1
|
Faúndez-Acuña JY, Verdugo D, Vergara D, Olivares G, Ballesteros GI, Quiroz K, Villarroel CA, González G. The mountain papaya may be a possible reservoir of the Kashmir bee virus. PeerJ 2025; 13:e18634. [PMID: 39995995 PMCID: PMC11849520 DOI: 10.7717/peerj.18634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 02/26/2025] Open
Abstract
Background The Kashmir bee virus (KBV) infects many species of Hymenoptera, including bees, wasps, and other pollinators, potentially contributing to honeybee population declines. KBV can cause death of bees. KBV can infect through both vertical transmission (from queen to larvae and vice versa) and horizontal transmission (via food contamination). Plants pollinated by bees may be a source of horizontal transmission, through fecal contamination of pollen and flowers by infected pollinators, both intra- and interspecifically. Pollinated plants constitute a source of KBV intra- and inter-species horizontal transmission, particularly by the contamination of pollen and flowers by feces of KBV-infected pollinators. Result We test for the presence of KBV sequences in the transcriptomes of Vasconcellea pubescens, a commercially valuable plant species known as mountain papaya. We mapped transcriptomes from fruit, leaves, and root tissues to the KBV reference genome with 91% coverage, from which we produced a consensus sequence denominated Kashmir bee virus ch. phylogenetic analysis revealed that KBV-Ch shares 97% nucleotide identity with the reference genome, and groups with other KBV strains isolated from Spain, Chile and New Zealand.
Collapse
Affiliation(s)
- Jorge Y. Faúndez-Acuña
- Doctorate in Translational Biotechnology (DBT), Catholic University of Maule, Talca, Maule Region, Chile
- Center for Biotechnology of Natural Resources (CENBio), Catholic University of Maule, Talca, Maule Region, Chile
| | - Diego Verdugo
- Doctorate in Translational Biotechnology (DBT), Catholic University of Maule, Talca, Maule Region, Chile
- Center for Biotechnology of Natural Resources (CENBio), Catholic University of Maule, Talca, Maule Region, Chile
| | - David Vergara
- Center for Biotechnology of Natural Resources (CENBio), Catholic University of Maule, Talca, Maule Region, Chile
| | - Gerardo Olivares
- School of Biotechnology Engineering, Catholic University of Maule, Talca, Maule Region, Chile
| | - Gabriel I. Ballesteros
- Center of Integrative Ecology, University of Talca, Talca, Maule Region, Chile
- Institute of Interdisciplinary Research, University of Talca, Talca, Maule Region, Chile
| | - Karla Quiroz
- Center for Biotechnology of Natural Resources (CENBio), Catholic University of Maule, Talca, Maule Region, Chile
- School of Biotechnology Engineering, Catholic University of Maule, Talca, Maule Region, Chile
| | - Carlos A. Villarroel
- Center for Biotechnology of Natural Resources (CENBio), Catholic University of Maule, Talca, Maule Region, Chile
- School of Biotechnology Engineering, Catholic University of Maule, Talca, Maule Region, Chile
| | - Gloria González
- Center for Biotechnology of Natural Resources (CENBio), Catholic University of Maule, Talca, Maule Region, Chile
- School of Biotechnology Engineering, Catholic University of Maule, Talca, Maule Region, Chile
| |
Collapse
|
2
|
Vu ED, Chiavini BE, Gratton EM, Dolezal AG, Bonning BC. Representative honey bee viruses do not replicate in the small hive beetle, Aethina tumida Murray. J Invertebr Pathol 2024; 207:108207. [PMID: 39306322 DOI: 10.1016/j.jip.2024.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The small hive beetle (SHB), Aethina tumida Murray, is an invasive pest of the honey bee and causes significant damage through the consumption of colony resources and brood. Two assumptions related to honey bee virus transmission have been made about SHB: first, that SHB vectors honey bee viruses and second, that these viruses replicate in SHB based on the detection of both positive and negative strand viral genomic RNA within SHB. To clarify the role of SHB in virus transmission, we sought to address whether selected honey bee viruses replicate in SHB. Sequences derived from five honey bee viruses were identified in the transcriptomes of field-caught SHB from the U.S., but not in those of lab-reared SHB, suggesting that these viruses do not replicate in SHB. To elucidate whether the representative viruses, Israeli acute paralysis virus (IAPV; Dicistroviridae) and Deformed wing virus (DWV; Iflaviridae) replicate in SHB, we tested for replication in vitro in an SHB-derived cell line (BCIRL-AtumEN-1129-D6). Following treatment of the cell line with viral particles or viral RNA, the number of virus genomes was monitored by reverse transcription quantitative PCR (RT-qPCR). In contrast to the positive control, IAPV and DWV RNA levels steadily decreased over a period of 8 days. Collectively, these results from bioinformatic observations and in vitro experiments indicate that IAPV and DWV do not replicate in SHB. These results are consistent with the host specificity of most insect viruses within a single insect order and indicate that while SHB may serve as a mechanical vector of honey bee viruses within and between hives, this insect does not serve as a biological vector for these honey bee viruses.
Collapse
Affiliation(s)
- Emily D Vu
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Benjamin E Chiavini
- Department of Entomology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Elena M Gratton
- Department of Entomology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Adam G Dolezal
- Department of Entomology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States.
| |
Collapse
|
3
|
Cilia G, Caringi V, Zavatta L, Bortolotti L. Pathogen occurrence in different developmental stages of the invasive Vespa velutina nigrithorax (Buysson, 1905). PEST MANAGEMENT SCIENCE 2024; 80:5909-5917. [PMID: 39054884 DOI: 10.1002/ps.8325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The yellow-legged hornet (Vespa velutina nigrithorax) is a predatory species native to South-East Asia. The hornet is invasive in Europe, spreading to several countries and becoming a pest for Apis mellifera due to its behaviour of preying in front of apiaries. The aim of this study was (i) to investigate the presence of honey bee pathogens within the developmental stages of V. velutina after neutralizing a nest in Bologna province (Emilia-Romagna, Italy) and (ii) to analyze the mitochondrial DNA to determine if the population derived from the population initially introduced in Europe. RESULTS The results indicated that deformed wing virus (82.76%) and Nosema ceranae (67.28%) were the most prevalent pathogens. Deformed wing virus, N. ceranae and sacbrood virus were found in all investigated stages, while chronic bee paralysis virus and Kashmir bee virus were exclusively found in foraging adults. All detected viruses were found to be replicative, highlighting active infection in the hosts. The mtDNA analysis demonstrated that the origin derived from the invasive population arrived in France. CONCLUSION This study underscores the importance of further research to understand the effect of interspecific transmission, especially concerning the potential role of these pathogens as a biocontrol for the invasive V. velutina nigrithorax. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Giovanni Cilia
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Valeria Caringi
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Laura Zavatta
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| |
Collapse
|
4
|
Power K, Cilia G, Ragusa E, Rizzo R, Bortolotti L, Maiolino P. Occurrence of Nosema ceranae, Ascosphaera apis and trypanosomatids in Vespa orientalis linneus 1771. J Invertebr Pathol 2024; 206:108168. [PMID: 39004165 DOI: 10.1016/j.jip.2024.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Vespa orientalis is spreading across the Italian and European territories leading to new interactions among species, which could lead to the transmission of pathogens between species. Detection of honey bee viruses in V. orientalis has already been revealed in both adults and larvae, while no information is available regarding parasitic occurrence. Sixty adult hornets collected across apiaries in the South of Italy were subjected to cytological, histopathological and biomolecular examination to evaluate the occurrence of Nosema ceranae, Ascosphaera apis, Lotmaria passim, Crithidia mellificae, and Crithidia bombi. Cytological examination revealed the presence of Nosema spores in 38.33% of individuals while histopathological analysis showed the presence of L. passim-like elements in the rectum of two examined specimens and the presence of fungal hyphae in the small intestine of another hornet. Biomolecular investigation revealed that N. ceranae was the most prevalent pathogen (50.0%), followed by A. apis (6.66%), L. passim (6.66%) and C. bombi (6.0%).
Collapse
Affiliation(s)
- Karen Power
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Giovanni Cilia
- Council for Agricultural Research and Agricultural Economics Analysis, Centre for Agriculture and Environment Research (CREA-AA), 40128 Bologna, Italy
| | - Ernesto Ragusa
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Roberto Rizzo
- Council for Agricultural Research and Agricultural Economics Analysis, Research Centre for Plant Protection and Certification, 90145 Palermo, Italy
| | - Laura Bortolotti
- Council for Agricultural Research and Agricultural Economics Analysis, Centre for Agriculture and Environment Research (CREA-AA), 40128 Bologna, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| |
Collapse
|
5
|
Tiritelli R, Giannetti D, Schifani E, Grasso DA, Cilia G. Neighbors sharing pathogens: the intricate relationship between Apis mellifera and ants (Hymenoptera: Formicidae) nesting in hives. INSECT SCIENCE 2024. [PMID: 39126179 DOI: 10.1111/1744-7917.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Ants are ubiquitous and eusocial insects that exhibit frequent physical contact among colony members, thereby increasing their susceptibility to diseases. Some species are often found in beehives and in their surroundings, where they exploit the food resources of honey bees. This intricate relationship may facilitate the interspecific transmission of honey bee pathogens to ants, although ants themselves may contribute to spillback phenomena. The objective of this study was to assess the presence and abundance of honey bee pathogens in ants sampled from Italian apiaries. A total of 37 colonies within 24 apiaries across 7 regions were monitored. In total, 6 pathogens were detected in adult ants and 3 in the brood. In particular, the study revealed a high prevalence of honey bee pathogens in ants, with DWV, BQCV, and CBPV being the most commonly encountered. The brood also tested positive for the same viruses. Notably, all analyzed viruses were found to be replicative in both adult ants and ant broods. Furthermore, co-infections were prevalent, suggesting complex pathogen interactions within ant populations. Statistical analysis indicated significant differences in pathogen prevalence and abundance among ant species and sample types. The findings highlight active infection in both the ants and the brood, suggesting a potential role of ants as reservoir hosts and vectors of honey bee pathogens emphasizing the need for further research to understand the implications of interspecific pathogen transmission on ant and bee health.
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniele Giannetti
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Schifani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Donato A Grasso
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
| |
Collapse
|
6
|
Iller M, Lipczyńska-Ilczuk K, Sokół R, Borsuk G, Bancerz-Kisiel A. Phylogenetic analysis of the trypanosomatid parasite Lotmaria passim in honey bees ( Apis mellifera) in Poland. J Vet Res 2024; 68:123-127. [PMID: 38525230 PMCID: PMC10960264 DOI: 10.2478/jvetres-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Lotmaria passim (L. passim) is a single-celled flagellate which colonises the bee gastrointestinal tract and is highly prevalent in honey bees. This parasite is associated with colony losses. Honey bee (Apis mellifera) colonies were sampled from five apiaries in the north-eastern part of Poland for the phylogenetic analysis of L. passim. Material and Methods Each apiary consisted of approximately 60 bee colonies, of which 20 were randomly selected. Samples of 60 differently aged worker bees were collected from each colony and pooled. A total of 100 bee colonies from five apiaries were examined. Protozoa of the Trypanosomatidae family were identified by PCR. L. passim was detected in 47 (47%) of the samples. The 18S ribosomal (r) RNA amplicons of L. passim were sequenced by a commercial service. Their sequences were analysed with BLASTN and noted to be compatible with the GenBank sequences of this region of the organism's genome. A sequence analysis was performed using the BioEdit Sequence Alignment Editor and Clustal W software. Results The amplicon sequences of L. passim were 100% homologous with the sequences deposited in GenBank under accession numbers KM066243.1., KJ684964.1 and KM980181.1. Conclusion This is the first study to perform a phylogenetic analysis of L. passim in Polish honey bees. The analysis demonstrated high levels of genetic similarity between isolates of L. passim colonising apiaries in the north-eastern region of Poland.
Collapse
Affiliation(s)
- Maria Iller
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Karolina Lipczyńska-Ilczuk
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Rajmund Sokół
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Grzegorz Borsuk
- Department of Apidology, Faculty of Animal Sciences and Bioeconomy, Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Agata Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| |
Collapse
|
7
|
Tiritelli R, Flaminio S, Zavatta L, Ranalli R, Giovanetti M, Grasso DA, Leonardi S, Bonforte M, Boni CB, Cargnus E, Catania R, Coppola F, Di Santo M, Pusceddu M, Quaranta M, Bortolotti L, Nanetti A, Cilia G. Ecological and social factors influence interspecific pathogens occurrence among bees. Sci Rep 2024; 14:5136. [PMID: 38429345 PMCID: PMC10907577 DOI: 10.1038/s41598-024-55718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.
Collapse
Grants
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Simone Flaminio
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Av. Champ de Mars 6, 7000, Mons, Belgium
| | - Laura Zavatta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy.
- Departement of Agriculture and Food Sciences, University of Bologna, Via Giuseppe Fanin 42, 40127, Bologna, Italy.
| | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- ZooPlantLab, Department of Biotecnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
| | - Manuela Giovanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Donato Antonio Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Marta Bonforte
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Elena Cargnus
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 31000, Udine, Italy
| | - Roberto Catania
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Marco Di Santo
- Maiella National Park, Via Badia 28, 67039, Sulmona, Italy
| | - Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marino Quaranta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
8
|
Cilia G, Tafi E, Zavatta L, Dettori A, Bortolotti L, Nanetti A. Seasonal trends of the ABPV, KBV, and IAPV complex in Italian managed honey bee (Apis mellifera L.) colonies. Arch Virol 2024; 169:43. [PMID: 38334819 DOI: 10.1007/s00705-024-05967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV), and Israeli acute paralysis virus (IAPV) usually persist as covert infections in honey bee colonies. They can cause rapid bee mortality in cases of severe infection, often associated with high Varroa destructor infestation, by which they are transmitted. In various countries, these viruses have been associated with colony collapse. Despite their potential danger, these viruses are often disregarded, and little information is available on their occurrence in many countries, including Italy. In 2021, 370 apiaries representing all of the Italian regions were investigated in four different months (June, September, November, and March) for the presence of ABPV, KBV, and IAPV. IAPV was not found in any of the apiaries investigated, whereas 16.45% and 0.67% of the samples tested positive for ABPV and KBV, respectively. Most ABPV cases occurred in late summer-autumn in both northern and southern regions. We observed a scattered pattern of KBV-positive colonies that did not allow any seasonal or regional trends to be discerned. Differences observed among regions and months were potentially related to the dynamics of varroa infestation, viral genetic variations, and different climatic conditions resulting in variations in bee behaviour. This study improves our understanding of the circulation of bee viruses and will contribute to better disease prevention and preservation of bee health.
Collapse
Affiliation(s)
- Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Elena Tafi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy.
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Amanda Dettori
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
9
|
Erban T, Parizkova K, Sopko B, Talacko P, Markovic M, Jarosova J, Votypka J. Imidacloprid increases the prevalence of the intestinal parasite Lotmaria passim in honey bee workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166973. [PMID: 37699488 DOI: 10.1016/j.scitotenv.2023.166973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
A challenge in bee protection is to assess the risks of pesticide-pathogen interactions. Lotmaria passim, a ubiquitous unicellular parasite in honey bees, is considered harmful under specific conditions. Imidacloprid causes unpredictable side effects. Research indicates that both L. passim and imidacloprid may affect the physiology, behavior, immunity, microbiome and lifespan of honey bees. We designed cage experiments to test whether the infection of L. passim is affected by a sublethal dose of imidacloprid. Workers collected at the time of emergence were exposed to L. passim and 2.5 μg/L imidacloprid in the coexposure treatment group. First, samples of bees were taken from cages since they were 5 days old and 3 days postinfection, i.e., after finishing an artificial 24 h L. passim infection. Additional bees were collected every two additional days. In addition, bees frozen at the time of emergence and collected from the unexposed group were analyzed. Abdomens were analyzed using qPCR to determine parasite load, while corresponding selected heads were subjected to a label-free proteomic analysis. Our results show that bees are free of L. passim at the time of emergence. Furthermore, imidacloprid considerably increased the prevalence as well as parasite loads in individual bees. This means that imidacloprid facilitates infection, enabling faster parasite spread in a colony and potentially to surrounding colonies. The proteomic analysis of bee heads showed that imidacloprid neutralized the increased transferrin 1 expression by L. passim. Importantly, this promising marker has been previously observed to be upregulated by infections, including gut parasites. This study contributes to understanding the side effects of imidacloprid and demonstrates that a single xenobiotic/pesticide compound can interact with the gut parasite. Our methodology can be used to assess the effects of different compounds on L. passim.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia.
| | - Kamila Parizkova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 1594/7, Prague 2 CZ-128 00, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, BIOCEV, Charles University, Prumyslova 595, Vestec CZ-252 50, Czechia
| | - Martin Markovic
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia
| | - Jana Jarosova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague 6-Lysolaje CZ-165 02, Czechia
| | - Jan Votypka
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 1594/7, Prague 2 CZ-128 00, Czechia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 1160/31, Ceske Budejovice CZ-37005, Czechia
| |
Collapse
|
10
|
Papach A, Beaurepaire A, Yañez O, Huwiler M, Williams GR, Neumann P. Multiple mating by both sexes in an invasive insect species, Aethina tumida (Coleoptera: Nitidulidae). INSECT SCIENCE 2023; 30:517-529. [PMID: 36097706 DOI: 10.1111/1744-7917.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Multiple mating by both sexes is common among sexually reproducing animals. Small hive beetles (SHB), Aethina tumida, are parasites of bee nests endemic to sub-Saharan Africa and have become a widespread invasive species. Despite the considerable economic damages they can cause, their basic biology remains poorly understood. Here we show that male and female small hive beetles can mate multiple times, suggesting that costs for mating are low in this species. In an invasive A. tumida population in the United States, a combination of laboratory experiments for males and paternity analysis with eight polymorphic DNA microsatellite markers for field-caught females were used to estimate the number of mating by both sexes. The data show that females and males can mate multiple times-females mated with up to eight males, whereas males mated with at least seven females. The results also showed that A. tumida displayed a skewed paternity, although this was not consistent among the tested females. Thus, first or last male advantage seem to be unlikely in A. tumida. Our observations that individuals of both sexes of A. tumida can mate multiple times opens new research avenues for examining drivers of multiple mating and determining the role it may play in promoting biological invasions.
Collapse
Affiliation(s)
- Anna Papach
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Meret Huwiler
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Geoffrey R Williams
- Department of Entomology & Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| |
Collapse
|
11
|
Yamamoto S, Nakamura S, Nakayama K, Kusakisako K, Watanabe K, Ikadai H, Tanabe T. Molecular detection of Lotmaria passim in honeybees in Japan. Parasitol Int 2023; 93:102711. [PMID: 36414198 DOI: 10.1016/j.parint.2022.102711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Crithidia mellificae (C. mellificae) and Lotmaria passim (L. passim) are trypanosomatids that infect Apis mellifera. We analyzed the prevalence of C. mellificae and L. passim in six regions of Japan from 2018 to 2019. The detection rate of C. mellificae was 0.0% in all regions, whereas L. passim was detected in 16.7%-66.7% of the honeybees. L. passim was detected at a significantly lower rate in the Cyugoku-Shikoku region than in other regions. Furthermore, phylogenetic analysis of the internal transcribed spacer 1 (ITS1) locus of related species was performed. All the samples in this study could be assigned to the L. passim clade. This study reveals that L. passim infection is predominantly prevalent in Japan. Further epidemiological surveys are needed to clarify the prevalence of C. mellificae infection in honeybees in Japan.
Collapse
Affiliation(s)
- Satomi Yamamoto
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Sakure Nakamura
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kazuhiko Nakayama
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.
| | - Taishi Tanabe
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| |
Collapse
|
12
|
Michalczyk M, Sokół R. Detection of Lotmaria passim and Crithidia mellificae in Selected Bumblebee Species. Pathogens 2022; 11:pathogens11091053. [PMID: 36145485 PMCID: PMC9504464 DOI: 10.3390/pathogens11091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Bumblebees (Bombus spp.) are an essential element of the ecosystem and the global economy. They are valued pollinators in many countries around the word. Unfortunately, there has been a decline in the bumblebee population, which is attributed to, among others, pathogens and reduced access to food due to the loss of natural nesting sites. Lotmaria passim and Crithidia mellificae, protozoan pathogens of the family Trypanosomatidae, commonly infect bumblebees, including in Poland. In this study, a Polish population of bumblebees was screened for L. passim and C. mellificae. The experiment was performed on 13 adult bumblebees belonging to 4 species: B. lapidarius, B. lucorum, B. pascuorum, and B. terrestris. Protozoa of the family Trypanosomatidae were identified by PCR. Only L. passim was identified in one B. pascuorum individual. Further research is needed to confirm the effect of concurrent pathogens on the decline of bumblebee populations.
Collapse
|
13
|
Cilia G, Tafi E, Zavatta L, Caringi V, Nanetti A. The Epidemiological Situation of the Managed Honey Bee (Apis mellifera) Colonies in the Italian Region Emilia-Romagna. Vet Sci 2022; 9:vetsci9080437. [PMID: 36006352 PMCID: PMC9412502 DOI: 10.3390/vetsci9080437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The recent decades witnessed the collapse of honey bee colonies at a global level. The major drivers of this collapse include both individual and synergic pathogen actions, threatening the colonies’ survival. The need to define the epidemiological pattern of the pathogens that are involved has led to the establishment of monitoring programs in many countries, Italy included. In this framework, the health status of managed honey bees in the Emilia–Romagna region (northern Italy) was assessed, throughout the year 2021, on workers from 31 apiaries to investigate the presence of major known and emerging honey bee pathogens. The prevalence and abundance of DWV, KBV, ABPV, CBPV, Nosema ceranae, and trypanosomatids (Lotmaria passim, Crithidia mellificae, Crithidia bombi) were assessed by molecular methods. The most prevalent pathogen was DWV, followed by CBPV and N. ceranae. Trypanosomatids were not found in any of the samples. Pathogens had different peaks in abundance over the months, showing seasonal trends that were related to the dynamics of both bee colonies and Varroa destructor infestation. For some of the pathogens, a weak but significant correlation was observed between abundance and geographical longitude. The information obtained in this study increases our understanding of the epidemiological situation of bee colonies in Emilia–Romagna and helps us to implement better disease prevention and improved territorial management of honey bee health.
Collapse
|
14
|
Cilia G, Flaminio S, Zavatta L, Ranalli R, Quaranta M, Bortolotti L, Nanetti A. Occurrence of Honey Bee ( Apis mellifera L.) Pathogens in Wild Pollinators in Northern Italy. Front Cell Infect Microbiol 2022; 12:907489. [PMID: 35846743 PMCID: PMC9280159 DOI: 10.3389/fcimb.2022.907489] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Diseases contribute to the decline of pollinator populations, which may be aggravated by the interspecific transmission of honey bee pests and pathogens. Flowers increase the risk of transmission, as they expose the pollinators to infections during the foraging activity. In this study, both the prevalence and abundance of 21 honey bee pathogens (11 viruses, 4 bacteria, 3 fungi, and 3 trypanosomatids) were assessed in the flower-visiting entomofauna sampled from March to September 2021 in seven sites in the two North-Italian regions, Emilia-Romagna and Piedmont. A total of 1,028 specimens were collected, identified, and analysed. Of the twenty-one pathogens that were searched for, only thirteen were detected. Altogether, the prevalence of the positive individuals reached 63.9%, with Nosema ceranae, deformed wing virus (DWV), and chronic bee paralysis virus (CBPV) as the most prevalent pathogens. In general, the pathogen abundance averaged 5.15 * 106 copies, with CBPV, N. ceranae, and black queen cell virus (BQCV) as the most abundant pathogens, with 8.63, 1.58, and 0.48 * 107 copies, respectively. All the detected viruses were found to be replicative. The sequence analysis indicated that the same genetic variant was circulating in a specific site or region, suggesting that interspecific transmission events among honey bees and wild pollinators are possible. Frequently, N. ceranae and DWV were found to co-infect the same individual. The circulation of honey bee pathogens in wild pollinators was never investigated before in Italy. Our study resulted in the unprecedented detection of 72 wild pollinator species as potential hosts of honey bee pathogens. Those results encourage the implementation of monitoring actions aiming to improve our understanding of the environmental implications of such interspecific transmission events, which is pivotal to embracing a One Health approach to pollinators' welfare.
Collapse
Affiliation(s)
| | | | | | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | | | | | | |
Collapse
|
15
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
16
|
Special Issue: “Infection in Honey Bees: Host–Pathogen Interaction and Spillover”. Pathogens 2022; 11:pathogens11010077. [PMID: 35056025 PMCID: PMC8779490 DOI: 10.3390/pathogens11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
|
17
|
Nanetti A, Bortolotti L, Cilia G. Pathogens Spillover from Honey Bees to Other Arthropods. Pathogens 2021; 10:1044. [PMID: 34451508 PMCID: PMC8400633 DOI: 10.3390/pathogens10081044] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Honey bees, and pollinators in general, play a major role in the health of ecosystems. There is a consensus about the steady decrease in pollinator populations, which raises global ecological concern. Several drivers are implicated in this threat. Among them, honey bee pathogens are transmitted to other arthropods populations, including wild and managed pollinators. The western honey bee, Apis mellifera, is quasi-globally spread. This successful species acted as and, in some cases, became a maintenance host for pathogens. This systematic review collects and summarizes spillover cases having in common Apis mellifera as the mainteinance host and some of its pathogens. The reports are grouped by final host species and condition, year, and geographic area of detection and the co-occurrence in the same host. A total of eighty-one articles in the time frame 1960-2021 were included. The reported spillover cases cover a wide range of hymenopteran host species, generally living in close contact with or sharing the same environmental resources as the honey bees. They also involve non-hymenopteran arthropods, like spiders and roaches, which are either likely or unlikely to live in close proximity to honey bees. Specific studies should consider host-dependent pathogen modifications and effects on involved host species. Both the plasticity of bee pathogens and the ecological consequences of spillover suggest a holistic approach to bee health and the implementation of a One Health approach.
Collapse
Affiliation(s)
| | - Laura Bortolotti
- Council for Agricultural Research and Agricultural Economics Analysis, Centre for Agriculture and Environment Research (CREA-AA), Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (G.C.)
| | | |
Collapse
|
18
|
Cilia G, Zavatta L, Ranalli R, Nanetti A, Bortolotti L. Replicative Deformed Wing Virus Found in the Head of Adults from Symptomatic Commercial Bumblebee ( Bombus terrestris) Colonies. Vet Sci 2021; 8:117. [PMID: 34201628 PMCID: PMC8310072 DOI: 10.3390/vetsci8070117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
The deformed wing virus (DWV) is one of the most common honey bee pathogens. The virus may also be detected in other insect species, including Bombus terrestris adults from wild and managed colonies. In this study, individuals of all stages, castes, and sexes were sampled from three commercial colonies exhibiting the presence of deformed workers and analysed for the presence of DWV. Adults (deformed individuals, gynes, workers, males) had their head exscinded from the rest of the body and the two parts were analysed separately by RT-PCR. Juvenile stages (pupae, larvae, and eggs) were analysed undissected. All individuals tested positive for replicative DWV, but deformed adults showed a higher number of copies compared to asymptomatic individuals. Moreover, they showed viral infection in their heads. Sequence analysis indicated that the obtained DWV amplicons belonged to a strain isolated in the United Kingdom. Further studies are needed to characterize the specific DWV target organs in the bumblebees. The result of this study indicates the evidence of DWV infection in B. terrestris specimens that could cause wing deformities, suggesting a relationship between the deformities and the virus localization in the head. Further studies are needed to define if a specific organ could be a target in symptomatic bumblebees.
Collapse
Affiliation(s)
| | | | | | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (L.Z.); (R.R.); (L.B.)
| | | |
Collapse
|