1
|
Wu W, Guo Z, Zhang J, Li W, Liu C, Jiang B, Su Y. Integration of transcriptomics and metabolomics reveals the mechanism of enrofloxacin resistance in Aeromonas schubertii. Microb Pathog 2025; 199:107262. [PMID: 39730098 DOI: 10.1016/j.micpath.2024.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/18/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Aeromonas schubertii infections has caused severe economic losses in aquaculture in China. In this study, we first induced enrofloxacin (ENR) resistance in A. schubertii strains and then analyzed the mechanisms of drug resistance using transcriptomics and metabolomics. We found that the minimal inhibitory concentration (MIC) was 0.03125 μg/mL for the sensitive strain (WL23S) and 32 μg/mL for the resistant strain (WL23R), which is a 1024-fold increase. After 40 serial passages, the WL23R strain maintained a MIC of 32 μg/mL, even in the absence of ENR-induced stress. Notably, it had also developed resistance to several other antibiotics, such as neomycin sulfate and flumequine. There was no significant difference in the growth rates of the two strains, highlighting the strong adaptability and growth characteristics of the WL23R strain. Comparison of the transcriptome data between the WL23R and WL23S strains identified 579 differentially expressed genes. Expression of the efflux pump-related genes (e.g., acrA, acrB, pstB, pstC, pstS) was significantly upregulated in the WL23R strain (P < 0.05). The highest enrichment of differential genes in the Gene Ontology analysis was in the catabolism of various amino acids, and that in the Kyoto Encyclopedia of Genes and Genomes pathway was in ATP-binding cassette (ABC) transport. Comparison of the metabolomics data between the WL23R and WL23S strains revealed 1, 059 differentially expressed metabolites. Metabolomics analysis revealed the impact of drug resistance on the levels of amino acids, the activity of amino acid biosynthesis/metabolism pathways, and the ABC transport protein pathway, which confirmed the transcriptomics results. The joint analysis results showed that ABC transporters were most prominent in the shared pathways between enriched differentially expressed genes and metabolites. To further validate the resistance mechanism of A. schubertii, we exposed the WL23R strain to the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone. The minimal inhibitory concentration of the induced resistant strain decreased by 4-fold after the addition of the inhibitor, indicating the overexpression of active efflux pumps in WL23R. Our results indicate that the efflux system and ABC transporters play crucial roles during the development of multidrug resistance in A. schubertii. This study will serve as an important reference for understanding bacterial resistance to quinolones and multidrug resistance in aquatic environments.
Collapse
Affiliation(s)
- Wenhao Wu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Zihong Guo
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiahao Zhang
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Wei Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Chun Liu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Biao Jiang
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Youlu Su
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| |
Collapse
|
2
|
Deng H, Zheng S, Li Y, Mo X, Zhao J, Luo Q, Yin J, Shi C, Wang Q, Wang Y. Isolation and identification of hybrid snakehead rhabdovirus (HSHRV) and its immune response in the hybrid Snakehead((male Channa argus × female Channa maculata). Microb Pathog 2024; 196:106983. [PMID: 39332542 DOI: 10.1016/j.micpath.2024.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Hybrid snakehead is an emerging aquaculture species obtained from the mating of Channa argus (♂) and Channa maculate (♀). It has the advantages of fast growth and strong disease resistance. Viral diseases caused by hybrid snakehead rhabdovirus (HSHRV) critically affect the hybrid snakehead industry. We isolated and identified a highly virulent strain of HSHRV from a naturally occurring hybrid snakehead, namely HSHRV-GZ22. It showed clinical signs of sinking, superficial blackening, spinning, acute internal congestion, and hemorrhage, along with blackening and enlargement of the liver, spleen, and kidneys. Histopathological analysis showed multiple tissue lesions in the liver, spleen, and kidneys, characterized mainly by massive inflammatory cell infiltration, interstitial hemorrhage, and partial cell necrosis. Pathogen analysis identified the virus as HSHRV. Immunofluorescence analysis (IFA) with HSHRV-specific antibodies confirmed the virus and electron microscopic observation showed that the bullet-like virus particles had a size of approximately 150 nm. The replication efficiency of HSHRV was 107.33 TCID50/mL. The glycoproteins of the isolates were cloned and sequenced, and a phylogenetic tree was constructed. The HSHRV-GZ22 isolates clustered into a single branch with the reported HSHRV-C1207, and it had a high degree of homology with Siniperca chuatsi rhabdovirus (SCRV). HSHRV-GZ22 was regressively infected, clinical and pathological symptoms were similar to naturally occurring fish, with a fatality rate of about 85 %. qRT-PCR was performed to determine the viral replication in different tissues of hybrid snakehead, and the viral copies were found to be highly expressed in the liver, spleen, kidney, and intestine. HSHRV-GZ22 activated the antiviral immune pathway in hybrid snakeheads during infection, and the expressions of IgM, IRF7, ISG12, and IFNγ were significantly altered. In this study, we isolated a strong virulent strain of HSHRV and characterized it; in addition, it provided insights into the pathogenesis of HSHRV and immune response in hybrid snakehead, while also advancing the methods for diagnosing and preventing diseases caused by HSHRV.
Collapse
Affiliation(s)
- Huiling Deng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China; Foshan Institute of Agricultural Sciences, Foshan, Guangdong, 528100, China.
| | - Shucheng Zheng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China.
| | - Yingying Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China.
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China.
| | - Jian Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China.
| | - Qing Luo
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China.
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China.
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China.
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China.
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong province, 510380, China.
| |
Collapse
|
3
|
Deng H, Zheng S, Li Y, Mo X, Zhao J, Yin J, Shi C, Wang Q, Wang Y. Establishment and characterization of a kidney cell line from hybrid snakehead (male Channa argus × female Channa maculata) and its susceptibility to hybrid snakehead rhabdovirus (HSHRV). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110971. [PMID: 38621626 DOI: 10.1016/j.cbpb.2024.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
Hybrid snakehead (male Channa argus × female Channa maculata) is an emerging fish breed with increasing production levels. However, infection with hybrid snakehead rhabdovirus (HSHRV) critically affects hybrid snakehead farming. In this study, a fish cell line called CAMK, derived from the kidneys of hybrid snakehead, was established and characterized. CAMK cells exhibited the maximum growth rate at 28 °C in Leibovitz's-15 medium supplemented with 10% fetal bovine serum(FBS). Karyotyping revealed diploid chromosomes in 54% of the cells at the 50th passage (2n = 66), and 16S rRNA sequencing validated that CAMK cells originated fromhybrid snakehead, and the detection of kidney-specific antibodies suggested that it originated from kidney. .The culture was free from mycoplasma contamination, and the green fluorescent protein gene was effectively transfected into CAMK cells, indicating their potential use for in vitro gene expression investigations. Furthermore, qRT-PCR and immunofluorescence analysis revealed that HSHRV could replicate in CAMK cells, indicating that the cells were susceptible to the virus. Transmission electron microscopy revealed that the viral particles had bullet-like morphology. The replication efficiency of HSHRV was 107.33 TCID50/mL. Altogether, we successfully established and characterized a kidney cell line susceptible to the virus. These findings provide a valuable reference for further genetic and virological studies.
Collapse
Affiliation(s)
- Huiling Deng
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Shucheng Zheng
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380; Key Laboratory of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club School of Animal Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Yingying Li
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Jian Zhao
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Qing Wang
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| |
Collapse
|
4
|
He H, Huang X, Wen C, Liu C, Jiang B, Huang Y, Su Y, Li W. A novel defensin-like peptide C-13326 possesses protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀ × Channa argus ♂). JOURNAL OF FISH DISEASES 2024; 47:e13922. [PMID: 38204197 DOI: 10.1111/jfd.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The purpose of this study was to investigate whether a defensin-like antimicrobial peptide (C-13326 peptide) identified in Hermetia illucens could possess protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The cDNA of C-13326 peptide comprised 243 nucleotides encoding 80 amino acids, with six conserved cysteine residues and the classical CSαβ structure. The recombinant expression plasmid pPIC9K-C-13326 was constructed and transformed into GS115 Pichia pastoris, and the C-13326 peptide was expressed by induction with 1% methanol. The crude extract of C-13326 peptide was precipitated by ammonium sulfate, assayed by Braford method, detected by tricine-SDS-PAGE, evaluated by BandScan software and identified by liquid chromatography-mass spectrometry. The C-13326 peptide was shown to have inhibitory activity against the growth of multidrug-resistant A. schubertii DM210910 by using the minimum growth inhibitory concentration and Oxford cup method. In addition, scanning electron microscopy analysis suggested that C-13326 peptide inhibited the growth of A. schubertii DM210910 by damaging the bacterial cell membrane. To explore the role of peptide C-13326 in vivo, hybrid snakehead was fed with peptide C-13326 as feed additives for 7 days. The results revealed that C-13326 peptide could significantly down-regulate the expression levels of IL-1β, IL-8, IL-12 and TNF-α (p < .05), and significantly improved the survival rate of hybrid snakehead after challenging with A. schubertii DM210910. Therefore, the C-13326 peptide is a promising antimicrobial agent for A. schubertii treatment in aquaculture.
Collapse
Affiliation(s)
- Huanrong He
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinzhi Huang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Caiyi Wen
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chun Liu
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Biao Jiang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Youlu Su
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Li
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
5
|
Lin P, Xu M, Yang Q, Chen M, Guo S. Inoculation of Freund's adjuvant in European eel (Anguilla anguilla) revealed key KEGG pathways and DEGs of host anti-Edwardsiella anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108708. [PMID: 36997037 DOI: 10.1016/j.fsi.2023.108708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Freund's complete (FCA) and incomplete adjuvants (FIA), generally applied in subunit fishery vaccine, have not been explored on the molecular mechanism of the nonspecific immune enhancement. In this study, we examined the RNA-seq in the spleen of European eel (Anguilla anguilla) inoculated with FCA and FIA (FCIA group) to elucidate the key KEGG pathways and differential expressed genes (DEGs) in the process of Edwardsiella anguillarum infection and A. anguilla anti-E. anguillarum infection using genome-wide transcriptome. After eels were challenged by E. anguillarum at 28 d post the first inoculation (dpi), compared to the control uninfected eels (Con group), the control infected eels (Con_inf group) showed severe pathological changes in the liver, kidney and spleen, although infected eels post the inoculation of FCIA (FCIA_inf group) also formed slight bleeding. Compared to the FCIA_inf group, there was more than 10 times colony forming unit (cfu) in the Con_inf group per 100 μg spleen, kidney or blood, and the relative percent survival (RPS) of eels was 44.4% in FCIA_inf vs Con_inf. Compared to the Con group, the SOD activity in the FCIA group increased significantly in the liver and spleen. Using high-throughput transcriptomics, DEGs were identified and 29 genes were verified using fluorescence real-time polymerase chain reaction (qRT-PCR). The result of DEGs clustering showed 9 samples in 3 groups of Con, FCIA and FCIA_inf were similar, contrast to distinct differences of 3 samples in the Con_inf group. We found 3795 up and 3548 down regulated DEGs in the compare of FCIA_inf vs Con_inf, of which 5 enriched KEGG pathways of "Lysosome", "Autophagy", "Apoptosis", "C-type lectin receptor signaling" and "Insulin signaling" were ascertained, and 26 of 30 top GO terms in the compare were significantly enriched. Finally, protein-protein interactions between the DEGs of the 5 KEGG pathways and other DEGs were explored using Cytoscape 3.9.1. The compare of FCIA_inf vs Con_inf showed 110 DEGs from the 5 pathways and 718 DEGs from other pathways formed total of 9747° in a network, of which 9 hub DEGs play vital roles in anti-infection or apoptosis. Together, the interaction networks revealed that 9 DEGs involved in the 5 pathways underlies the key process of A. anguilla anti-E. anguillarum infection or host cell apoptosis.
Collapse
Affiliation(s)
- Peng Lin
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Ming Xu
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
| | - Qiuhua Yang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Minxia Chen
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
| | - Songlin Guo
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China.
| |
Collapse
|
6
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
7
|
Liu X, Zhang L, Zhang Y, Vakharia VN, Zhang X, Lv X, Sun W. Screening of genes encoding proteins that interact with ISG15: Probing a cDNA library from a snakehead fish cell line using a yeast two-hybrid system. FISH & SHELLFISH IMMUNOLOGY 2022; 128:300-306. [PMID: 35921933 DOI: 10.1016/j.fsi.2022.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Interferon-stimulated gene 15 (ISG15) regulates cellular life processes, including defense responses against infection by a variety of viral pathogens, by binding to target proteins. At present, various fish ISG15s have been identified, but the biological function of ISG15 in snakehead fish is still unclear. In this study, total RNA was extracted from snakehead fish cell line E11, ds cDNA was synthesized and purified using SMART technology, and the resulting cDNA library was screened by co-transforming yeast cells. The library titer was 4.28 × 109 CFU/mL. Using snakehead ISG15 as the bait protein, the recombinant bait vector pGBKT7-ISG15 was constructed and transformed into the yeast strain Y2HGold. The toxicity and self-activation activity of the bait vector were detected on the deficient medium, and the prey proteins interacting with ISG15 were screened. In total, 19 interacting proteins of ISG15 were identified, including mitotic checkpoint protein BUB3, hypothetical protein SnRVgp6, elongation factor 1-beta, 60S ribosomal protein L9, dual specificity protein phosphatase 5-like, eukaryotic translation initiation factor 3 subunit I and ferritin. A yeast spotting assay further probed the interaction between ISG15 and DUSP5. These results increase our understanding of the interaction network of snakehead ISG15 and will aid in exploring the underlying mechanisms of snakehead ISG15 functions in the future.
Collapse
Affiliation(s)
- Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Liwen Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanbing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Vikram N Vakharia
- Institute of Marine and Environmental Technology, University of Maryland Baltimore Country, Baltimore, MD, 21202, USA
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
8
|
Zuo Z, Wang S, Wang Q, Wang D, Wu Q, Xie S, Zou J. Effects of partial replacement of dietary flour meal with seaweed polysaccharides on the resistance to ammonia stress in the intestine of hybrid snakehead (Channa maculatus ♀ × Channa argus ♂). FISH & SHELLFISH IMMUNOLOGY 2022; 127:271-279. [PMID: 35753557 DOI: 10.1016/j.fsi.2022.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to evaluate the effects of partial replacement of dietary flour meal with seaweed polysaccharides on survival rate, histology, intestinal oxidative stress levels, and expression of immune-related genes in hybrid snakeheads under acute ammonia stress. Four experimental diets were set: (C) basal diet with 0% of seaweed polysaccharides as the control group, (MR) basal diet with 10% of seaweed polysaccharides, (HR) basal diet with 15% of seaweed polysaccharides, (HF) basal diet with 10% of fish oil. After 60 days of feeding, fish fed with the diet of C group were sampled as the control group, and other fish were exposed to ammonia nitrogen for 48 h. Two concentrations of total ammonia nitrogen (TAN) were used in this study: 120 mg/L TAN (low concentration exposure group), and 1200 mg/L TAN (high concentration exposure group). After exposure to ammonia nitrogen for 48 h, fish were sampled. The results indicated that adding seaweed polysaccharides to the diet could improve the survival rate of hybrid snakeheads under high concentration of ammonia stress. Histopathological analysis demonstrated multiple abnormalities in gills and intestines after exposure to two concentrations of TAN. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and lactate dehydrogenase (LDH) were all increased in the MR group under two concentrations of TAN stress. The mRNA abundance of immune-related genes in fish intestinal tissues was significantly induced or inhibited. These results suggested that partial replacement of dietary flour meal with seaweed polysaccharides improved the ability of hybrid snakeheads to resist ammonia stress.
Collapse
Affiliation(s)
- Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Dongjie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuping Wu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Li D, Cui Z, Zhao F, Zhu X, Tan A, Deng Y, Lai Y, Huang Z. Characterization of snakehead (Channa argus) interleukin-21: Involvement in immune defense against two pathogenic bacteria, in leukocyte proliferation, and in activation of JAK-STAT signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 123:207-217. [PMID: 35278639 DOI: 10.1016/j.fsi.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Interleukin-21 (IL-21), a crucial immune regulatory molecule, belongs to the common γ-chain family of type I cytokines, and exerts pleiotropic effects on multiple immune cell types in mammals. However, the characteristics and functions of fish IL-21 remain unclear. To further investigate the molecular mechanism of IL-21 in teleosts, we first cloned and identified the IL-21 gene (designated shIL-21) of the snakehead (Channa argus). The full-length open reading frame of shIL-21 is 438 bp in length, and encodes a predicted protein of 145 amino acid residues. A sequence analysis showed that shIL-21 has the typical structural characteristics of other IL-21 proteins, containing four α-helices and four conserved cysteine residues. In a phylogenetic analysis, shIL-21 clustered within a subgroup of IL-21 proteins from other teleost species and shared its closest evolutionary relationship with that of Lates calcarifer. The expression analysis showed that shIL-21 was ubiquitously expressed in all the healthy snakehead tissues tested, albeit at different levels. After infection with Nocardia seriolae or Aeromonas schubertii, the relative expression of shIL-21 was mainly upregulated in the head kidney and spleen in vivo. Similarly, after stimulation with the three pathogen analogues lipoteichoic acid, lipopolysaccharides, and polyinosinic-polycytidylic acid, the expression of shIL-21 was also induced in head kidney leukocytes in vitro. A recombinant shIL-21 protein was expressed and purified, and promoted the proliferation of head kidney leukocytes, induced the expression of genes encoding critical signaling molecules in the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway, including JAK1, JAK3, STAT1, and STAT3, and induced the expression of endogenous shIL-21 and genes encoding several key proinflammatory cytokines (tumor necrosis factor-α, interferon-γ, and IL-1β). Taken together, these preliminary findings suggest that shIL-21 is involved in the immune defense against bacterial infection, in leukocyte proliferation, and in the activation of the JAK-STAT pathway. They thus extend the functional studies of IL-21 in teleosts.
Collapse
Affiliation(s)
- Dongqi Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Xueqing Zhu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|