1
|
Alves VF, Tadielo LE, Pires ACMDS, Pereira MG, Bersot LDS, De Martinis ECP. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods 2024; 13:3994. [PMID: 39766937 PMCID: PMC11675819 DOI: 10.3390/foods13243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- Department of Animal Production and Food, State University of Santa Catarina, Lages 88040-900, Brazil;
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (A.C.M.d.S.P.); (M.G.P.)
| | | | | |
Collapse
|
2
|
Watson SC, Neujahr AC, Chaves BD, Fernando SC, Sullivan GA. Environmental Monitoring of Nebraska Ready-to-eat Meat Processing Establishments Resulted in the Isolation of Listeria Alongside Pseudomonas Highly Resistant to Quaternary Ammonia Sanitizer. J Food Prot 2024; 87:100391. [PMID: 39490688 DOI: 10.1016/j.jfp.2024.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Robust environmental monitoring for Listeria monocytogenes often may not be feasible for small and very small meat processors in the United States due to the limitations in finances, staffing, or expertise. Three small/very small processors in Nebraska were sampled using sponge applicators in nonfood contact surface areas to determine if biofilm and sanitizer resistance behaviors of Pseudomonas could relate to the prevalence of L. monocytogenes and Listeria spp. in ready-to-eat meat processing environments. Samples were 3.3% (3/90) positive for L. monocytogenes, and 12.2% (11/90) of samples were positive for Listeria spp. Pseudomonas spp. were also isolated. When Listeria spp. and Pseudomonas spp. were assayed for biofilm production and resistance to a quaternary ammonia sanitizer, multiple isolates belonging to both genera capable of forming biofilms were identified. Four Pseudomonas spp. isolates resisted the 200 ppm manufacturer-recommended sanitizer concentration for food contact surface sanitation, and one Pseudomonas spp. isolated from a drain sample that was also positive for L. monocytogenes demonstrated a sanitizer minimum bactericidal concentration of 1000 ppm. These findings further support the need for monitoring of small and very small meat processors for L. monocytogenes as well as highlight the need to identify other bacteria in these processing environments, like Pseudomonas, that are resistant to environmental stressors.
Collapse
Affiliation(s)
- Samuel C Watson
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| | - Alison C Neujahr
- Department of Complex Biosystems, University of Nebraska - Lincoln, Lincoln, NE, 68583-0908, USA.
| | - Byron D Chaves
- Department of Food Science and Technology, University of Nebraska - Lincoln, 1901 N 21 St, Lincoln, NE 68588-6205, USA.
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| | - Gary A Sullivan
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
3
|
Sanchez-Reinoso Z, Todeschini S, Thibodeau J, Ben Said L, Fliss I, Bazinet L, Mikhaylin S. Biocontrol Strategy of Listeria monocytogenes in Ready-to-Eat Pork Cooked Ham Using Peptic Hydrolysates of Porcine Hemoglobin. Foods 2024; 13:2394. [PMID: 39123585 PMCID: PMC11311599 DOI: 10.3390/foods13152394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that represents a serious concern for ready-to-eat (RTE) meat products due to its persistence in production facilities. Among the different strategies for the control of this pathogen, the use of antimicrobial peptides derived from food by-products, such as slaughterhouse blood proteins, has emerged as a promising biocontrol strategy. This study evaluated for the first time the use of peptic hydrolysates of porcine hemoglobin as a biocontrol strategy of L. monocytogenes in RTE pork cooked ham. Pure porcine hemoglobin (Hb-P) and porcine cruor (P-Cru) were hydrolyzed using pepsin at different temperatures (37 °C for Hb-P and 23 °C for P-Cru) for 3 h. Then, the hydrolysates were characterized in terms of their degree of hydrolysis (DH), peptide population, color, and antimicrobial activity (in vitro and in situ) against three different serotypes of L. monocytogenes. Reducing the hydrolysis temperature of P-Cru by 14 °C resulted in a 2 percentage unit decrease in DH and some differences in the peptide composition. Nevertheless, the antimicrobial activity (in situ) was not significantly impacted, decreasing the viable count of L. monocytogenes by ~1-log and retarding their growth for 21 days at 4 °C. Although the color of the product was visibly altered, leading to more saturated reddish and yellowish tones and reduced brightness, the discoloration of the hydrolysates can be addressed. This biopreservation approach holds promise for other meat products and contributes to the circular economy concept of the meat industry by valorizing slaughterhouse blood and producing new antilisterial compounds.
Collapse
Affiliation(s)
- Zain Sanchez-Reinoso
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratory of Food Sustainability (EcoFoodLab), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah Todeschini
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Jacinthe Thibodeau
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sergey Mikhaylin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratory of Food Sustainability (EcoFoodLab), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
4
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
5
|
Braley C, Gaucher ML, Fravalo P, Shedleur-Bourguignon F, Longpré J, Thibodeau A. Slight Temperature Deviation during a 56-Day Storage Period Does Not Affect the Microbiota of Fresh Vacuum-Packed Pork Loins. Foods 2023; 12:foods12081695. [PMID: 37107490 PMCID: PMC10138144 DOI: 10.3390/foods12081695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
It is profitable to export fresh meat overseas, where it is often regarded as a premium commodity. Meeting this demand for fresh meat, however, necessitates long export times, during which uncontrolled temperature increases can affect the microbiological quality of the meat and thereby, reduce shelf life or compromise food safety. To study the impact of temperature deviations on microbial community composition and diversity, we used 16S rRNA gene sequencing for Listeria monocytogenes and Salmonella spp. detection to describe the surface microbiota of eight batches of vacuum-packed loins stored at -1.5 °C (control) for 56 days and subjected to a 2 °C or 10 °C temperature deviation for a few hours (mimicking problems regularly encountered in the industry) at day 15 or 29. The presence of pathogens was negligible. The applied temperature deviations were not associated with different microbiota. Sequencing analysis showed the presence of Yersinia, an unexpected pathogen, and relative abundance increased in the groups subjected to temperature deviations. Over time, Lactobacillales_unclassified genus became the main constituent of the microbiota of vacuum-packed pork loins. Although the microbiota of the eight batches appeared similar at the beginning of storage, differences were revealed after 56 days, suggesting unequal aging of the microbiota.
Collapse
Affiliation(s)
- Charlotte Braley
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Lou Gaucher
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Le Conservatoire National des Arts et Métiers (CNAM), 75003 Paris, France
| | - Fanie Shedleur-Bourguignon
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Jessie Longpré
- F. Ménard, Division d'Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
6
|
Shedleur-Bourguignon F, Duchemin T, P. Thériault W, Longpré J, Thibodeau A, Hocine MN, Fravalo P. Distinct Microbiotas Are Associated with Different Production Lines in the Cutting Room of a Swine Slaughterhouse. Microorganisms 2023; 11:microorganisms11010133. [PMID: 36677425 PMCID: PMC9862343 DOI: 10.3390/microorganisms11010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The microorganisms found on fresh, raw meat cuts at a slaughterhouse can influence the meat's safety and spoilage patterns along further stages of processing. However, little is known about the general microbial ecology of the production environment of slaughterhouses. We used 16s rRNA sequencing and diversity analysis to characterize the microbiota heterogeneity on conveyor belt surfaces in the cutting room of a swine slaughterhouse from different production lines (each associated with a particular piece/cut of meat). Variation of the microbiota over a period of time (six visits) was also evaluated. Significant differences of alpha and beta diversity were found between the different visits and between the different production lines. Bacterial genera indicative of each visit and production line were also identified. We then created random forest models that, based on the microbiota of each sample, allowed us to predict with 94% accuracy to which visit a sample belonged and to predict with 88% accuracy from which production line it was taken. Our results suggest a possible influence of meat cut on processing surface microbiotas, which could lead to better prevention, surveillance, and control of microbial contamination of meat during processing.
Collapse
Affiliation(s)
- Fanie Shedleur-Bourguignon
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Tom Duchemin
- MESuRS Laboratory (Modelling, Epidemiology and Surveillance of Health Risks), Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - William P. Thériault
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Jessie Longpré
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mounia N. Hocine
- MESuRS Laboratory (Modelling, Epidemiology and Surveillance of Health Risks), Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Philippe Fravalo
- Le Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Ferrocino I, Rantsiou K, Cocolin L. Microbiome and -omics application in food industry. Int J Food Microbiol 2022; 377:109781. [DOI: 10.1016/j.ijfoodmicro.2022.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
|
8
|
Co-Occurrence of L. monocytogenes with Other Bacterial Genera and Bacterial Diversity on Cleaned Conveyor Surfaces in a Swine Slaughterhouse. Microorganisms 2022; 10:microorganisms10030613. [PMID: 35336188 PMCID: PMC8948719 DOI: 10.3390/microorganisms10030613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial pathogens, such as Listeria monocytogenes, can show resistance to disinfection and persistence on working surfaces, permitting them to survive and contaminate food products. Persistence—a complex phenomenon involving interactions between many bacteria within a biofilm—is modulated by in situ characteristics. This study aimed to describe, in silico, the microbiota identified in a swine slaughterhouse after sanitation procedures to better understand the presence of L. monocytogenes on these surfaces. Molecular tools for characterization of microbial communities were used to assess the relative contribution of different bacteria resulting from this phenomenon, and the 16S rRNA sequencing method was used on samples from meat conveyor belt surfaces collected on four sampling visits to study the co-occurrence between L. monocytogenes and other bacteria. From the background microbiota, a total of six genera were found to be negatively correlated with Listeria spp., suggesting Listeria growth inhibition, competition, or at least an absence of shared habitats. Based on these results, a complete scenario of interactions of Listeria with components of background microbiota was established. This work contributes to identifying avenues that could prevent the growth and persistence of L. monocytogenes on food-processing surfaces.
Collapse
|