1
|
Gurgel-Gonçalves R, de Oliveira WK, Croda J. The greatest Dengue epidemic in Brazil: Surveillance, Prevention, and Control. Rev Soc Bras Med Trop 2024; 57:e002032024. [PMID: 39319953 PMCID: PMC11415067 DOI: 10.1590/0037-8682-0113-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
In this review, we discuss dengue surveillance, prevention, and control measures in Brazil. Data on dengue epidemics between 2000 and 2024 indicates an increase in the number of dengue cases and deaths. Global climate change is a key driver of this growth. Over the past 25 years, nearly 18 million Brazilians have been infected with the dengue virus, and the highest number of dengue cases in Brazil's history is projected to reach 2024. Dengue mortality in Brazil increased geographically over time. As of June, there were approximately 6 million probable cases and 4,000 confirmed deaths in Brazil, which represents the greatest dengue epidemic to date. Several technologies have been developed to control Aedes aegypti, including the deployment of Wolbachia-infected mosquitoes, indoor residual spraying, sterile insect techniques, and mosquito-disseminated insecticides. The Ministry of Health recommends integrating these technologies into health services. Brazil is the first country to incorporate the Takeda vaccine into its public health system, and the Butantan vaccine is currently undergoing Phase 3 clinical trials. Increasing the vaccination coverage and implementing novel Ae. aegypti control technologies could reduce the number of dengue cases in Brazil in the coming years. Community activities such as home cleaning and elimination of potential mosquito breeding sites, facilitated by social media and health education initiatives, must continue to achieve this reduction. Ultimately, a multisectoral approach encompassing sanitary improvements, mosquito control, vaccination, and community mobilization is crucial in the fight against dengue epidemics.
Collapse
Affiliation(s)
- Rodrigo Gurgel-Gonçalves
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Medicina
Tropical, Laboratório de Parasitologia Médica e Biologia Vetores/Programa de
Pós-Graduação em Medicina Tropical, Brasília, DF, Brasil
| | - Wanderson Kleber de Oliveira
- Centro Universitário do Planalto Central Apparecido dos Santos,
Faculdade de Medicina, Brasília, DF, Brasil
- Direção Técnica de Ensino e Pesquisa, Hospital das Forças Armadas,
Brasília, DF, Brasil
| | - Julio Croda
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina,
Campo Grande, MS, Brasil
- Yale School of Public Health, Department of Epidemiology of
Microbial Diseases, New Haven, CT, USA
- Fundação Oswaldo Cruz, Campo Grande, MS, Brasil
| |
Collapse
|
2
|
Dafalla O, Abdulhaq AA, Almutairi H, Noureldin E, Ghzwani J, Mashi O, Shrwani KJ, Hobani Y, Sufyani O, Ayed R, Alamri A, Al-Mekhlafi HM, Eisa ZM. The emergence of an imported variant of dengue virus serotype 2 in the Jazan region, southwestern Saudi Arabia. Trop Dis Travel Med Vaccines 2023; 9:5. [PMID: 36922890 PMCID: PMC10018863 DOI: 10.1186/s40794-023-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection is a global economic and public health concern, particularly in tropical and subtropical countries where it is endemic. Saudi Arabia has seen an increase in DENV infections, especially in the western and southwestern regions. This study aims to investigate the genetic variants of DENV-2 that were circulating during a serious outbreak in Jazan region in 2019. METHODS A total of 482 serum samples collected during 2019 from Jazan region were tested with reverse transcription-polymerase chain reaction (RT-PCR) to detect and classify DENV; positive samples underwent sequencing and bioinformatics analyses. RESULTS Out of 294 positive samples, type-specific RT-PCR identified 58.8% as DENV-2 but could not identify 41.2%. Based on sequencing and bioinformatics analyses, the samples tested PCR positive in the first round but PCR negative in the second round were found to be imported genetic variant of DENV-2. The identified DENV-2 imported variant showed similarities to DENV-2 sequences reported in Malaysia, Singapore, Korea and China. The results revealed the imported genetic variant of DENV-2 was circulating in Jazan region that was highly prevalent and it was likely a major factor in this outbreak. CONCLUSIONS The emergence of imported DENV variants is a serious challenge for the dengue fever surveillance and control programmes in endemic areas. Therefore, further investigations and continuous surveillance of existing and new viral strains in the region are warranted.
Collapse
Affiliation(s)
- Ommer Dafalla
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia.
| | | | - Hatim Almutairi
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia.
| | | | - Jaber Ghzwani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Omar Mashi
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | | | - Yahya Hobani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Ohood Sufyani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Reem Ayed
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Abdullah Alamri
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | | | - Zaki M Eisa
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Rasinhas ADC, Jácome FC, Caldas GC, de Almeida ALT, de Souza DDC, Dos Santos JPR, Dias HG, Araujo EL, Mohana-Borges R, Barth OM, Dos Santos FB, Barreto-Vieira DF. Primary infection of BALB/c mice with a dengue virus type 4 strain leads to kidney injury. Mem Inst Oswaldo Cruz 2023; 118:e220255. [PMID: 37162062 PMCID: PMC10168658 DOI: 10.1590/0074-02760220255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/07/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Dengue is a disease caused by dengue virus (DENV-1 through -4). Among the four serotypes, DENV-4 remains the least studied. Acute kidney injury is a potential complication of dengue generally associated with severe dengue infection. OBJECTIVES The goal of this study was to investigate the alterations caused by experimental dengue infection in the kidney of adult BALB/c mice. METHODS In this study, BALB/c mice were infected through the intravenous route with a DENV-4 strain, isolated from a human patient. The kidneys of the mice were procured and subject to histopathological and ultrastructural analysis. FINDINGS The presence of the viral antigen was confirmed through immunohistochemistry. Analysis of tissue sections revealed the presence of inflammatory cell infiltrate throughout the parenchyma. Glomerular enlargement was a common find. Necrosis of tubular cells and haemorrhage were also observed. Analysis of the kidney on a transmission electron microscope allowed a closer look into the necrotic tubular cells, which presented nuclei with condensed chromatin, and loss of cytoplasm. MAIN CONCLUSIONS Even though the kidney is probably not a primary target of dengue infection in mice, the inoculation of the virus in the blood appears to damage the renal tissue through local inflammation.
Collapse
Affiliation(s)
- Arthur da Costa Rasinhas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunologia Viral, Rio de Janeiro, RJ, Brasil
| | - Fernanda Cunha Jácome
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunologia Viral, Rio de Janeiro, RJ, Brasil
| | - Gabriela Cardoso Caldas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Patologia, Rio de Janeiro, RJ, Brasil
| | - Ana Luisa Teixeira de Almeida
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| | - Daniel Dias Coutinho de Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| | | | - Helver Gonçalves Dias
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunologia Viral, Rio de Janeiro, RJ, Brasil
| | - Eduarda Lima Araujo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| | - Ronaldo Mohana-Borges
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biotecnologia e Bioengenharia Estrutural, Rio de Janeiro, RJ, Brasil
| | - Ortrud Monika Barth
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| | - Flavia Barreto Dos Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunologia Viral, Rio de Janeiro, RJ, Brasil
| | - Debora Ferreira Barreto-Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Virus-Associated Nephropathies: A Narrative Review. Int J Mol Sci 2022; 23:ijms231912014. [PMID: 36233315 PMCID: PMC9569621 DOI: 10.3390/ijms231912014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022] Open
Abstract
While most viral infections cause mild symptoms and a spontaneous favorable resolution, some can lead to severe or protracted manifestations, specifically in immunocompromised hosts. Kidney injuries related to viral infections may have multiple causes related to the infection severity, drug toxicity or direct or indirect viral-associated nephropathy. We review here the described virus-associated nephropathies in order to guide diagnosis strategies and treatments in cases of acute kidney injury (AKI) occurring concomitantly with a viral infection. The occurrence of virus-associated nephropathy depends on multiple factors: the local epidemiology of the virus, its ability to infect renal cells and the patient's underlying immune response, which varies with the state of immunosuppression. Clear comprehension of pathophysiological mechanisms associated with a summary of described direct and indirect injuries should help physicians to diagnose and treat viral associated nephropathies.
Collapse
|
5
|
Jácome FC, Caldas GC, Rasinhas ADC, de Almeida ALT, de Souza DDC, Paulino AC, da Silva MAN, Bandeira DM, Barth OM, dos Santos FB, Barreto-Vieira DF. Immunocompetent Mice Infected by Two Lineages of Dengue Virus Type 2: Observations on the Pathology of the Lung, Heart and Skeletal Muscle. Microorganisms 2021; 9:microorganisms9122536. [PMID: 34946137 PMCID: PMC8704795 DOI: 10.3390/microorganisms9122536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) infection by one of the four serotypes (DENV-1 to 4) may result in a wide spectrum of clinical manifestations, with unpredictable evolution and organ involvement. Due to its association with severe epidemics and clinical manifestations, DENV-2 has been substantially investigated. In fact, the first emergence of a new lineage of the DENV-2 Asian/American genotype in Brazil (Lineage II) in 2008 was associated with severe cases and increased mortality related to organ involvement. A major challenge for dengue pathogenesis studies has been a suitable animal model, but the use of immune-competent mice, although sometimes controversial, has proven to be useful, as histological observations in infected animals reveal tissue alterations consistent to those observed in dengue human cases. Here, we aimed to investigate the outcomes caused by two distinct lineages of the DENV-2 Asian/American genotype in the lung, heart and skeletal muscle tissues of infected BALB/c mice. Tissues were submitted to histopathology, immunohistochemistry, histomorphometry and transmission electron microscopy (TEM) analysis. The viral genome was detected in heart and skeletal muscle samples. The viral antigen was detected in cardiomyocytes and endothelial cells of heart tissue. Heart and lung tissue samples presented morphological alterations comparable to those seen in dengue human cases. Creatine kinase serum levels were higher in mice infected with both lineages of DENV-2. Additionally, statistically significant differences, concerning alveolar septa thickening and heart weight, were observed between BALB/c mice infected with both DENV-2 lineages, which was demonstrated to be an appropriate experimental model for dengue pathogenesis studies on lung, heart and skeletal muscle tissues.
Collapse
Affiliation(s)
- Fernanda Cunha Jácome
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
- Correspondence:
| | - Gabriela Cardoso Caldas
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Arthur da Costa Rasinhas
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Ana Luisa Teixeira de Almeida
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Daniel Dias Coutinho de Souza
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Amanda Carlos Paulino
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Marcos Alexandre Nunes da Silva
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Derick Mendes Bandeira
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Ortrud Monika Barth
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Flavia Barreto dos Santos
- Laboratory of Viral Immunology, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil;
| | - Debora Ferreira Barreto-Vieira
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| |
Collapse
|