1
|
Saler CHA, Shuai S, Beckervordersandforth JC, Rennspiess D, Roemen G, Gevers T, Stoehr‐Kleinegris MCF, Bouwense SAW, Dewulf MJL, Coolsen MME, Bemelmans MHA, Damink SWO, Winnepenninckx V, zur Hausen A, Kramer M, Samarska IV. Clinicopathological Study on Morphological Subtypes of Hepatocellular Carcinoma: A Single Tertiary Referral Center Experience. Cancer Rep (Hoboken) 2025; 8:e70127. [PMID: 39953652 PMCID: PMC11828739 DOI: 10.1002/cnr2.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025] Open
Abstract
AIM We aimed to analyze hepatocellular carcinoma (HCC) morphological subtypes characterized according to the WHO classification and the International Collaboration on Cancer Reporting (ICCR) recommendations, and their prognostic features in a Dutch population. METHODS AND RESULTS This retrospective study in a tertiary referral center included the histopathological revision of 62 HCC resection specimens, obtained from 22 female and 40 male patients (median age: 67 years), in a period between 2011 and 2021 at the Maastricht University Medical Center +. Clinical data, morphological subtypes, growth pattern (GP), tumor grade, tumor extension, margins, and vascular and perineural invasion were collected. Eighteen cases were assigned a specific morphologic subtype and steatohepatic HCC was the most common in our cohort. Twenty-one tumors classified as conventional type HCC (HCC-NOS), commonly exhibiting two concurrent GPs. Twenty-three cases revealed a heterogeneous morphologic differentiation, compromising the combination of HCC-NOS with another morphologic subtype, most frequently a steatohepatitic component. Comparison of HCC-NOS and HCC with heterogeneous morphology did not show significant differences in the main clinicopathological characteristics and survival. CONCLUSION Although the most common morphologic subtype was steatohepatitic HCC, the majority of cases demonstrated multiple morphologic patterns. In case of HCC-NOS, heterogeneous GPs were often observed. Therefore, a histomorphological diagnosis based on a single tumor biopsy specimen may lead to incorrect classification of HCC. Sufficient tumor sampling of HCC resection specimens is required for the complete evaluation of all histomorphological features followed by correct subclassification in order to meet the clinical needs regarding prognostic relevance and patient follow-up.
Collapse
Affiliation(s)
- C. H. A. Saler
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
- Department of Internal MedicineGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - S. Shuai
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - J. C. Beckervordersandforth
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - D. Rennspiess
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - G. Roemen
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - T. Gevers
- Department of Internal MedicineGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - M. C. F. Stoehr‐Kleinegris
- Department of Internal MedicineGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - S. A. W. Bouwense
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - M. J. L. Dewulf
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - M. M. E. Coolsen
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - M. H. A. Bemelmans
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - S. W. Olde Damink
- Department of SurgerySchool of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht UniversityMaastrichtthe Netherlands
| | - V. Winnepenninckx
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - A. zur Hausen
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - M. Kramer
- Department of Internal MedicineGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| | - I. V. Samarska
- Department of PathologyGROW‐School for Oncology and Reproduction, Maastricht University Medical Center +Maastrichtthe Netherlands
| |
Collapse
|
2
|
Doyle EH, Aloman C, El-Shamy A, Eng FJ, Kim-Schulze S, Rahman A, Schiano T, Heeger P, Branch AD. Imprinted immune abnormalities in liver transplant patients cured of hepatitis C with antiviral drugs. Liver Transpl 2024; 30:728-741. [PMID: 38315053 DOI: 10.1097/lvt.0000000000000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Chronic HCV infection induces interferon and dysregulates immune responses through inflammation and chronic antigenic stimulation. Antiviral drugs can cure HCV, providing a unique opportunity to examine the immunological restoration that does and does not occur when a chronic viral infection is eradicated. We quantified blood cytokines levels and used mass cytometry to immunophenotype peripheral blood mononuclear cells before and after HCV cure in 2 groups of patients and controls. At baseline, serum interferon α and soluble CD163 (a macrophage product) were elevated in both liver transplant and nonliver transplant patients compared to controls; the frequencies of several peripheral blood mononuclear cell populations differed from controls; and programmed death protein 1-positivity was increased in nearly all T cell subsets. Many abnormalities persisted after HCV cure, including elevated programmed death protein 1 expression on CD4 naïve and central memory T cells, elevated soluble CD163, and expansion of the plasmablast/plasma cell compartment. Several myeloid-lineage subsets, including Ag-presenting dendritic cells, remained dysregulated. In mechanistic studies, interferon α treatment increased programmed death protein 1 on human T cells and increased T cell receptor signaling. The data identify immunological abnormalities that persist after curative HCV treatment. Before cure, high levels of interferon α may stimulate programmed death protein 1 expression on human T cells, causing persistent functional changes.
Collapse
MESH Headings
- Humans
- Liver Transplantation/adverse effects
- Male
- Antiviral Agents/therapeutic use
- Middle Aged
- Female
- Antigens, CD/immunology
- Antigens, CD/blood
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/immunology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/blood
- Hepatitis C, Chronic/surgery
- Interferon-alpha/therapeutic use
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/immunology
- Adult
- Case-Control Studies
- Aged
- Hepacivirus/immunology
- Hepacivirus/drug effects
- Leukocytes, Mononuclear/immunology
- Cytokines/blood
- Immunophenotyping
- Treatment Outcome
Collapse
Affiliation(s)
- Erin H Doyle
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Costica Aloman
- Department of Surgery, Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - Ahmed El-Shamy
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- College of Graduate Studies, Master of Pharmaceutical Sciences Program
| | - Francis J Eng
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Schiano
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Heeger
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea D Branch
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Li J, Vranjkovic A, Read D, Delaney SP, Stanford WL, Cooper CL, Crawley AM. Lasting differential gene expression of circulating CD8 T cells in chronic HCV infection with cirrhosis identifies a role for Hedgehog signaling in cellular hyperfunction. Front Immunol 2024; 15:1375485. [PMID: 38887299 PMCID: PMC11180750 DOI: 10.3389/fimmu.2024.1375485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/19/2024] [Indexed: 06/20/2024] Open
Abstract
Background The impact of chronic hepatic infection on antigen non-specific immune cells in circulation remains poorly understood. We reported lasting global hyperfunction of peripheral CD8 T cells in HCV-infected individuals with cirrhosis. Whether gene expression patterns in bulk CD8 T cells are associated with the severity of liver fibrosis in HCV infection is not known. Methods RNA sequencing of blood CD8 T cells from treatment naïve, HCV-infected individuals with minimal (Metavir F0-1 ≤ 7.0 kPa) or advanced fibrosis or cirrhosis (F4 ≥ 12.5 kPa), before and after direct-acting antiviral therapy, was performed. CD8 T cell function was assessed by flow cytometry. Results In CD8 T cells from pre-DAA patients with advanced compared to minimal fibrosis, Gene Ontology analysis and Gene Set Enrichment Analysis identified differential gene expression related to cellular function and metabolism, including upregulated Hedgehog (Hh) signaling, IFN-α, -γ, TGF-β response genes, apoptosis, apical surface pathways, phospholipase signaling, phosphatidyl-choline/inositol activity, and second-messenger-mediated signaling. In contrast, genes in pathways associated with nuclear processes, RNA transport, cytoskeletal dynamics, cMyc/E2F regulation, oxidative phosphorylation, and mTOR signaling, were reduced. Hh signaling pathway was the top featured gene set upregulated in cirrhotics, wherein hallmark genes GLI1 and PTCH1 ranked highly. Inhibition of Smo-dependent Hh signaling ablated the expression of IFN-γ and perforin in stimulated CD8 T cells from chronic HCV-infected patients with advanced compared to minimal fibrosis. CD8 T cell gene expression profiles post-DAA remained clustered with pre-DAA profiles and disparately between advanced and minimal fibrosis, suggesting a persistent perturbation of gene expression long after viral clearance. Conclusions This analysis of bulk CD8 T cell gene expression in chronic HCV infection suggests considerable reprogramming of the CD8 T cell pool in the cirrhotic state. Increased Hh signaling in cirrhosis may contribute to generalized CD8 T cell hyperfunction observed in chronic HCV infection. Understanding the lasting nature of immune cell dysfunction may help mitigate remaining clinical challenges after HCV clearance and more generally, improve long term outcomes for individuals with severe liver disease.
Collapse
Affiliation(s)
- Jiafeng Li
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Agatha Vranjkovic
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Daniel Read
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sean P. Delaney
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - William L. Stanford
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis L. Cooper
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Angela M. Crawley
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
4
|
Cui A, Li B, Wallace MS, Gonye ALK, Oetheimer C, Patel H, Tonnerre P, Holmes JA, Lieb D, Yao BS, Ma A, Roberts K, Damasio M, Chen JH, Piou D, Carlton-Smith C, Brown J, Mylvaganam R, Hon Fung JM, Sade-Feldman M, Aneja J, Gustafson J, Epstein ET, Salloum S, Brisac C, Thabet A, Kim AY, Lauer GM, Hacohen N, Chung RT, Alatrakchi N. Single-cell atlas of the liver myeloid compartment before and after cure of chronic viral hepatitis. J Hepatol 2024; 80:251-267. [PMID: 36972796 PMCID: PMC11651724 DOI: 10.1016/j.jhep.2023.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/22/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND & AIMS Chronic viral infections present serious public health challenges; however, direct-acting antivirals (DAAs) are now able to cure nearly all patients infected with hepatitis C virus (HCV), representing the only cure of a human chronic viral infection to date. DAAs provide a valuable opportunity to study immune pathways in the reversal of chronic immune failures in an in vivo human system. METHODS To leverage this opportunity, we used plate-based single-cell RNA-seq to deeply profile myeloid cells from liver fine needle aspirates in patients with HCV before and after DAA treatment. We comprehensively characterised liver neutrophils, eosinophils, mast cells, conventional dendritic cells, plasmacytoid dendritic cells, classical monocytes, non-classical monocytes, and macrophages, and defined fine-grained subpopulations of several cell types. RESULTS We discovered cell type-specific changes post-cure, including an increase in MCM7+STMN1+ proliferating CD1C+ conventional dendritic cells, which may support restoration from chronic exhaustion. We observed an expected downregulation of interferon-stimulated genes (ISGs) post-cure as well as an unexpected inverse relationship between pre-treatment viral load and post-cure ISG expression in each cell type, revealing a link between viral loads and sustained modifications of the host's immune system. We found an upregulation of PD-L1/L2 gene expression in ISG-high neutrophils and IDO1 expression in eosinophils, pinpointing cell subpopulations crucial for immune regulation. We identified three recurring gene programmes shared by multiple cell types, distilling core functions of the myeloid compartment. CONCLUSIONS This comprehensive single-cell RNA-seq atlas of human liver myeloid cells in response to cure of chronic viral infections reveals principles of liver immunity and provides immunotherapeutic insights. CLINICAL TRIAL REGISTRATION This study is registered at ClinicalTrials.gov (NCT02476617). IMPACT AND IMPLICATIONS Chronic viral liver infections continue to be a major public health problem. Single-cell characterisation of liver immune cells during hepatitis C and post-cure provides unique insights into the architecture of liver immunity contributing to the resolution of the first curable chronic viral infection of humans. Multiple layers of innate immune regulation during chronic infections and persistent immune modifications after cure are revealed. Researchers and clinicians may leverage these findings to develop methods to optimise the post-cure environment for HCV and develop novel therapeutic approaches for other chronic viral infections.
Collapse
Affiliation(s)
- Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bo Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University Virology Program, Harvard Medical School, Boston, MA, USA
| | - Michael S Wallace
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna L K Gonye
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher Oetheimer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hailey Patel
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pierre Tonnerre
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Institut de Recherche Saint-Louis, Université Paris Cité, Inserm U976 (HIPI), Team ATIP-Avenir, Paris, France
| | - Jacinta A Holmes
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - David Lieb
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brianna S Yao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aileen Ma
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kela Roberts
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marcos Damasio
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Daphnee Piou
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles Carlton-Smith
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joelle Brown
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ravi Mylvaganam
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Moshe Sade-Feldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jasneet Aneja
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jenna Gustafson
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eliana T Epstein
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadi Salloum
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cynthia Brisac
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashraf Thabet
- Department of Interventional Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Raymond T Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Nadia Alatrakchi
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Lesnova EI, Masalova OV, Permyakova KY, Demidova NA, Valuev-Elliston VT, Ivanov AV, Kushch AA. The adjuvant effect of polymuramil, a NOD1 and NOD2 agonist, differs when immunizing mice of different inbred lines with nonstructural hepatitis C virus (Flaviviridae: Hepacivirus)proteins and is synergistically enhanced in combination with pyrogenalum, a TLR4 agonist. Vopr Virusol 2023; 68:315-326. [PMID: 38156588 DOI: 10.36233/0507-4088-183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Hepatitis C is a liver disease with high chronicity, the cause of cirrhosis and hepatocarcinoma. The main obstacle to controlling hepatitis C is the lack of vaccines. The aim of the work was to compare the immunogenic activity of nonstructural recombinant proteins NS3, NS4 and NS5B of hepatitis C virus (HCV) as components of a subunit candidate vaccine and to analyze the adjuvant properties of two available commercial drugs, polymuramil and pyrogenalum. MATERIALS AND METHODS BALB/c, DBA/2J and C57BL/6 mice were immunized with nonstructural proteins without adjuvants or with polymuramyl (NOD1 and NOD2 agonist) and pyrogenalum (TLR-4 agonist). The activity of antibodies was determined in ELISA, the cellular response - by antigen-specific lymphocyte proliferation and by production of IFN-γ in vitro. RESULTS Recombinant proteins showed different immunogenicity. NS4 induced antibodies more efficiently than NS3 and NS5B. Significant differences were found in the immune response of three inbred lines mice: the level of IFN-γ in BALB/c and DBA/2J mice induced by NS5B protein was 30 times higher than in C57Bl/6 mice. In contrast, the induction of antibodies in BALB/c mice was lower than in C57Bl/6 and DBA/2J. Polymuramil did not increase the humoral response to NS5B and enhanced the cellular response only in C57BL/6 mice. The combined use of polymuramil with pyrogenalum significantly increased both the humoral and cellular response of mice to all recombinant HCV proteins. CONCLUSION Different immunogenic properties and different functions of recombinant non-structural HCV proteins indicate the feasibility of their combined inclusion in subunit vaccines. It was established for the first time that immunization with HCV proteins with a complex adjuvant (polymuramyl + pyrogenalum) has a synergistic effect, significantly exceeding the effect of each of them separately.
Collapse
Affiliation(s)
- E I Lesnova
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| | - O V Masalova
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| | - K Y Permyakova
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
- Moscow State Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin
| | - N A Demidova
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| | | | - A V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
| | - A A Kushch
- Gamaleya NRC of Epidemiology and Microbiology, Ministry of Health of the Russian Federation
| |
Collapse
|
6
|
Waldum H, Fossmark R. Inflammation and Digestive Cancer. Int J Mol Sci 2023; 24:13503. [PMID: 37686307 PMCID: PMC10487643 DOI: 10.3390/ijms241713503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammation is linked to carcinogenesis, particularly in the digestive organs, i.e., the stomach, colon, and liver. The mechanism of this effect has, however, only partly been focused on. In this review, we focus on different forms of chronic hepatitis, chronic inflammatory bowel disease, and chronic gastritis, conditions predisposing individuals to the development of malignancy. Chronic inflammation may cause malignancy because (1) the cause of the chronic inflammation is itself genotoxic, (2) substances released from the inflammatory cells may be genotoxic, (3) the cell death induced by the inflammation induces a compensatory increase in proliferation with an inherent risk of mutation, (4) changes in cell composition due to inflammation may modify function, resulting in hormonal disturbances affecting cellular proliferation. The present review focuses on chronic gastritis (Helicobacter pylori or autoimmune type) since all four mechanisms may be relevant to this condition. Genotoxicity due to the hepatitis B virus is an important factor in hepatocellular cancer and viral infection can similarly be central in the etiology and malignancy of inflammatory bowel diseases. Helicobacter pylori (H. pylori) is the dominating cause of chronic gastritis and has not been shown to be genotoxic, so its carcinogenic effect is most probably due to the induction of atrophic oxyntic gastritis leading to hypergastrinemia.
Collapse
Affiliation(s)
- Helge Waldum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway;
| | | |
Collapse
|
7
|
Salgüero S, Brochado-Kith Ó, Verdices AV, Berenguer J, González-García J, Martínez I, Díez C, Hontañón V, Pérez-Latorre L, Fernández-Rodríguez A, Jiménez-Sousa MÁ, Resino S. PBMCs gene expression signature of advanced cirrhosis with high risk for clinically significant portal hypertension in HIV/HCV coinfected patients: A cross-control study. Biomed Pharmacother 2023; 159:114220. [PMID: 36628818 DOI: 10.1016/j.biopha.2023.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Patients with advanced cirrhosis are at high risk of developing clinically significant portal hypertension (CSPH). We analyzed the gene expression profile of peripheral blood mononuclear cells (PBMCs) from HIV/HCV coinfected patients to identify a gene expression signature of advanced cirrhosis with high risk for CSPH. METHODS We conducted a cross-sectional study on 68 patients. Liver stiffness measurement (LSM) was used to stratify patients into < 12.5 kPa (no cirrhosis, n = 19), 12.5 - 24.9 kPa (cirrhosis, n = 20), and ≥ 25 kPa (advanced cirrhosis with high risk for CSPH, n = 29). Besides, we further evaluated LSM < 25 kPa (n = 39) vs. ≥ 25 kPa (n = 29). Total RNA was extracted from PBMCs, and poly(A) RNA sequencing was performed. Two significant differentially expressed (SDE) transcripts were validated by quantitative PCR in a different cohort (n = 46). RESULTS We found 60 SDE transcripts between patients with LSM < 12.5 kPa and ≥ 25 kPa. Partial least squares discriminant analysis showed that those 60 SDE transcripts collectively discriminated LSM ≥ 25 kPa, with an area under the receiver operating characteristic curve (AUROC) of 0.84. Eight genes had an AUROC ≥ 0.75 for LSM ≥ 25 kPa: five were positively associated with LSM values (SCAMP1, ABHD17B, GPR146, GTF2A1, and TMEM64), while three were inversely associated (ZFHX2-AS1, MDK, and STAG3L2). We validated the two SDE transcripts with the highest discrimination capacity in a different cohort, finding significant differences between < 25 kPa and ≥ 25 kPa (MDK (p = 0.006) and STAG3L2 (p = 0.021)). CONCLUSIONS A gene expression signature of 60 transcripts was associated with advanced cirrhosis with high risk for CSPH in HIV/HCV coinfected patients.
Collapse
Affiliation(s)
- Sergio Salgüero
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Unidad de Análisis Clínicos, Hospital El Escorial, Spain.
| | - Óscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ana Virseda Verdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.
| | - Juan González-García
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Cristina Díez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.
| | - Víctor Hontañón
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Leire Pérez-Latorre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Bauer D, Kozbial K, Schwabl P, Chromy D, Simbrunner B, Stättermayer AF, Pinter M, Steindl-Munda P, Trauner M, Ferenci P, Reiberger T, Mandorfer M. Angiopoietin 2 levels decrease after HCV-cure and reflect the evolution of portal hypertension. Dig Liver Dis 2022; 54:1222-1229. [PMID: 35382974 DOI: 10.1016/j.dld.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/18/2021] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Portal hypertension (PH) does not resolve in a considerable proportion of patients who achieved HCV-cure. AIMS To investigate (i)whether HCV-cure impacts cytokines that orchestrate angiogenesis (i.e.,Ang1/Ang2/VEGF) and fibrogenesis (i.e.,PDGF/TGF-β) and (ii)whether their changes reflect PH-evolution and its complications. METHODS We measured plasma levels of cytokines and von Willebrand factor (VWF) and assessed hepatic venous pressure gradient (HVPG) before/after HCV-cure in 66 patients with pre-treatment PH and 23 patients without advanced disease, who served as controls. RESULTS Following HCV-cure, we observed a decrease in Ang2/TGF-β, but no changes in the other cytokines. The differences in circulating cytokine profiles in PH patients persisted after removing the primary etiological factor. Patients with pre-treatment HVPG≥10 mmHg with HVPG-reduction≥10% had a more pronounced relative decrease in Ang2. Finally, post-treatment Ang2 predicted FU-HVPG≥16 mmHg/decompensation with AUROC-values of 0.804/0.835. CONCLUSIONS HCV-cure decreases circulating Ang2 - a mediator/indicator of dysangiogenesis/endothelial dysfunction, as well as TGF-β - a profibrogenic cytokine. The dynamics of Ang2 mirrored those of PH, rendering FU-Ang2 a non-invasive test for pronounced PH at FU that also predicts hepatic decompensation. The pathophysiological significance of the persistently altered cytokine levels for mechanisms that hinder the PH-regression warrants further study.
Collapse
Affiliation(s)
- David Bauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Karin Kozbial
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Lazarettgasse 14, 1090, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| | - David Chromy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Albert F Stättermayer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Petra Steindl-Munda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Peter Ferenci
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Lazarettgasse 14, 1090, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Wu X, Roberto JB, Knupp A, Greninger AL, Truong CD, Hollingshead N, Kenerson HL, Tuefferd M, Chen A, Koelle DM, Horton H, Jerome KR, Polyak SJ, Yeung RS, Crispe IN. Response of Human Liver Tissue to Innate Immune Stimuli. Front Immunol 2022; 13:811551. [PMID: 35355993 PMCID: PMC8959492 DOI: 10.3389/fimmu.2022.811551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Precision-cut human liver slice cultures (PCLS) have become an important alternative immunological platform in preclinical testing. To further evaluate the capacity of PCLS, we investigated the innate immune response to TLR3 agonist (poly-I:C) and TLR4 agonist (LPS) using normal and diseased liver tissue. Pathological liver tissue was obtained from patients with active chronic HCV infection, and patients with former chronic HCV infection cured by recent Direct-Acting Antiviral (DAA) drug therapy. We found that hepatic innate immunity in response to TLR3 and TLR4 agonists was not suppressed but enhanced in the HCV-infected tissue, compared with the healthy controls. Furthermore, despite recent HCV elimination, DAA-cured liver tissue manifested ongoing abnormalities in liver immunity: sustained abnormal immune gene expression in DAA-cured samples was identified in direct ex vivo measurements and in TLR3 and TLR4 stimulation assays. Genes that were up-regulated in chronic HCV-infected liver tissue were mostly characteristic of the non-parenchymal cell compartment. These results demonstrated the utility of PCLS in studying both liver pathology and innate immunity.
Collapse
Affiliation(s)
- Xia Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jessica B Roberto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, WA, United States
| | - Camtu D Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Nicole Hollingshead
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Marianne Tuefferd
- Infectious Diseases and Vaccines, Janssen Research and Development, Beerse, Belgium
| | - Antony Chen
- Infectious Diseases and Vaccines, Janssen Research and Development, Beerse, Belgium
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, WA, United States.,Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Helen Horton
- Infectious Diseases and Vaccines, Janssen Research and Development, Beerse, Belgium
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, WA, United States
| | - Stephen J Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Ian N Crispe
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Agnetti J, Desterke C, Gassama-Diagne A. Impact of HCV Infection on Hepatocyte Polarity and Plasticity. Pathogens 2022; 11:pathogens11030337. [PMID: 35335661 PMCID: PMC8955246 DOI: 10.3390/pathogens11030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
The hepatitis C virus (HCV) is an oncogenic virus that alters the cell polarization machinery in order to enter the hepatocyte and replicate. While these alterations are relatively well defined, their consequences in the evolution of the disease remain poorly documented. Since 2012, HCV infection can be effectively cured with the advent of direct acting antivirals (DAA). Nevertheless, patients cured of their HCV infection still have a high risk of developing hepatocellular carcinoma (HCC). Importantly, it has been shown that some of the deregulations induced by HCV are maintained despite a sustained virologic response (SVR), including the down-regulation of some hepatocyte functions such as bile acid metabolism, exemplifying cell dedifferentiation, and the up-regulation of the epithelial–mesenchymal transition (EMT). EMT is a process by which epithelial cells lose their differentiation and their specific polarity to acquire mesenchymal cell properties, including migration and extracellular matrix remodeling capabilities. Of note, epithelial cell polarity acts as a gatekeeper against EMT. Thus, it remains important to elucidate the mechanisms by which HCV alters polarity and promotes EMT that could participate in viral-induced hepatic carcinogenesis. In this review, we define the main steps involved in the polarization process of epithelial cells and recall the essential cellular actors involved. We also highlight the particularities of hepatocyte polarity, responsible for their unique morphology. We then focus on the alterations by HCV of epithelial cell polarity and the consequences of the transformation of hepatocytes involved in the carcinogenesis process.
Collapse
Affiliation(s)
- Jean Agnetti
- INSERM, UMR-S 1193, Université Paris-Sud, F-94800 Villejuif, France;
| | | | - Ama Gassama-Diagne
- INSERM, UMR-S 1193, Université Paris-Sud, F-94800 Villejuif, France;
- Correspondence:
| |
Collapse
|
11
|
Brochado-Kith Ó, Martínez I, Berenguer J, González-García J, Salgüero S, Sepúlveda-Crespo D, Díez C, Hontañón V, Ibañez-Samaniego L, Pérez-Latorre L, Fernández-Rodríguez A, Ángeles Jiménez-Sousa M, Resino S. HCV Cure With Direct-Acting Antivirals Improves Liver and Immunological Markers in HIV/HCV-Coinfected Patients. Front Immunol 2021; 12:723196. [PMID: 34497613 PMCID: PMC8419228 DOI: 10.3389/fimmu.2021.723196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) cure after all-oral direct-acting antiviral (DAA) therapy greatly improves the liver and immune system. We aimed to assess the impact of this HCV clearance on immune system-related markers in plasma and the gene expression profile in human immunodeficiency virus (HIV)/HCV-coinfected patients with advanced cirrhosis. We performed a prospective study on 33 HIV/HCV-coinfected patients at baseline and 36 weeks after the sustained virological response. Gene expression was evaluated by RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) and plasma biomarkers by multiplex immunoassays. We found a decrease in plasma biomarkers (PD1, PDL1, CXCL10, CXCL8, IL12p70, IL10, and TGFβ) and liver disease markers (stiffness measurement (LSM), hepatic venous pressure gradient (HVPG), and transaminases, among others). Furthermore, decreased plasma levels of CXCL8, CXCL10, IL10, and PD1 were associated with reduced LSM values. We also found two upregulated (HAS1 and IRG1) and 15 downregulated (CXCL11, CCL8, CCL7, CCL2, ADARB2, RRAD, MX1, SIGLEC1, IFI44L, IFI44, IFI27, IFI6, IFIT3, IFIT1B, and IFIT1) genes at the end of follow-up, all interferon-stimulated genes (ISGs) grouped into four pathways (“cytokine-cytokine receptor interaction”, “viral protein interaction with cytokine and cytokine receptor”, “chemokine signaling pathway”, and “hepatitis C”). Additionally, the decrease in most of these ISGs was significantly related to reduced LSM and HVPG values. In conclusion, HIV/HCV-coinfected patients with advanced-HCV-related cirrhosis who eradicated HCV following DAA therapy exhibited an improvement in liver disease markers and a significant decrease in plasma biomarkers and gene expression related to antiviral/inflammatory response, particularly in levels of several chemokines and ISGs.
Collapse
Affiliation(s)
- Óscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Berenguer
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - Juan González-García
- Unidad de VIH, Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Sergio Salgüero
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Unidad de Análisis Clínicos, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Daniel Sepúlveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Díez
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - Víctor Hontañón
- Unidad de VIH, Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Luis Ibañez-Samaniego
- Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.,Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Leire Pérez-Latorre
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
12
|
Differential Expression of the Host Lipid Regulators ANGPTL-3 and ANGPTL-4 in HCV Infection and Treatment. Int J Mol Sci 2021; 22:ijms22157961. [PMID: 34360721 PMCID: PMC8348577 DOI: 10.3390/ijms22157961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
Host lipid metabolism reprogramming is essential for hepatitis C virus (HCV) infection and progression to severe liver disease. Direct-acting antivirals (DAAs) achieve a sustained virological response (SVR) in most patients, but virus eradication does not always protect against hepatocellular carcinoma (HCC). Angiopoietin-like protein-3 (ANGPTL-3) and angiopoietin-like protein-4 (ANGPTL-4) regulate the clearance of plasma lipids by inhibiting cellular lipase activity and possess emerging roles in tumourigenesis. We used ELISA and RT-qPCR to investigate ANGPTL-3 and ANGPTL-4 expression in HCV patients with characterised fibrosis throughout the natural history of hepatitis C and in long-term HCV infection in vitro, before and after DAA treatment. ANGPTL-3 was decreased in patients with advanced fibrosis compared to other disease stages, while ANGPTL-4 was progressively increased from acute infection to cirrhosis and HCC, peaking at the advanced fibrosis stage. Only ANGPTL-3 mRNA was down-regulated during early infection in vitro, although both ANGPTLs were increased later. DAA treatment did not alter ANGPTL-3 levels in advanced fibrosis/cirrhosis and in HCV infection in vitro, in contrast to ANGPTL-4. The association between ANGPTLs and fibrosis in HCV infection was underlined by an inverse correlation between the levels of ANGPTLs and serum transforming growth factor- β (TGF-β). Collectively, we demonstrate the pivotal role of advanced fibrosis in defining the expression fate of ANGPTLs in HCV infection and after treatment and propose a role for ANGPTL-3 as a contributor to post-treatment deregulation of lipid metabolism that could predispose certain individuals to HCC development.
Collapse
|
13
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|