1
|
Hatam-Nahavandi K, Ahmadpour E, Badri M, Eslahi AV, Anvari D, Carmena D, Xiao L. Global prevalence of Giardia infection in nonhuman mammalian hosts: A systematic review and meta-analysis of five million animals. PLoS Negl Trop Dis 2025; 19:e0013021. [PMID: 40273200 PMCID: PMC12052165 DOI: 10.1371/journal.pntd.0013021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/05/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Members of the Giardia genus are zoonotic protozoan parasites that cause giardiasis, a diarrheal disease of public and veterinary health concern, in a wide range of mammal hosts, including humans. METHODOLOGY We conducted a systematic review and meta-analysis to provide evidence-based data on the worldwide prevalence of Giardia infection in nonhuman mammals that can be used as scientific foundation for further studies. We searched public databases using specific keywords to identify relevant publications from 1980 to 2023. We computed the pooled prevalence estimates utilizing a random-effects meta-analysis model. Animals were stratified according to their taxonomic hierarchy, as well as ecological and biological factors. We investigated the influence of predetermined variables on prevalence estimates and heterogeneity through subgroup and meta-regression analyses. We conducted phylogenetic analysis to examine the evolutionary relationships among different assemblages of G. duodenalis. PRINCIPAL FINDINGS The study included 861 studies (1,632 datasets) involving 4,917,663 animals from 327 species, 203 genera, 67 families, and 14 orders from 89 countries. The global pooled prevalence of Giardia infection in nonhuman mammals was estimated at 13.6% (95% CI: 13.4-13.8), with the highest rates observed in Rodentia (28.0%) and Artiodactyla (17.0%). Herbivorous (17.0%), semiaquatic (29.0%), and wild (19.0%) animals showed higher prevalence rates. A decreasing prevalence trend was observed over time (β = -0.1036477, 95% CI -0.1557359 to -0.0515595, p < 0.000). Among 16,479 G. duodenalis isolates, 15,999 mono-infections belonging to eight (A-H) assemblages were identified. Assemblage E was the predominant genotype (53.7%), followed by assemblages A (18.1%), B (14.1%), D (6.4%), C (5.6%), F (1.4%), G (0.6%), and H (0.1%). The highest G. duodenalis genetic diversity was found in cattle (n = 7,651, where six assemblages including A (13.6%), B (3.1%), C (0.2%), D (0.1%), E (81.7%), and mixed infections (1.2%) were identified. CONCLUSIONS/SIGNIFICANCE Domestic mammals are significant contributors to the environmental contamination with Giardia cysts, emphasizing the importance of implementing good management practices and appropriate control measures. The widespread presence of Giardia in wildlife suggests that free-living animals can potentially act as sources of the infection to livestock and even humans through overlapping of sylvatic and domestic transmission cycles of the parasite.
Collapse
Affiliation(s)
- Kareem Hatam-Nahavandi
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Davood Anvari
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Spain
- CIBERINFEC, ISCIII – CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Arussi D, Salant H, Rojas A, Dvir E. Prevalence and molecular characterization of Giardia duodenalis in companion dogs, domestic livestock and wildlife in the Jordan Basin, Israel. Vet Parasitol Reg Stud Reports 2024; 52:101042. [PMID: 38880565 DOI: 10.1016/j.vprsr.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Giardiasis is a small intestinal disease caused by the zoonotic parasite, Giardia duodenalis. This study presents the molecular findings of G. duodenalis infection in companion dogs, domestic livestock and wildlife in the Northern Jordan Basin, Israel. Identification of G. duodenalis was accomplished by nested PCR (nPCR) targeting the 18S rRNA gene. Samples were collected from water (five samples from four sources of which one was recycled water), as well as feces from wolves (Canis lupus) (n = 34), jackals (Canis aureus) (n = 24), wild boars (Sus scrofa) (n = 40), cattle (Bos taurus) (n = 40), dogs (Canis lupus familiaris) (n = 37) and nutria (Mayocastor coypus) (n = 100). All positive samples were sequenced and a phylogenetic tree was drawn using the Bayesian Inference (BI) algorithm. Differences in G. duodenalis prevalence between the different hosts were analyzed by Pearson's chi-square (p < 0.05). Of the total 275 fecal samples, 36 were positive for G. duodenalis (13%). Frequency rates among different animal species was highest in wolves (32.3%), whilst rates in wild boars (22.5%), dogs (16.2%), cattle (12.5%) and jackals (4.2%), were observed to be significantly lower (p < 0.001). Three out of 5 recycled water (RW) samples were G. duodenalis positive. Three clusters with high posterior probabilities (PP) were found in the BI: Cluster 1: samples from wolves, wild boars, water and cattle together with database sequences of assemblages A, B and F, Cluster 2: samples from dogs, nutria and a jackal with sequences from assemblage D and Cluster 3: samples from cattle, wild boars, wolves and dogs with sequences from assemblage C and D. We suggest that wolves serve as reservoirs of G. duodenalis in this region. The finding of Giardia in RW suggests that this vehicle may further contaminate crops intended for human consumption as this water source is used for agricultural irrigation.
Collapse
Affiliation(s)
- Dvir Arussi
- Department of Animal Sciences, Tel Hai College, Upper Galilee, Israel
| | - Harold Salant
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Israel
| | - Alicia Rojas
- Laboratory of Helminthology, Faculty of Microbiology, University of Costa Rica, San Jose, Costa Rica
| | - Eran Dvir
- Department of Animal Sciences, Tel Hai College, Upper Galilee, Israel.
| |
Collapse
|
3
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. Critters and contamination: Zoonotic protozoans in urban rodents and water quality. WATER RESEARCH 2024; 251:121165. [PMID: 38290188 DOI: 10.1016/j.watres.2024.121165] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rodents represent the single largest group within mammals and host a diverse array of zoonotic pathogens. Urbanisation impacts wild mammals, including rodents, leading to habitat loss but also providing new resources. Urban-adapted (synanthropic) rodents, such as the brown rat (R. norvegicus), black rat (R. rattus), and house mouse (Mus musculus), have long successfully adapted to living close to humans and are known carriers of zoonotic pathogens. Two important enteric, zoonotic protozoan parasites, carried by rodents, include Cryptosporidium and Giardia. Their environmental stages (oocysts/cysts), released in faeces, can contaminate surface and wastewaters, are resistant to common drinking water disinfectants and can cause water-borne related gastritis outbreaks. At least 48 species of Cryptosporidium have been described, with C. hominis and C. parvum responsible for the majority of human infections, while Giardia duodenalis assemblages A and B are the main human-infectious assemblages. Molecular characterisation is crucial to assess the public health risk linked to rodent-related water contamination due to morphological overlap between species. This review explores the global molecular diversity of these parasites in rodents, with a focus on evaluating the zoonotic risk from contamination of water and wasterwater with Cryptosporidium and Giardia oocysts/cysts from synanthropic rodents. Analysis indicates that while zoonotic Cryptosporidium and Giardia are prevalent in farmed and pet rodents, host-specific Cryptosporidium and Giardia species dominate in urban adapted rodents, and therefore the risks posed by these rodents in the transmission of zoonotic Cryptosporidium and Giardia are relatively low. Many knowledge gaps remain however, and therefore understanding the intricate dynamics of these parasites in rodent populations is essential for managing their impact on human health and water quality. This knowledge can inform strategies to reduce disease transmission and ensure safe drinking water in urban and peri‑urban areas.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
4
|
Bezerra-Santos MA, Dantas-Torres F, Mendoza-Roldan JA, Thompson RCA, Modry D, Otranto D. Invasive mammalian wildlife and the risk of zoonotic parasites. Trends Parasitol 2023; 39:786-798. [PMID: 37429777 DOI: 10.1016/j.pt.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Invasive wild mammals are present in all continents, with Europe, North America, and the Asian-Pacific region having the largest number of established species. In particular, Europe has been the continent with the highest number of zoonotic parasites associated with invasive wild mammals. These invasive species may represent a major threat for the conservation of native ecosystems and may enter in the transmission cycle of native parasites, or act as spreaders of exotic parasites. Here, we review the role of invasive wild mammals as spreaders of zoonotic parasites, presenting important examples from Europe, America, and the Asia-Pacific region. Finally, we emphasize the need for more research on these mammals and their parasites, especially in areas where their monitoring is scantily performed.
Collapse
Affiliation(s)
| | | | | | - R C Andrew Thompson
- Division of Veterinary Biology, School of Veterinary Studies, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - David Modry
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy; Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
6
|
Xu J, Liu H, Jiang Y, Jing H, Cao J, Yin J, Li T, Sun Y, Shen Y, Wang X. Genotyping and subtyping of Cryptosporidium spp. and Giardia duodenalis isolates from two wild rodent species in Gansu Province, China. Sci Rep 2022; 12:12178. [PMID: 35842437 PMCID: PMC9288474 DOI: 10.1038/s41598-022-16196-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
Cryptosporidium spp. and Giardia duodenalis are commonly detected intestinal protozoa species in humans and animals, contributing to global gastroenteritis spread. The present study examined the prevalence and zoonotic potential of Cryptosporidium spp. and G. duodenalis in Himalayan marmots and Alashan ground squirrels in China's Qinghai-Tibetan Plateau area (QTPA) for the first time. Four hundred ninety-eight intestinal content samples were collected from five counties of QTPA of Gansu province, China.
All samples were examined for Cryptosporidium spp. and G. duodenalis by PCR amplification. The resultant data were statistically analyzed by chi-square, Fisher's test and Bonferroni correction using SPSS software 25. 0. Cryptosporidium positive samples were further subtyped through analysis of the 60-kDa glycoprotein (gp60) gene sequence. A total of 11 and 8 samples were positive for Cryptosporidium spp. and G. duodenalis, respectively. Prevalence of Cryptosporidium spp. and G. duodenalis were 2.5% (10/399) and 1.5% (6/399) in Himalayan marmots, 1.0% (1/99) and 2.0% (2/99) in Alashan ground squirrels, respectively. Sequence analysis confirmed the presence of C. rubeyi (n = 2), ground squirrel genotype II (n = 7), chipmunk genotype V (n = 1) and horse genotype (n = 1). The horse genotype was further subtyped as novel subtype VIbA10. G. duodenalis zoonotic assemblages A (n = 1), B (n = 6), E (n = 1) were identified in the present study. This is the first study to identify Cryptosporidium spp. and G. duodenalis in Himalayan marmots and Alashan ground squirrels, suggesting the potential zoonotic transmission of the two pathogens in QTPA.
Collapse
Affiliation(s)
- Jie Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Huaiqi Jing
- National Institute of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Teng Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Yeting Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China. .,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research on Tropical Diseases, Shanghai, 200025, China. .,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xin Wang
- National Institute of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|