1
|
Krebs T, Bauer J, Graff S, Teich L, Sterneberg M, Gebert M, Seibel H, Seeger B, Hellmann J, Wessel Ø, Rimstad E, Surachetpong W, Steinhagen D, Jung‐Schroers V, Adamek M. Beating Cardiac Cell Cultures From Different Developmental Stages of Rainbow Trout as a Novel Approach for Replication of Cardiac Fish Viruses. JOURNAL OF FISH DISEASES 2025; 48:e14080. [PMID: 39821901 PMCID: PMC11976189 DOI: 10.1111/jfd.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Piscine orthoreovirus-1 and 3 (PRV-1, PRV-3) cause highly prevalent infection in cultured salmonids and can induce heart and skeletal muscle inflammation (HSMI) resulting in economic losses in aquaculture. However, to date, PRV-1 and PRV-3 have withstood replication in continuous cell lines. In this study, we used beating heart cell cultures obtained from different developmental stages of rainbow trout (Oncorhynchus mykiss) (RTC-L and RTC-A) and tested their ability to sustain replication of PRV-1 and PRV-3. Furthermore, we compared the replication pattern of the different viruses with those in the newly developed heart fibroblast cell line (RTH-F) and the traditional established rainbow trout gonad cell line (RTG-2). Neither RTCs nor RTH-F cell lines supported replication of PRV-1 and PRV-3. Comparative experiments showed varying susceptibility of the novel cultures to viral haemorrhagic septicaemia virus (VHSV), chum salmon reovirus (CSV), infectious pancreatic necrosis virus (IPNV), piscine myocarditis virus (PMCV), salmonid alphavirus 3 (SAV-3) and tilapia lake virus (TiLV), indicating their usability for work with multiple fish viruses. While confirming the difficulty of replicating PRV-1 and PRV-3, the results demonstrate the potential of novel heart-derived cell cultures as in vitro tools for studying fish viruses.
Collapse
Affiliation(s)
- Torben Krebs
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Julia Bauer
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Sarah Graff
- Working Group Fish Health and –Welfare, Section Aquaculture and Aquatic ResourcesFraunhofer Research Institution for Individualized and Cell‐Based Medical Engineering IMTEBüsumGermany
| | - Lukas Teich
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Markus Sterneberg
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Marina Gebert
- Working Group Fish Health and –Welfare, Section Aquaculture and Aquatic ResourcesFraunhofer Research Institution for Individualized and Cell‐Based Medical Engineering IMTEBüsumGermany
| | - Henrike Seibel
- Working Group Fish Health and –Welfare, Section Aquaculture and Aquatic ResourcesFraunhofer Research Institution for Individualized and Cell‐Based Medical Engineering IMTEBüsumGermany
| | - Bettina Seeger
- Institute for Food Quality and Food SafetyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - John Hellmann
- Environment and Consumer Protection, Fisheries Ecology and AquacultureNorth Rhine Westphalian State Agency for NatureGermany
| | - Øystein Wessel
- Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | - Espen Rimstad
- Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary MedicineKasetsart UniversityBangkokThailand
| | - Dieter Steinhagen
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Verena Jung‐Schroers
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Mikolaj Adamek
- Fish Disease Research Unit, Centre for Infection MedicineUniversity of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
2
|
Okon EM, Oyesiji AA, Okeleye ED, Kanonuhwa M, Khalifa NE, Eissa ESH, Mathew RT, Eissa MEH, Alqahtani MA, Abdelnour SA. The Escalating threat of climate change-driven diseases in fish: Evidence from a global perspective - A literature review. ENVIRONMENTAL RESEARCH 2024; 263:120184. [PMID: 39426450 DOI: 10.1016/j.envres.2024.120184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Climate change has brought significant alterations to the aquatic environment, leading to the rapid spread of infectious fish diseases with increasing water temperatures. It is crucial to understand how aquatic pathogens will impact fish in the context of climate change. This study aimed to assess the effects of climate change on fish diseases globally. Data from 104 papers published between 2003 and 2022 were analyzed to identify recent trends in the field. The majority of the studies (54%) focused on parasites, particularly proliferative kidney disease, while 22% examined bacteria. The United States accounted for 19% of the studies, followed by Canada at 14%, covering a wide range of fish species. More research was published on farmed fish (54%) than wild fish (30%), with a higher emphasis on freshwater species (62%) compared to marine species (34%). Most published studies (64%) focused on the local environment rather than the farm level (7%). The findings highlight temperature as a significant threat to global aquaculture and fisheries, impacting the progression of fish diseases. These impacts could be exacerbated by factors such as pH, salinity, and ocean acidification, posing challenges to fish health. Therefore, there is a pressing need for enhanced research and management strategies to address these issues effectively in the future.
Collapse
Affiliation(s)
- Ekemini Moses Okon
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, Spain
| | - Adeola Ayotope Oyesiji
- Faculty of Sciences, Ghent University, Ghent, Belgium; Department of Biological Sciences, Fisheries Ecology and Aquaculture, Universitetet I Bergen, Norway
| | - Ezekiel Damilola Okeleye
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Aquaculture and Fisheries Group, Wageningen University, Netherlands
| | - Mercy Kanonuhwa
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Aquaculture and Fisheries Group, Wageningen University, Netherlands
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Fuka, Matrouh, 51744, Egypt
| | - El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Agricultural Environmental Sciences, Arish University, Egypt.
| | - Roshmon Thomas Mathew
- Fish Resources Research Center, King Faisal University, Hofuf-420, Al-Ahsa, 31982, Saudi Arabia
| | - Moaheda E H Eissa
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
| | - Mohammed A Alqahtani
- Department of Biology, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Grimwood RM, Waller SJ, Wierenga JR, Lim L, Dubrulle J, Holmes EC, Geoghegan JL. Viromes of Antarctic fish resemble the diversity found at lower latitudes. Virus Evol 2024; 10:veae050. [PMID: 39071139 PMCID: PMC11282168 DOI: 10.1093/ve/veae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Antarctica harbours some of the most isolated and extreme environments on Earth, concealing a largely unexplored and unique component of the global animal virosphere. To understand the diversity and evolutionary histories of viruses in these polar species, we determined the viromes of gill metatranscriptomes from 11 Antarctic fish species with 248 samples collected from the Ross Sea region spanning the Perciformes, Gadiformes, and Scorpaeniformes orders. The continent's shift southward and cooling temperatures >20 million years ago led to a reduction in biodiversity and subsequent radiation of some marine fauna, such as the notothenioid fishes. Despite decreased host species richness in polar regions, we revealed a surprisingly complex virome diversity in Ross Sea fish, with the types and numbers of viruses per host species and individuals sampled comparable to that of fish in warmer marine environments with higher host community diversity. We also observed a higher number of closely related viruses likely representing instances of recent and historic host-switching events among the Perciformes (all notothenioids) than in the Gadiformes, suggesting that rapid speciation events within this order generated closely related host species with few genetic barriers to cross-species transmission. Additionally, we identified novel genomic variation in an arenavirus with a split nucleoprotein sequence containing a stable helical structure, indicating potential adaptation of viral proteins to extreme temperatures. These findings enhance our understanding of virus evolution and virus-host interactions in response to environmental shifts, especially in less diverse ecosystems that are more vulnerable to the impacts of anthropogenic and climate changes.
Collapse
Affiliation(s)
- Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie J Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Janelle R Wierenga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Lauren Lim
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jérémy Dubrulle
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, Wellington 5018, New Zealand
| |
Collapse
|
4
|
Páez DJ, Kurath G, Powers RL, Naish KA, Purcell MK. Local and systemic replicative fitness for viruses in specialist, generalist, and non-specialist interactions with salmonid hosts. J Gen Virol 2024; 105. [PMID: 38180085 DOI: 10.1099/jgv.0.001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.
Collapse
Affiliation(s)
- David J Páez
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Rachel L Powers
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maureen K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
- U.S. Geological Survey, Forest Rangeland Ecosystem Science Center, Corvallis, OR 97330, USA
| |
Collapse
|
5
|
Wu D, Wang J, Zhang Y, Wang Q, Liu Q, Shao S. Characterization and pathogenicity analysis of a newly isolated strain of infectious hematopoietic necrosis virus. Microb Pathog 2023; 185:106443. [PMID: 37949305 DOI: 10.1016/j.micpath.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Rainbow trout is one of the fastest-growing aquaculture species and infectious hematopoietic necrosis virus (IHNV) is endemic throughout almost all rainbow trout farms in China nowadays. In this study, IHNV GS21 was identified as the causative pathogen, which resulted in massive mortality of rainbow trout occurring in northwest China. GS21 isolate was propagated in Chinook salmon embryonic cell line (CHSE-214) and induced apparent cytopathic effects (CPE) at 3 days post-infection (dpi). Phylogenetic analysis revealed that GS21 isolate was clustered with other reported Chinese isolates within the J genogroup. Moreover, the complete cDNA sequence of GS21 isolate was obtained and it possesses more than 98 % of ANI values and 89 % of DDH values with other Chinese IHNV isolates. The detailed sequence analysis of G gene revealed the distinct amino acid substitutions of G230, G252, G270, and I277 in GS21 isolate. Furthermore, the artificially infected rainbow trout exhibited similar clinical disease symptoms as natural infection did. The cumulative mortality infected by GS21 isolate of 104 PFU/mL reached 93 % at approximately 13.5 °C. Additionally, viral loads in tissues increased first and declined then as well as the expression of immune-associated genes. Collectively, our results characterized a novel IHNV GS21 isolate that can lead to massive mortality in juvenile rainbow trout and provided a basis to define the pathogenic characteristics and evolutionary relationship of IHNV and host immune response against IHNV infection.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China.
| |
Collapse
|
6
|
Pan F, Gong J, Ma X, Tang X, Xing J, Sheng X, Chi H, Zhan W. Expression characteristics of non-virion protein of Hirame novirhabdovirus and its transfection induced response in hirame natural embryo cells. Int J Biol Macromol 2023; 242:124567. [PMID: 37100320 DOI: 10.1016/j.ijbiomac.2023.124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/19/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The non-virion (NV) protein is the signature of genus Novirhabdovirus, which has been of considerable concern due to its potential role in viral pathogenicity. However, its expression characteristics and induced immune response remain limited. In the present work, it was demonstrated that Hirame novirhabdovirus (HIRRV) NV protein was only detected in the viral infected hirame natural embryo (HINAE) cells, but absent in the purified virions. Results showed that the transcription of NV gene could be stably detected in HIRRV-infected HINAE cells at 12 h post infection (hpi) and then reached the peak at 72 hpi. A similar expression trend of NV gene was also found in HIRRV-infected flounders. Subcellular localization analysis further exhibited that HIRRV-NV protein was predominantly localized in the cytoplasm. To elucidate the biological function of HIRRV-NV protein, NV eukaryotic plasmid was transfected into HINAE cells for RNA-seq. Compared to empty plasmid group, some key genes in RLR signaling pathway were significantly downregulated in NV-overexpressed HINAE cells, indicating that RLR signaling pathway was inhibited by HIRRV-NV protein. The interferon-associated genes were also significantly suppressed upon transfection of NV gene. This research would improve our understanding of expression characteristics and biological function of NV protein during HIRRV infection process.
Collapse
Affiliation(s)
- Fenghuang Pan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiaojiao Gong
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
7
|
Sørensen J, Cuenca A, Olsen AB, Skovgaard K, Iburg TM, Olesen NJ, Vendramin N. Decreased water temperature enhance Piscine orthoreovirus genotype 3 replication and severe heart pathology in experimentally infected rainbow trout. Front Vet Sci 2023; 10:1112466. [PMID: 36846252 PMCID: PMC9950551 DOI: 10.3389/fvets.2023.1112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Piscine orthoreovirus genotype 3 (PRV-3) was first discovered in Denmark in 2017 in relation to disease outbreaks in rainbow trout (Oncorhynchus mykiss). While the virus appears to be widespread in farmed rainbow trout, disease outbreaks associated with detection of PRV-3 have only occurred in recirculating aquaculture systems, and has predominantly been observed during the winter months. To explore the possible effects of water temperature on PRV-3 infection in rainbow trout, an in vivo cohabitation trial was conducted at 5, 12, and 18°C. For each water temperature, a control tank containing mock-injected shedder fish and a tank with PRV-3 exposed fish were included. Samples were collected from all experimental groups every 2nd week post challenge (WPC) up until trial termination at 12 WPC. PRV-3 RNA load measured in heart tissue of cohabitants peaked at 6 WPC for animals maintained at 12 and 18°C, while it reached its peak at 12 WPC in fish maintained at 5°C. In addition to the time shift, significantly more virus was detected at the peak in fish maintained at 5°C compared to 12 and 18°C. In shedders, fish at 12 and 18°C cleared the infection considerably faster than the fish at 5°C: while shedders at 18 and 12°C had cleared most of the virus at 4 and 6 WPC, respectively, high virus load persisted in the shedders at 5°C until 12 WPC. Furthermore, a significant reduction in the hematocrit levels was observed in the cohabitants at 12°C in correlation with the peak in viremia at 6 WPC; no changes in hematocrit was observed at 18°C, while a non-significant reduction (due to large individual variation) trend was observed at cohabitants held at 5°C. Importantly, isg15 expression was positively correlated with PRV-3 virus load in all PRV-3 exposed groups. Immune gene expression analysis showed a distinct gene profile in PRV-3 exposed fish maintained at 5°C compared to 12 and 18°C. The immune markers mostly differentially expressed in the group at 5°C were important antiviral genes including rigi, ifit5 and rsad2 (viperin). In conclusion, these data show that low water temperature allow for significantly higher PRV-3 replication in rainbow trout, and a tendency for more severe heart pathology development in PRV-3 injected fish. Increased viral replication was mirrored by increased expression of important antiviral genes. Despite no mortality being observed in the experimental trial, the data comply with field observations of clinical disease outbreaks during winter and cold months.
Collapse
Affiliation(s)
- Juliane Sørensen
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Argelia Cuenca
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne Berit Olsen
- Section of Aquatic Biosecurity Research, Norwegian Veterinary Institute, Bergen, Norway
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Moesgaard Iburg
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niels Jørgen Olesen
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niccolò Vendramin
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark,*Correspondence: Niccolò Vendramin ✉
| |
Collapse
|
8
|
Krishnan R, Jang YS, Kim JO, Yoon SY, Rajendran R, Oh MJ. Temperature dependent cellular, and epigenetic regulatory mechanisms underlying the antiviral immunity in sevenband grouper to nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:898-907. [PMID: 36334701 DOI: 10.1016/j.fsi.2022.10.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Changes in the thermal optima of fish impacts changes in the physiology and immune response associated with infections. The present study showed that at suboptimal temperatures (17 °C), the host tries to evade viral infection by downregulating the inflammatory response through enhanced neuronal protection. There was significantly less abundance of IgM + B cells in the 17 °C group compared to that in the 25 °C group. An increased macrophage population (Iba1+) during the survival phase in fish challenged at 25 °C demonstrated inflammation. Optimal temperature challenge activated virus-induced senescence in brain cells, demonstrated with a heterochromatin-associated H3K9me3 histone mark. There was an abundant expression of anti-inflammatory cytokines in the brain of fish at the suboptimal challenge. Besides the cytokines, the expression of BDNF was significantly higher in the suboptimally challenged group, suggesting that its neuronal protection activity following NNV infection is mediated through TGFβ. The suboptimal challenge resulted in H3k9ac displaying transcriptional competency, activation of trained immunity H3K4me3, and enrichment of H3 histone-lysine-4 monomethylation (H3K4me1), resulting in a robust re-stimulatory immune response. The observations from the H4 modifications showed that besides H4K12ac and H4K20m3, all the assayed modifications were significantly higher in suboptimal convalescent fishes. The suboptimally challenged fish acquired more methylation along cytosine residues than the optimally infected fish. Together, these observations suggest that optimal temperature results in an immune priming effect, whereas the protection enabled in suboptimal convalescent fishes is operated through epigenetically controlled trained immune functions.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea.
| | - Yo-Seb Jang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea.
| | - Jong-Oh Kim
- Department of Microbiology, Pukyong National University, Busan, Republic of Korea.
| | - Su-Young Yoon
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea.
| | - Rahul Rajendran
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea.
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59629, Republic of Korea.
| |
Collapse
|
9
|
Yamkasem J, Prasartset T, Tattiyapong P, Sirikanchana K, Mongkolsuk S, Soto E, Surachetpong W. Persistence of Tilapia tilapinevirus in fish rearing and environmental water and its ability to infect cell line. JOURNAL OF FISH DISEASES 2022; 45:679-685. [PMID: 35218230 DOI: 10.1111/jfd.13593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Tilapia tilapinevirus, or Tilapia Lake Virus (TiLV), is a RNA virus associated with mass morbidity and mortality in tilapia, leading to severe economic losses for global tilapia aquaculture. In this study, we investigated the persistence of TiLV in water by spiking sterile distilled water (SDW), freshwater collected from rearing fish tanks (FW) and natural pond water (PW) at 27°C as a representative of environmental water conditions with 0.6 ml of stock virus (3.18 × 107 viral copies/ml of water). The water samples were filtered through an electronegative charge membrane and quantified using reverse transcriptase quantitative PCR at 0, 3, 5, 7, 10 and 14 days post-inoculation. The results revealed that TiLV RNA in SDW was reduced by 1.34 log10 in 14 days. A similar approximately 4 log10 removal of the virus in FW and PW was observed at 3 and 7 days, respectively. Moreover, the infectivity of TiLV was further studied; the virus lost its infectivity in E-11 cells after 1 day in SDW, FW and PW water samples, even though the virus was spiked 10 more times than in the viral persistence study. Taken together, the results could be applied to improving biosecurity practices in tilapia farms by disinfecting or resting reservoir water for at least three to five days prior to stocking tilapia, to limit the spread of TiLV.
Collapse
Affiliation(s)
- Jidapa Yamkasem
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Tharinthon Prasartset
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| | | | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Win Surachetpong
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| |
Collapse
|