1
|
Tanga CTF, Makouloutou-Nzassi P, Mbehang Nguema PP, Düx A, Lendzele Sevidzem S, Mavoungou JF, Leendertz FH, Mintsa-Nguema R. Antimicrobial Resistance in African Great Apes. Antibiotics (Basel) 2024; 13:1140. [PMID: 39766531 PMCID: PMC11672706 DOI: 10.3390/antibiotics13121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antibiotic-resistant bacteria pose a significant global public health threat that demands serious attention. The proliferation of antimicrobial resistance (AMR) is primarily attributed to the overuse of antibiotics in humans, livestock, and the agro-industry. However, it is worth noting that antibiotic-resistant genes (ARGs) can be found in all ecosystems, even in environments where antibiotics have never been utilized. African great apes (AGAs) are our closest living relatives and are known to be susceptible to many of the same pathogens (and other microorganisms) as humans. AGAs could therefore serve as sentinels for human-induced AMR spread into the environment. They can potentially also serve as reservoirs for AMR. AGAs inhabit a range of environments from remote areas with little anthropogenic impact, over habitats that are co-used by AGAs and humans, to captive settings with close human-animal contacts like zoos and sanctuaries. This provides opportunities to study AMR in relation to human interaction. This review examines the literature on AMR in AGAs, identifying knowledge gaps. RESULTS Of the 16 articles reviewed, 13 focused on wild AGAs in habitats with different degrees of human presence, 2 compared wild and captive apes, and 1 study tested captive apes alone. Ten studies included humans working with or living close to AGA habitats. Despite different methodologies, all studies detected AMR in AGAs. Resistance to beta-lactams was the most common (36%), followed by resistance to aminoglycosides (22%), tetracyclines (15%), fluoroquinolones (10%), sulphonamides (5%), trimethoprim (5%), macrolide (3%), phenicoles (2%) and fosfomycin (1%). CONCLUSIONS While several studies suggest a correlation between increased human contact and higher AMR in AGAs, resistance was also found in relatively pristine habitats. While AGAs clearly encounter bacteria resistant to diverse antibiotics, significant gaps remain in understanding the underlying processes. Comparative studies using standardized methods across different sites would enhance our understanding of the origin and distribution of AMR in AGAs.
Collapse
Affiliation(s)
- Coch Tanguy Floyde Tanga
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Ecole Doctorale des Grandes Ecoles de Libreville, Libreville BP 3989, Gabon
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research, Fleischmannstrasse 42, 17489 Greifswald, Germany; (A.D.)
| | - Patrice Makouloutou-Nzassi
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Unit of Research in Health Ecology (URES/CIRMF), Franceville BP 769, Gabon
| | - Pierre Philippe Mbehang Nguema
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
| | - Ariane Düx
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research, Fleischmannstrasse 42, 17489 Greifswald, Germany; (A.D.)
| | - Silas Lendzele Sevidzem
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville BP 1177, Gabon
| | - Jacques François Mavoungou
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Université Internationale de Libreville, Libreville BP 20411, Gabon
| | - Fabian H. Leendertz
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research, Fleischmannstrasse 42, 17489 Greifswald, Germany; (A.D.)
| | - Rodrigue Mintsa-Nguema
- Department of Biology and Animal Ecology, Research Institute for Tropical Ecology (IRET/CENAREST), Libreville BP 13354, Gabon; (P.M.-N.); (R.M.-N.)
- Ecole Doctorale des Grandes Ecoles de Libreville, Libreville BP 3989, Gabon
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville BP 1177, Gabon
| |
Collapse
|
2
|
Jean NN, Désiré OE, Serge Ely D, Larson B, Thiérry-Audrey T, Ivan Cyr MK, Yasmine ON, Landry Erik M, Dominique P, Barthélemy N. Assessment of the Risks of Zoonotic Infection at the Primatology Centre of the Interdisciplinary Medical Research Centre of Franceville in Gabon. J Med Primatol 2024; 53:e12741. [PMID: 39394906 DOI: 10.1111/jmp.12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Non-human primate (NHPs) conservation sites could be sites of exchange of pathogens involved in infectious diseases. It is important to assess the potential risks associated with this type of structure. The objective of this study was to carry out a risk assessment of the Primatology Centre housed in the Interdisciplinary Centre for Medical Research of Franceville (CIRMF). METHODS A questionnaire was administered to the centre's staff to assess the risk associated with each workstation, followed by a review of the various pathogens identified in NHPs. The data were analysed using two diagrams: the Kiviat diagram and the Pareto diagram. RESULTS Based on our results, a variety of pathogens such as viruses, bacteria and parasites, potentially transmissible to humans, were described in the NHPs at the Primatology Centre of CIRMF. The position most exposed to zoonotic risks was that of animal handlers. CONCLUSION The Primatology Centre of CIRMF is a potential transfer site for the transfer of zoonotic agents. To avoid the risk of parasite exchange between staff and animals, the implementation of biosecurity measures is essential.
Collapse
Affiliation(s)
- Nzue Nguema Jean
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Département de Biologie, Faculté Des Sciences, Université Des Sciences et Technique de Masuku (USTM), Franceville, Gabon
| | - Otsaghe Ekore Désiré
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Dibakou Serge Ely
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Boundenga Larson
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Department of Anthropology, Durham University, Durham, UK
| | - Tsoumbou Thiérry-Audrey
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | - Okomo Nguema Yasmine
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Mombo Landry Erik
- Département de Biologie, Faculté Des Sciences, Université Des Sciences et Technique de Masuku (USTM), Franceville, Gabon
| | - Pontier Dominique
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Université de Lyon 1, Villeurbanne, France
- LabEx ECOFECT, Eco-Evolutionary Dynamics of Infectious Diseases, University of Lyon, Lyon, France
| | - Ngoubangoye Barthélemy
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Department of Anthropology, Durham University, Durham, UK
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Université de Lyon 1, Villeurbanne, France
- LabEx ECOFECT, Eco-Evolutionary Dynamics of Infectious Diseases, University of Lyon, Lyon, France
| |
Collapse
|
3
|
Banerjee J, Batabyal S, Biswas S, Bhattacharyya D, Habib M, Das AK, Nanda PK, Samanta I, Dandapat P, Bandyopadhyay S. Stray Dogs (Mongrels) Are Potent Reservoir of Drug-Resistant Pathogens: A Study in Peri-Urban Areas of Kolkata, India. Microb Drug Resist 2024; 30:215-230. [PMID: 38656133 DOI: 10.1089/mdr.2023.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
This study depicts the drug-resistance and phylogenomic characteristics of 365 Escherichia coli (EC) and 76 Klebsiella pneumoniae (KP) isolated from stray dogs (293) in and around Kolkata, India. Initial screening found 59 isolates, including 48 E. coli and 11 KP multidrug resistant, which included 33 extended-spectrum β-lactamase, 41 AmpC β-lactamase and 18 metallo-β-lactamase producers carrying blaNDM-1 (11) and blaNDM-5 (7) genes. Majority of them had the resistant genes such as blaCTX-M (33), blaTEM (18), blaSHV (4), blaOXA (17), blaFOX (2), blaDHA (2), blaCITM (15), blaCMY-2 (13), blaGES (2) and blaVEB (2), qnrS (15), qnrB (3), aac-6'-Ib-cr (14), tetA (26), tetB (14), sul-1 (25), armA (2) and rmtB (6), in addition to adherence genes such as csgA (33), fimA (27), fliC (13), sdiA (33), rcsA (38), and rpoS (39). They also carried plasmid of diverse replicon types of which IncFIA and FIB were the most frequent. Phylogrouping categorized most of the MDR E. coli in phylogroup A (20), B1 (14), and B2 (6). Enterobacteriaceae repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) showed genetic diversity of multidrug resistant isolates irrespective of their origin, resistance, and virulence types, differentiating the EC in five clades (A-E) and KP in four clades (A-D). As these stray dogs, which had no history or scope of previous antimicrobial therapy, were found to have contracted potential antimicrobial resistance pathogens, the role of environment in spread of such pathogens and further possibility of human infections cannot be ruled out.
Collapse
Affiliation(s)
- Jaydeep Banerjee
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Subhasis Batabyal
- West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Suman Biswas
- West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | | | - Md Habib
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Arun K Das
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Pramod K Nanda
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Indranil Samanta
- West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Premanshu Dandapat
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | | |
Collapse
|
4
|
Svenson EL, Coonen J, Svenson JE, Simmons HA, Hayes JM, Capuano S. An Epidemiologic Study of Bacterial Culture and Antibiotic Susceptibility Analyses in Captive Macaques and Marmosets at the Wisconsin National Primate Research Center. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:540-551. [PMID: 38649259 PMCID: PMC11467885 DOI: 10.30802/aalas-jaalas-23-000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 02/23/2024] [Indexed: 04/25/2024]
Abstract
Antimicrobial resistance (AMR) represents a growing public health threat that arises at the interface between animal, human, and environmental health. Although the pathways promoting the development of AMR are well characterized in human health settings, data within the veterinary medical world are less abundant, particularly from fields focusing on nontraditional species, such as nonhuman primates (NHPs). The purpose of this study was to describe trends in sample submission for bacterial culture, characterize patterns of microbial growth and any changes in AMR and susceptibility over time, and inform best practices for veterinary antimicrobial stewardship in a captively-housed, indoor NHP colony. Electronic health records from the Wisconsin National Primate Research Center were analyzed across a 10-y period using SAS Studio. There was an increasing pattern of sample submissions for culture and susceptibility analyses, with no corresponding increases in resistance to relevant antibiotics for potential zoonotic pathogens, such as Escherichia coli or Shigella species. Trends are suggestive of appropriate antimicrobial stewardship practices that were responsive to the medical needs of Wisconsin National Primate Research Center animals, as well as the needs of the larger research community at the University of Wisconsin-Madison. These findings can inform veterinary professionals working with NHPs and contribute to the growing body of literature surrounding AMR in nontraditional species.
Collapse
Affiliation(s)
- Emma L Svenson
- Department of Population Health Sciences, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, Madison, Wisconsin; and
| | - James E Svenson
- Department of Emergency Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
| | | | - Jennifer M Hayes
- Wisconsin National Primate Research Center, Madison, Wisconsin; and
| | - Saverio Capuano
- Wisconsin National Primate Research Center, Madison, Wisconsin; and
| |
Collapse
|
5
|
Adade E, Tawiah PO, Roos C, Chuma IS, Lubinza CC, Mfinanga SGM, Knauf S, Sylverken AA. Antimicrobial susceptibility profile of oral and rectal microbiota of non-human primate species in Ghana: A threat to human health. Vet Med Sci 2023; 10:e1271. [PMID: 37733757 PMCID: PMC10804077 DOI: 10.1002/vms3.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The potential for the transfer of zoonotic diseases, including bacteria between human and non-human primates (NHPs), is expected to rise. It is posited that NHPs that live in close contact with humans serve as sentinels and reservoirs for antibiotic-resistant bacteria. OBJECTIVES The objective was to characterize the oral and rectal bacteria in Ghanaian NHPs and profile the antimicrobial susceptibility of the isolated bacteria. METHODS Oral and rectal swabs were obtained from 40 immobilized wild and captive NHPs from 7 locations in Ghana. Standard bacteriological procedures were used in the isolation, preliminary identification, automated characterization and antimicrobial susceptibility test (AST) of bacteria using the Vitek 2 Compact system. RESULTS Gram-negative bacteria dominated isolates from the rectal swabs (n = 76, 85.4%), whereas Gram-positive bacteria were more common in the oral swabs (n = 41, 82%). Staphylococcus haemolyticus (n = 7, 14%) was the most occurring bacterial species isolated from the oral swabs, whereas Escherichia coli (n = 32, 36%) dominated bacteria isolates from rectal swabs. Enterobacter spp. had the highest (39%) average phenotypic resistance to antimicrobials that were used for AST, whereas a trend of high resistance was recorded against norfloxacin, Ampicillin and Tetracycline in Gram-negative bacteria. Similarly, among Gram-positive bacteria, Staphylococcus spp. had the highest (25%) average phenotypic resistance to antimicrobials used for AST, and a trend of high resistance was recorded against penicillin G and oxacillin. CONCLUSIONS This study has established that apparently healthy NHPs that live in anthropized environments in Ghana harbour zoonotic and antimicrobial resistant bacteria.
Collapse
Affiliation(s)
- Eugene Adade
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Patrick Ofori Tawiah
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | | | - Clara Clavery Lubinza
- National Institute for Medical ResearchMuhimbili Medical Research CentreDar es SalaamTanzania
| | | | - Sascha Knauf
- Institute of International Animal Health/One HealthFriedrich‐Loeffler‐InstitutFederal Institute for Animal HealthGreifswald – Insel RiemsGermany
| | - Augustina Angelina Sylverken
- Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| |
Collapse
|
6
|
Zhang Y, Li K, Wu Y, Liu Y, Wu R, Zhong Y, Xiao S, Mao H, Li G, Wang Y, Li W. Distribution and correlation between antibiotic resistance genes and host-associated markers before and after swine fever in the longjiang watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120101. [PMID: 36064059 DOI: 10.1016/j.envpol.2022.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) are abundantly shed in feces. Thus, it is crucial to identify their host sources so that ARG pollution can be effectively mitigated and aquatic ecosystems can be properly conserved. Here, spatiotemporal variations and sources of ARGs in the Longjiang watershed of South China were investigated by linking them with microbial source tracker (MST) indicators. The most frequently detected ARGs (>90%) were sulI, sulII, blaTEM, tetW, ermF, and the mobile element intI1. Spatial distribution analyses showed that tributaries contributed significantly more sulI, sulII, and ermF contamination to the Longjiang watershed than the main channel. MST indicator analysis revealed that the Longjiang watershed was contaminated mainly by human fecal pollution. Livestock- and poultry-associated fecal pollution significantly declined after the swine fever outbreak. The occurrence of most ARGs is largely explained by human fecal pollution. In contrast, pig fecal pollution might account for the prevalence of tetO. Moreover, combined human-pig fecal pollution contributed to the observed blaNDM-1 distribution in the Longjiang watershed. Subsequent analysis of the characteristics of MST markers disclosed that the relatively lower specificities of BacHum and Rum-2-Bac may lead to inaccurate results of tracking ARG pollution source. The present study determined spatiotemporal variations and ARG origins in the Longjiang watershed by combining MST markers. It also underscored the necessity of using multiple MST markers simultaneously to identify and characterize ARG pollution sources accurately.
Collapse
Affiliation(s)
- Yang Zhang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Kaiming Li
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Yongjie Wu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Yi Liu
- Zhaoqing Municipal Ecology and Environment Bureau, Zhaoqing, 526060, PR China
| | - Renren Wu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China.
| | - Yi Zhong
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Shijie Xiao
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Han Mao
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Guodong Li
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Yishu Wang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Wenjing Li
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| |
Collapse
|
7
|
Colonization of White-Tailed Deer (Odocoileus virginianus) from Urban and Suburban Environments with Cephalosporinase- and Carbapenemase-Producing Enterobacterales. Appl Environ Microbiol 2022; 88:e0046522. [PMID: 35736227 PMCID: PMC9275232 DOI: 10.1128/aem.00465-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Wildlife play a role in the acquisition, maintenance, and dissemination of antimicrobial resistance (AMR). This is especially true at the human-domestic animal-wildlife interface, like urbanized areas, where interactions occur that can promote the cross-over of AMR bacteria and genes. We conducted a 2-year fecal surveillance (n = 783) of a white-tailed deer (WTD) herd from an urban park system in Ohio to identify and characterize cephalosporin-resistant and carbapenemase-producing bacteria using selective enrichment. Using generalized linear mixed models we found that older (OR = 2.3, P < 0.001), male (OR = 1.8, P = 0.001) deer from urbanized habitats (OR = 1.4, P = 0.001) were more likely to harbor extended-spectrum cephalosporin-resistant Enterobacterales. In addition, we isolated two carbapenemase-producing Enterobacterales (CPE), a Klebsiella quasipneumoniae harboring blaKPC-2 and an Escherichia coli harboring blaNDM-5, from two deer from urban habitats. The genetic landscape of the plasmid carrying blaKPC-2 was unique, not clustering with other reported plasmids encoding KPC-2, and only sharing 78% of its sequence with its nearest match. While the plasmid carrying blaNDM-5 shared sequence similarity with other reported plasmids encoding NDM-5, the intact IS26 mobile genetic elements surrounding multiple drug resistant regions, including the blaNDM-5, has been reported infrequently. Both carbapenemase genes were successfully conjugated to a J53 recipient conferring a carbapenem-resistant phenotype. Our findings highlight that urban environments play a significant role on the transmission of AMR bacteria and genes to wildlife and suggest WTD may play a role in the dissemination of clinically and epidemiologically relevant antimicrobial resistant bacteria. IMPORTANCE The role of wildlife in the spread of antimicrobial resistance is not fully characterized. Some wildlife, including white-tailed deer (WTD), can thrive in suburban and urban environments. This may result in the exchange of antimicrobial resistant bacteria and resistance genes between humans and wildlife, and lead to their spread in the environment. We found that WTD living in an urban park system carried antimicrobial resistant bacteria that were important to human health and resistant to antibiotics used to treat serious bacterial infections. This included two deer that carried bacteria resistant to carbapenem antibiotics which are critically important for treatment of life-threatening infections. These two bacteria had the ability to transfer their AMR resistance genes to other bacteria, making them a threat to public health. Our results suggest that WTD may contribute to the spread of antimicrobial resistant bacteria in the environment.
Collapse
|
8
|
Zhu Z, Jiang S, Qi M, Liu H, Zhang S, Liu H, Zhou Z, Wang L, Wang C, Luo Y, Ren Z, Ma X, Cao S, Shen L, Wang Y, Fu H, Geng Y, He C, Gu X, Xie Y, Peng G, Zhong Z. Prevalence and characterization of antibiotic resistance genes and integrons in Escherichia coli isolates from captive non-human primates of 13 zoos in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149268. [PMID: 34333432 DOI: 10.1016/j.scitotenv.2021.149268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR) has become a public health concern; but antibiotic resistance genes (ARGs) and integrons that link to AMR of Escherichia coli from non-human primates remain largely unknown. This study aimed to investigate antibiotic resistance, emerging environmental pollutants ARGs, and integrons factors (intI1, intI2 and intI3) in 995 E. coli isolates obtained from 50 species of captive non-human primates of 13 zoos in China. Our result showed 83.62% of the E. coli isolates were resistant to at least one antibiotic and 47.94% isolates showed multiple drug resistances (MDR). The E. coli isolates mainly showed resistance to tetracycline (tetracycline 62.71%, doxycycline 61.11%), β-lactams (ampicillin 54.27%, amoxicillin 52.36%), and sulfonamide (trimethoprim-sulfamethoxazole 36.78%). A total of 423 antibiotic resistance patterns were observed, of which DOX/TET (49 isolates, 4.92%) was the most common pattern. Antibiotic resistance rates among 13 zoos had a significant difference (P < 0.01). We further detected 22 ARGs in the 995 E. coli isolates, of which tetA had the highest occurrence (70.55%). The presence of integrons class 1 and 2 were 24.22% and 1.71%, respectively, while no class 3 integron was found. Significant positive associations were observed among integrons and antibiotics, of which the strongest association was observed for integrons / Gentamicin (OR, 2.642) and integrons / Cefotaxime (OR, 2.512). In addition, cassette arrays were detected in 64 strains of class 1 integron-positive isolates (26.56%) and 10 strains of class 2 integron-positive isolates (58.82%). Eighteen cassette arrays were found within 64 class 1 integron isolates, while 3 cassette arrays were identified within 10 class 2 integron isolates. Our results indicate a high diversity of antibiotic resistance phenotypes in non-human primate E. coli isolates, which carry multiple ARGs and integrons. Corresponding preventive measures should be taken to prevent the spread of integron-mediated ARGs in non-human primates and their living environments in zoos.
Collapse
Affiliation(s)
- Ziqi Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Shaoqi Jiang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Mingyu Qi
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Hang Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu 610081, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Xiaobin Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China.
| |
Collapse
|
9
|
Lonsdorf EV, Travis DA, Raphael J, Kamenya S, Lipende I, Mwacha D, Collins DA, Wilson M, Mjungu D, Murray C, Bakuza J, Wolf TM, Parsons MB, Deere JR, Lantz E, Kinsel MJ, Santymire R, Pintea L, Terio KA, Hahn BH, Pusey AE, Goodall J, Gillespie TR. The Gombe Ecosystem Health Project: 16 years of program evolution and lessons learned. Am J Primatol 2021; 84:e23300. [PMID: 34223656 PMCID: PMC8727649 DOI: 10.1002/ajp.23300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022]
Abstract
Infectious disease outbreaks pose a significant threat to the conservation of chimpanzees (Pan troglodytes) and all threatened nonhuman primates. Characterizing and mitigating these threats to support the sustainability and welfare of wild populations is of the highest priority. In an attempt to understand and mitigate the risk of disease for the chimpanzees of Gombe National Park, Tanzania, we initiated a long-term health-monitoring program in 2004. While the initial focus was to expand the ongoing behavioral research on chimpanzees to include standardized data on clinical signs of health, it soon became evident that the scope of the project would ideally include diagnostic surveillance of pathogens for all primates (including people) and domestic animals, both within and surrounding the National Park. Integration of these data, along with in-depth post-mortem examinations, have allowed us to establish baseline health indicators to inform outbreak response. Here, we describe the development and expansion of the Gombe Ecosystem Health project, review major findings from the research and summarize the challenges and lessons learned over the past 16 years. We also highlight future directions and present the opportunities and challenges that remain when implementing studies of ecosystem health in a complex, multispecies environment.
Collapse
Affiliation(s)
- Elizabeth V Lonsdorf
- Department of Psychology and Biological Foundations of Behavior Program, Franklin & Marshall College, Lancaster, Pennsylvania, USA
| | - Dominic A Travis
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jane Raphael
- Gombe National Park, Tanzania Nationals Park, Kigoma, Tanzania
| | - Shadrack Kamenya
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Iddi Lipende
- Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Dismas Mwacha
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - D Anthony Collins
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Michael Wilson
- Departments of Anthropology and Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Deus Mjungu
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Carson Murray
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA
| | - Jared Bakuza
- College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Michele B Parsons
- Division of Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Deere
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Emma Lantz
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Michael J Kinsel
- Zoological Pathology Program, University of Illinois, Brookfield, Illinois, USA
| | - Rachel Santymire
- Davee Center for Epidemiology and Endocrinology, Lincoln Park Zoo, Chicago, Illinois, USA
| | | | - Karen A Terio
- Zoological Pathology Program, University of Illinois, Brookfield, Illinois, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Jane Goodall
- The Jane Goodall Institute, Vienna, Virginia, USA
| | - Thomas R Gillespie
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|