κB signaling via miR-132-3p. Pulm Pharmacol Ther 2020; 64:101934. [PMID: 32805387 DOI: 10.1016/j.pupt.2020.101934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dihydroquercetin (DHQ) is a potent flavonoid which has been demonstrated to have multiple biological activities including anti-inflammation activity, antioxidant activity as well as anti-cancer activity etc. Recently, many studies have focused on the antioxidant activity of DHQ. However, the use of the anti-inflammation activity of DHQ in acute lung injury (ALI) has not been reported. METHODS Cell viability was examined by CCK-8 assay. The relative expression of miR-132-3p, FOXO3 were detected by qPCR. The levels of TNF-α, IL-6 and IL-1β were detected using enzyme-linked immunosorbent assay. The amount of apoptosis cells was detected by flow cytometry. The protein levels of Bcl-2, Bax, p-p65 and p-IκBα were measured by western blot. RESULTS We found that DHQ-induced the expression of miR-132-3p in LPS-induced ALI. Overexpression of miR-132-3p resulted in the inhibition of FOXO3 expression and then suppressed FOXO3-activated NF-κB pathway, attenuating LPS-induced inflammatory response and apoptosis. CONCLUSION We demonstrated FOXO3 to be a target of miR-132-3p, and DHQ could induce the expression of miR-132-3p, relieving LPS-induced ALI via miR-132-3p/FOXO3/NF-κB axis, providing a promising therapeutic target for ALI.
Collapse
Affiliation(s)
- Jian-Hua Liu
- Department of Respiratory and Critical Care Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, 300350, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Liang Cao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chang-Hong Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Qi Wu
- Department of Respiratory and Critical Care Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, 300350, PR China.
| |
Collapse
|
14
|
Cannabinoid Receptor 1/miR-30b-5p Axis Governs Macrophage NLRP3 Expression and Inflammasome Activation in Liver Inflammatory Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:725-738. [PMID: 32408051 PMCID: PMC7225604 DOI: 10.1016/j.omtn.2020.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) has been regarded as an important initiator or promoter in multiple inflammatory diseases. However, the relationship between cannabinoid receptor 1 (CB1) and macrophage NLRP3 inflammasome and the corresponding molecular mechanism in liver inflammation remain unclear. Mouse liver injury models were induced by carbon tetrachloride (CCl4) or methionine-choline-deficient and high fat (MCDHF) diet. Human liver tissues were obtained from patients with different chronic liver diseases. CB1 expression was increased in liver tissue and macrophages of CCl4- and MCDHF-treated mice, positively correlated with NLRP3. CB1 agonist ACEA (Arachiodonyl-2’-Chloroethylamide) promoted NLRP3 expression and NLRP3 inflammasome activation in macrophages. CB1 blockade with its antagonist AM281 reduced NLRP3 expression, inflammasome activation, and liver inflammation in CCl4- and MCDHF-treated mice. MicroRNA-30b-5p (miR-30b-5p), screened by the intersection of bioinformatics databases and downregulated miRNAs in injured liver, negatively correlated with NLRP3 in mouse and human liver. miR-30b-5p was involved in CB1-mediated activation of NLRP3 inflammasome in macrophages by directly targeting NLRP3. Importantly, administration of miR-30b-5p agomir targeted NLRP3 and attenuated liver inflammation in the injured liver. Altogether, CB1/miR-30b-5p axis modulates NLRP3 expression and NLPR3 inflammasome activation in macrophages during liver inflammation, which provides a potential target for liver disease.
Collapse
|
15
|
Zhou L, Li P, Zhang M, Han B, Chu C, Su X, Li B, Kang H, Ning J, Zhang B, Ma S, Su D, Pang Y, Niu Y, Zhang R. Carbon black nanoparticles induce pulmonary fibrosis through NLRP3 inflammasome pathway modulated by miR-96 targeted FOXO3a. CHEMOSPHERE 2020; 241:125075. [PMID: 31683435 DOI: 10.1016/j.chemosphere.2019.125075] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Carbon black nanoparticle (CBNP) is a core constituent of air pollutants like fine particulate matter (PM2.5) as well as a common manufactural material. It was proved to pose adverse effects on lung function and even provoke pulmonary fibrosis. However, the underlying mechanisms of CBNPs-induced pulmonary fibrosis remain unclear. The present study aimed to investigate the mechanism of fibrotic effects caused by CBNPs in rat lung and human bronchial epithelial (16HBE) cells. Forty-nine male rats were randomly subjected to 7 groups, means the 14-day exposure group (30 mg/m3), the 28-day exposure groups (5 mg/m3 and 30 mg/m3), the 90-day exposure group (30 mg/m3) and their respective controls. Rats were nose-only-inhaled CBNPs. 16HBE cells were treated with 0, 50, 100 and 200 μg/mL CBNPs respectively for 24 h. Besides, Forkhead transcription factor class O (FOXO)3a and miR-96 overexpression or suppression 16HBE cells were established to reveal relative mechanisms. Our results suggested CBNPs induced pulmonary fibrosis in time- and dose-dependent manners. CBNPs induced persisting inflammation in rat lung as observed by histopathology and cytology analyses in whole lung lavage fluid (WLL). Both in vivo and in vitro, CBNPs exposure significantly increased the expression of NLRP3 inflammasome, accompanied by the increased reactive oxygen species (ROS), decreased miR-96 and increased FOXO3a expressions dose -and time-dependently. MiR-96 overexpression or FOXO3a suppression could partially rescue the fibrotic effects through inhibiting NLRP3 inflammasome. Conclusively, our research show that CBNPs-induced pulmonary fibrosis was at least partially depended on activation of NLRP3 inflammasome which modulated by miR-96 targeting FOXO3a.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Peiyuan Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mengyue Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Bin Han
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Hui Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Boyuan Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Shitao Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dong Su
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| |
Collapse
|
16
|
Zamani P, Oskuee RK, Atkin SL, Navashenaq JG, Sahebkar A. MicroRNAs as important regulators of the NLRP3 inflammasome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 150:50-61. [PMID: 31100298 DOI: 10.1016/j.pbiomolbio.2019.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Inflammasomes are a group of cytosolic multi-protein signaling complexes that regulate maturation of the interleukin (IL)-1 family cytokines IL-1β and IL-18 through activation of inflammatory caspase-1. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is the best characterized and consists of several key components that are assembled and activated in response to different endogenous and exogenous signals. The NLRP3 inflammasome is common to a number of human inflammatory diseases and its targeting may lead to novel anti-inflammatory therapy. NLRP3 inflammasome activation is tightly regulated by different mechanisms especially post-transcriptional modulation via microRNAs (miRNA). MicroRNAs are small endogenous noncoding RNAs that are 21-23 nucleotides in length and control the expression of various genes through binding to the 3'-untranslated regions of the respective mRNA and subsequent post-transcriptional regulation. MicroRNAs have recently been recognized as crucial regulators of the NLRP3 inflammasome. In this review, we summarize the current understanding of the role of miRNAs in the regulation of NLRP3 inflammasome complexes and their impact on the pathogenesis of inflammatory disease processes.
Collapse
Affiliation(s)
- Parvin Zamani
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Ma C, Liu S, Zhang S, Xu T, Yu X, Gao Y, Zhai C, Li C, Lei C, Fan S, Chen Y, Tian H, Wang Q, Cheng F, Wang X. Evidence and perspective for the role of the NLRP3 inflammasome signaling pathway in ischemic stroke and its therapeutic potential (Review). Int J Mol Med 2018; 42:2979-2990. [PMID: 30280193 DOI: 10.3892/ijmm.2018.3911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/26/2018] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke is one of the main causes of death and disablement globally. The NLR family pyrin domain containing 3 (NLRP3) inflammasome is established as a sensor of detecting cellular damage and modulating inflammatory responses to injury during the progress of ischemic stroke. Inhibiting or blocking the NLRP3 inflammasome at different stages, including expression, assembly, and secretion, may have great promise to improve the neurological deficits during ischemic stroke. The current review provides a comprehensive summary of the current understanding in the literature of the molecular structure, expression, and assembly of the NLRP3 inflammasome, and highlights its potential as a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Chongyang Ma
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shuling Liu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shuang Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Tian Xu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xue Yu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yushan Gao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Changming Zhai
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Changxiang Li
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chaofang Lei
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shuning Fan
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yuxi Chen
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Huiling Tian
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Fafeng Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xueqian Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| |
Collapse
|
18
|
Li P, Zhong X, Li J, Liu H, Ma X, He R, Zhao Y. MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated endothelial cell pyroptosis through FOXO3 down-regulation in atherosclerosis. Biochem Biophys Res Commun 2018; 503:2833-2840. [PMID: 30119891 DOI: 10.1016/j.bbrc.2018.08.049] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease involved in endothelial dysfunction. Pyroptosis is a pro-inflammatory form of cell death and plays pivotal roles in atherosclerosis. MicroRNAs (miRNAs) are implicated in atherosclerosis, however the mechanisms that underlie miR-30c-5p is required for endothelial cell pyroptosis remain elusive. In the present study, we probed the interaction of miR-30c-5p with forkhead box O3 (FOXO3) and investigated the effect of miR-30c-5p and FOXO3 on NLRP3 inflammasome and endothelial cell pyroptosis. Introduction of oxidized low density lipoprotein (ox-LDL) dose-dependently increased lactate dehydrogenase (LDH) release as well as pyroptosis in human aortic endothelial cells (HAECs). On the basis of ox-LDL treatment, we found the expression of miR-30c-5p was impaired and enrichment of miR-30c-5p protected HAECs from ox-LDL-induced pyroptosis. Moreover, addition of miR-30c-5p inhibited ox-LDL-activated NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which was associated with HEACs pyroptosis. Nevertheless, miR-30c-5p failed to show efficacy of Toll-like receptor (TLR) signaling of NLRP3 inflammasome activation. Intriguingly, FOXO3 was suggested to be targeted by miR-30c-5p and addition of miR-30c-5p blocked FOXO3 expression, whereas miR-30c-5p depletion showed opposite effects. Furthermore, silencing of FOXO3 inhibited NLRP3-mediated pyroptosis and reversed anti-miR-30c-5p-induced activation of NLRP3 inflammasome and pyroptosis in HEACs with ox-LDL treatment. Our finding suggested that miR-30c-5p might play essential role in NLRP3 inflammasome-modulated cell pyroptosis by targeting FOXO3 in HAECs, providing a novel therapeutic avenue for atherosclerosis treatment.
Collapse
Affiliation(s)
- Peng Li
- Department of Cardiology, Huaihe Hospital of Henan University, China.
| | - Xiaoming Zhong
- Department of Cardiology, Huaihe Hospital of Henan University, China
| | - Juan Li
- Department of Cardiology, Huaihe Hospital of Henan University, China
| | - Hongyang Liu
- Department of Cardiology, Huaihe Hospital of Henan University, China
| | - Xiang Ma
- Department of Cardiology, Huaihe Hospital of Henan University, China
| | - Ruili He
- Department of Cardiology, Huaihe Hospital of Henan University, China
| | - Yanzhuo Zhao
- Department of Cardiology, Huaihe Hospital of Henan University, China
| |
Collapse
|