1
|
Liang Y, Wang H, Sun K, Sun J, Soong L. Lack of the IFN-γ signal leads to lethal Orientia tsutsugamushi infection in mice with skin eschar lesions. PLoS Pathog 2024; 20:e1012020. [PMID: 38743761 PMCID: PMC11125519 DOI: 10.1371/journal.ppat.1012020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/24/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-β. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hui Wang
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Keer Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
2
|
First Report of ‘Candidatus Mycoplasma haematomacacae’ in Laboratory-Kept Rhesus Monkeys (Macaca mulatta) Maintained in Rio de Janeiro, Brazil. Vet Sci 2022; 9:vetsci9080443. [PMID: 36006358 PMCID: PMC9414003 DOI: 10.3390/vetsci9080443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Health assessment in animals used in research studies are essential, since only animals that present no diseases are considered suitable for these purposes. In laboratory kept animals, a bacterium that infects red blood cells, named hemotropic Mycoplasma (also called hemoplasmas), has been described as problem for research studies. Different hemoplasma species have been detected infecting monkeys from Brazil. However, the occurrence of these bacteria in monkeys maintained in laboratory in Brazil have never been described. Accordingly, this study aimed: (1) to screen laboratory-kept rhesus monkeys for hemoplasmas; (2) to verify if any of the hemoplasma-positive animals demonstrate a decrease in their red blood cells counts; and (3) to investigate the genetic diversity of hemoplasma species in monkeys from Brazil. Five out of eight (62.5%) rhesus monkeys tested positive for hemoplasmas using a technique that detects DNA from these bacteria in monkey’s blood. Further analysis demonstrated that rhesus monkeys were infected by a species named ‘Candidatus Mycoplasma haematomacacae’ that had already been described occurring in monkeys from Japan and USA. Although no decreases on red blood cells count were perceived in rhesus monkeys evaluated herein, future studies are needed to elucidate if ‘Ca. M. haematomacacae’ is a problem for research studies that use rhesus monkeys. Abstract Health monitoring programs in animals used as experimental models are essential, since only disease-free subjects are considered suitable for research purposes. In laboratory-kept animals, hemoplasmas have been described as an important confounding variable. Different hemoplasma species have been detected infecting non-human primates (NHP) from Brazil. However, the occurrence of hemoplasma species in laboratory-kept NHP in Brazil has not-yet been assessed. Accordingly, this study aimed (i) to screen laboratory-kept rhesus monkeys for hemoplasmas, (ii) to verify if any of the hemoplasma-positive animals demonstrate hematological abnormalities, and (iii) to assess the genotype diversity of hemoplasma species in NHP from Brazil. Five out of eight (62.5%; 95% CI: 3.05–8.63) rhesus monkeys tested positive for hemotropic Mycoplasma spp. by PCR. Sequencing, phylogenetic, distance, and genotype diversity analyses of partial 16S rRNA gene demonstrate that rhesus monkeys were infected by ‘Candidatus Mycoplasma haematomacacae’ (formerly ‘Candidatus Mycoplasma haemomacaque’). Assessments of partial 16S rRNA diversity of hemoplasma species in NHP suggest that at least four genetically diverse groups may occur in Brazil. Although no hematological abnormalities were demonstrated in rhesus monkeys evaluated herein, future studies are needed to elucidate the influence of ‘Ca. M. haematomacacae’ as a confounding variable on research studies.
Collapse
|