1
|
Jiang K, Jiang Y, Zhao Q, Shang Z, Zou H, Si J, Wu T, Li X. Clonal and Plasmid-Mediated Dissemination of β-Lactamases Producing Klebsiella spp. Among Environment and Humans in an Intensive Vegetable Cultivation Area in Eastern China. Microb Drug Resist 2025; 31:133-143. [PMID: 40227887 DOI: 10.1089/mdr.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Background: Emergence and the rising prevalence of extended-spectrum β-lactamases (ESBLs) producing multidrug-resistant Klebsiella spp. is a global concern. Methods: 391 samples were collected from environmental and people in an intensive vegetable cultivation area in eastern China in June 2019. ESBLs-producing Klebsiella spp. were obtained by PCR and strain identification. The resistance genotype and phenotype of the strain were determined by PCR and drug susceptibility test. The number and size of plasmids were determined by pulsed-field gel electrophoresis assays of plasmids. The plasmid of blaCTX-M was determined by DNA imprinting hybridization, and the transferability of plasmid was understood by plasmid conjugation experiment. Whole-genome sequencing analysis (WGS) was used to obtain other antimicrobial resistance genes, virulence factors, mobile elements, and genetic environment. Results: Seventeen ESBL-producing Klebsiella spp. were multi-drug resistant. Sixteen ESBLs-producing Klebsiella spp. carried the blaCTX-M, and the size of the plasmid containing the blaCTX-M anged from ∼33.3 kb to ∼244.4 kb. Thirteen ESBLs-producing Klebsiella spp. carried the blaCTX-M were successfully transferred to the recipient bacterium through plasmid mediation. Single nucleotide polymorphism analysis showed clonal transmission between river water (J4-J8) and river sediment (J9), in river water (J3) and human feces (J12). WGS showed that all blaCTX-M were associated with the mobile element Tn3 and/or IS1380 family. All strains carried virulence factors related to adhesion, colonization, and pathogenicity. Conclusion: This study reminds us that antibiotic-resistant bacteria (ARB) from vegetable cultivation environments can spread to human. It is vital to enhance surveillance of the vegetable cultivation area and high vigilance for the risk of ARB movement from the vegetable plantation environment to humans.
Collapse
Affiliation(s)
- Kaixin Jiang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunting Jiang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhao
- Zibo Center for Disease Control and Prevention, Zibo, China
| | - Zhenhua Shang
- NO.6 Geological Team of Shandong Provincial Bureau of Geology and Mineral Resources, Jinan, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiliang Si
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianle Wu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Damonti L, Gasser M, Kronenberg A, Buetti N. Epidemiology of bloodstream infections caused by extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae in Switzerland, 2015-2022: secular trends and association with the COVID-19 pandemic. J Hosp Infect 2024; 150:145-152. [PMID: 38838742 DOI: 10.1016/j.jhin.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The association between the COVID-19 pandemic and the incidence of invasive infections caused by multidrug-resistant organisms remains a topic of debate. AIM To analyse the national incidence rates of bloodstream infections (BSI) caused by Escherichia coli (EC) and Klebsiella pneumoniae (KP) with extended-spectrum cephalosporin resistance (ESCR) in two distinct regions in Switzerland, each exhibiting varying antimicrobial resistance patterns and that were impacted differently by the pandemic. METHODS Data was analysed from positive blood cultures prospectively collected by the nationwide surveillance system (ANRESIS) from January 1st, 2015, to August 31st, 2022. To explore the potential relationship between COVID-19 patient occupancy and ESCR incidence rates, an in-depth analysis was conducted over the two-year pandemic period from April 1st, 2020, to March 30th, 2022, using Quasi-Poisson and logistic regression analyses. FINDINGS During the study period, 40,997 EC-BSI and 8537 KP-BSI episodes were collected and reported to ANRESIS by the participating hospitals. ESCR was observed in 11% (N = 4313) of E. coli and 8% (N = 664) of K. pneumoniae, respectively. A significant reduction in ESCR-EC BSI incidence occurred during the pandemic in the region with the highest COVID-19 incidence. Conversely, ESCR-KP BSI incidence initially fell considerably and then increased during the pandemic in both regions, though this effect was not statistically significant. No association between hospital occupancy from COVID-19 patients and these trends was observed. CONCLUSION In the early phase of the COVID-19 pandemic, a decrease in ESCR rates was observed, particularly in ESCR-EC BSI within the most heavily impacted region.
Collapse
Affiliation(s)
- L Damonti
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - M Gasser
- Swiss Centre for Antibiotic Resistance, Institute for Infectious Diseases, University Bern, Bern, Switzerland
| | - A Kronenberg
- Swiss Centre for Antibiotic Resistance, Institute for Infectious Diseases, University Bern, Bern, Switzerland
| | - N Buetti
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, WHO Collaborating Center, Geneva, Switzerland; Université Paris - Cité, INSERM, IAME UMR 1137, Paris, France
| |
Collapse
|
3
|
Fordham SME, Drobniewski F, Barrow M, Hutchings M, Crowther K, Richards D, Bolton P, Mantzouratou A, Sheridan E. Genetic Analyses of Rare ESBL ST628 Klebsiella pneumoniae Detected during a Protracted Nosocomial Outbreak in the United Kingdom. Microorganisms 2024; 12:883. [PMID: 38792715 PMCID: PMC11124425 DOI: 10.3390/microorganisms12050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) cultures from a hospital-wide outbreak in the UK, which lasted for over 12 months, were sequenced. We sought to sequence and genetically characterise the outbreak strain. Antibiotic Susceptibility Testing (AST) was performed on 65 K. pneumoniae isolates saved from the outbreak. All isolates were sequenced using the Oxford Nanopore Technologies (ONT) MinION flowcell: 10 isolates, including the isolate with the earliest collection date in 2017, were additionally sequenced on the NovaSeq 6000 platform to build high-accuracy nanopore-illumina assemblies. Among the sequenced strains, 60 were typed as ST628. 96.6% (n = 58/60) ST628 strains harboured a large ~247-kb FIB(K) plasmid carrying up to 11 antimicrobial resistance genes, including the extended-spectrum beta-lactamase (ESBL) gene, blaCTX-M-15. Clonality between the outbreak isolates was confirmed using single nucleotide polymorphism (SNP) typing. The outbreak strains were phylogenetically related to clinical ST628 strains identified in 2012, 6 years prior to the outbreak. A rare ESBL K. pneumoniae K2 ST628 strain harbouring a multi-drug resistant (MDR) plasmid encoding the ESBL gene blaCTX-M-15 was detected across multiple independent wards during the protracted nosocomial outbreak. Surveillance of this strain is recommended to prevent future nosocomial outbreaks.
Collapse
Affiliation(s)
- Stephen Mark Edward Fordham
- Department of Life & Environmental Sciences, Talbot Campus Fern Barrow, Bournemouth University, Poole BH12 5BB, UK; (S.M.E.F.); (M.B.); (A.M.)
| | - Francis Drobniewski
- Department of Infectious Diseases, Hammersmith Campus, Imperial College London, 8th Floor, Office 8.N10, DuCane Road, London W12 ONN, UK
- Department of Medical Microbiology, Poole Hospital, University Hospitals Dorset NHS Foundation Trust, Longfleet Road, Poole BH15 2JB, UK (P.B.)
| | - Magdalena Barrow
- Department of Life & Environmental Sciences, Talbot Campus Fern Barrow, Bournemouth University, Poole BH12 5BB, UK; (S.M.E.F.); (M.B.); (A.M.)
| | - Melissa Hutchings
- Department of Medical Microbiology, Poole Hospital, University Hospitals Dorset NHS Foundation Trust, Longfleet Road, Poole BH15 2JB, UK (P.B.)
| | - Kate Crowther
- Department of Medical Microbiology, Poole Hospital, University Hospitals Dorset NHS Foundation Trust, Longfleet Road, Poole BH15 2JB, UK (P.B.)
| | - Denise Richards
- Department of Medical Microbiology, Poole Hospital, University Hospitals Dorset NHS Foundation Trust, Longfleet Road, Poole BH15 2JB, UK (P.B.)
| | - Paul Bolton
- Department of Medical Microbiology, Poole Hospital, University Hospitals Dorset NHS Foundation Trust, Longfleet Road, Poole BH15 2JB, UK (P.B.)
| | - Anna Mantzouratou
- Department of Life & Environmental Sciences, Talbot Campus Fern Barrow, Bournemouth University, Poole BH12 5BB, UK; (S.M.E.F.); (M.B.); (A.M.)
| | - Elizabeth Sheridan
- Department of Medical Microbiology, Poole Hospital, University Hospitals Dorset NHS Foundation Trust, Longfleet Road, Poole BH15 2JB, UK (P.B.)
| |
Collapse
|
4
|
Blaikie JM, Sapula SA, Siderius NL, Hart BJ, Amsalu A, Leong LE, Warner MS, Venter H. Resistome Analysis of Klebsiella pneumoniae Complex from Residential Aged Care Facilities Demonstrates Intra-facility Clonal Spread of Multidrug-Resistant Isolates. Microorganisms 2024; 12:751. [PMID: 38674695 PMCID: PMC11051875 DOI: 10.3390/microorganisms12040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial-resistant Klebsiella pneumoniae is one of the predominant pathogens in healthcare settings. However, the prevalence and resistome of this organism within residential aged care facilities (RACFs), which are potential hotspots for antimicrobial resistance, remain unexplored. Here, we provide a phenotypic and molecular characterization of antimicrobial-resistant K. pneumoniae isolated from RACFs. K. pneumoniae was isolated from urine, faecal and wastewater samples and facility swabs. The antimicrobial susceptibility profiles of all the isolates were determined and the genomic basis for resistance was explored with whole-genome sequencing on a subset of isolates. A total of 147 K. pneumoniae were isolated, displaying resistance against multiple antimicrobials. Genotypic analysis revealed the presence of beta-lactamases and the ciprofloxacin-resistance determinant QnrB4 but failed to confirm the basis for the observed cephalosporin resistance. Clonal spread of the multidrug-resistant, widely disseminated sequence types 323 and 661 was observed. This study was the first to examine the resistome of K. pneumoniae isolates from RACFs and demonstrated a complexity between genotypic and phenotypic antimicrobial resistance. The intra-facility dissemination and persistence of multidrug-resistant clones is concerning, given that residents are particularly vulnerable to antimicrobial resistant infections, and it highlights the need for continued surveillance and interventions to reduce the risk of outbreaks.
Collapse
Affiliation(s)
- Jack M. Blaikie
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Sylvia A. Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Naomi L. Siderius
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Bradley J. Hart
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Anteneh Amsalu
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
- Department of Medical Microbiology, University of Gondar, Gondar 196, Ethiopia
| | - Lex E.X. Leong
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
- Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA 5000, Australia;
| | - Morgyn S. Warner
- Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA 5000, Australia;
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Infectious Diseases Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| |
Collapse
|
5
|
Mutua JM, Njeru JM, Musyoki AM. Extended-spectrum β-lactamase- producing gram-negative bacterial infections in severely ill COVID-19 patients admitted in a national referral hospital, Kenya. Ann Clin Microbiol Antimicrob 2023; 22:91. [PMID: 37838665 PMCID: PMC10576885 DOI: 10.1186/s12941-023-00641-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Bacterial infections in COVID-19 patients, especially those caused by multidrug-resistant gram-negative strains, are associated with increased morbidity, hospital stay and mortality. However, there is limited data on the epidemiology of extended-spectrum β-lactamase (ESBL)-producing bacteria in COVID-19 patients. Here, we assessed the prevalence and the factors associated with ESBL-producing gram-negative bacterial (GNB) infections among severely ill COVID-19 patients admitted in Kenyatta National Hospital (KNH), Kenya. METHODS We adopted a descriptive cross-sectional study design for patients admitted between October 2021 and February 2022, purposively recruiting 120 SARS-CoV- 2 infected participants based on clinical presentation. Demographics and clinical characteristics data were collected using structured questionnaires and case report forms. Clinical samples were collected and analyzed by standard microbiological methods in the KNH Microbiology laboratory and the Centre for Microbiology Research, Kenya Medical Research Institute. RESULTS GNB infections prevalence was 40.8%, majorly caused by ESBL-producers (67.3%) predominated by Klebsiella pneumoniae (45.5%). Generally, 73% of the ESBL producers harboured our target ESBL genes, mainly CTX-M-type (59%, 17/29) in K. pneumoniae (76.9%, 20/26). GNB harbouring TEM-type (83%, 10/12) and SHV-type (100%, 7/7) genes showed ESBLs phenotypes and inhibitor resistance, mainly involving clavulanate, but most of them remained susceptible to tazobactam (60%, 6/10). SHV-type genes carrying ESBL producers showed resistance to both cefotaxime (CTX) and ceftazidime (CAZ) (K. pneumoniae), CAZ (E. coli) or CTX (E. cloacae complex and K. pneumoniae). About 87% (20/23) of isolates encoding CTX-M-type β-lactamases displayed CTX/ceftriaxone (CRO) resistance phenotype. About 42% of isolates with CTX-M-type β-lactamases only hydrolyzed ceftazidime (CAZ). Isolates with OXA-type β-lactamases were resistant to CTX, CAZ, CRO, cefepime and aztreonam. Patients with comorbidities were 10 times more likely to have an ESBL-producing GNB infection (aOR = 9.86, 95%CI 1.30 - 74.63, p = 0.003). CONCLUSION We report a high prevalence of ESBL-GNB infections in severely ill COVID-19 patients, predominantly due to Klebsiella pneumoniae harbouring CTX-M type ESBL genes. The patient's underlying comorbidities increased the risk of ESBL-producing GNB infection. In COVID-19 pandemic, enhanced systematic and continuous surveillance of ESBL-producing GNB, strict adherence to infection control measures and antimicrobial stewardship policies are warranted in the current study setting.
Collapse
Affiliation(s)
- Jeniffer Munyiva Mutua
- Department of Laboratory Medicine, Kenyatta National Hospital, 20723-00202, Nairobi, Kenya.
- Department of Medical Laboratory Sciences, Kenyatta University, 43844-00100, Nairobi, Kenya.
| | - John Mwaniki Njeru
- Centre for Microbiology Research, Kenya Medical Research Institute, 19464-00200, Nairobi, Kenya
| | - Abednego Moki Musyoki
- Department of Medical Laboratory Sciences, Kenyatta University, 43844-00100, Nairobi, Kenya
| |
Collapse
|
6
|
Shakil S, Rizvi SMD, Greig NH. In depth molecular interaction analyses of the complex of a proposed CTXM-inhibitor bound to the bacterial enzyme. J Biomol Struct Dyn 2023; 41:8362-8372. [PMID: 36224195 PMCID: PMC10481260 DOI: 10.1080/07391102.2022.2133009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/02/2022] [Indexed: 10/17/2022]
Abstract
A 'Thumb Rule for Antibiotic Design' against bacteria can be given as, 'The minimum pace of drug design ought to match the swiftness with which bacteria display cutting-edge resistance mechanisms; thereby outwitting the antibiotics and, in turn, the researchers'. Occurrence of drug resistance attributable to CXTM-variants in bacterial pathogens is widespread. In line with our above proposed thumb rule, the present article employed concatenation of virtual screening, docking and simulation to identify a potent in silico validated anti-CTXM-14 ligand. Specifically, this research used the 'MCULE' drug discovery platform to screen a total of 5 million candidate inhibitors to evaluate their binding efficacy with an antibiotic resistance enzyme, CTXM-14 found in bacterial pathogens. A new median approach between 'structure' and 'ligand'-based protocols was employed. Pharmacokinetic profiling was achieved by 'SWISS ADME'. Safety profile for humans was appraised by 'Toxicity Checker'. The complex consisting of the 'Top ligand' (obtained from the screen) harbored within the active pocket of the bacterial CTXM-14 was subjected to 60 ns molecular dynamics simulation with the aid of licensed YASARA STRUCTURE v.21.8.27. Complex tasks were performed by YANACONDA. Fine resolution figures (notably, plots generated from trajectory analyses) were constructed. Simulation snaps were acquired at every 250 picoseconds of the run. The ligand having the IUPAC name as 1-Amino-3-(4-hydroxyphenyl)pyrido[1,2-a]benzimidazole-2,4-dicarbonitrile demonstrated the overall best binding with CTXM-14. Fifteen amino acid residues were found to line the interacting pocket. Remarkably, all of these interacting residues were found to be present among the interacting residues displayed by the reference complex as well, i.e. CTXM-14:Vaborbactam complex (PDB ID 6V7H). A total of 240 simulation snaps were retrieved. The RMSD plot revealed that a plateau was achieved at 32 ns, after which the backbone RMSD fluctuations remained confined within 1.4-2 Å. Video recording of molecular actions was also achieved. In conclusion, this study provides a fresh lead molecule, 1-Amino-3-(4-hydroxyphenyl)pyrido[1,2-a]benzimidazole-2,4-dicarbonitrile against bacterial CTXM-14 protein. The study utilized a new median approach between 'structure' and 'ligand'-based drug design. The lead molecule passed ADMET conditions and an array of medicinal chemistry filters, and is further supported by a stable molecular dynamics. An acceptable skin permeation supports its probable use in antibiotic creams. Moreover, the study provides a clear 'Thumb Rule for Antibiotic Design' against bacteria, which although often assumed, can be clearly stated for the first time. Synthesis of the screening-proposed molecule followed by in-vitro and in-vivo validation is highly recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed M Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
7
|
Amato HK, Loayza F, Salinas L, Paredes D, García D, Sarzosa S, Saraiva-Garcia C, Johnson TJ, Pickering AJ, Riley LW, Trueba G, Graham JP. Leveraging the COVID-19 pandemic as a natural experiment to assess changes in antibiotic use and antibiotic-resistant E. coli carriage in semi-rural Ecuador. Sci Rep 2023; 13:14854. [PMID: 37684276 PMCID: PMC10491794 DOI: 10.1038/s41598-023-39532-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/26/2023] [Indexed: 09/10/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic has had significant impacts on health systems, population dynamics, public health awareness, and antibiotic stewardship, which could affect antibiotic resistant bacteria (ARB) emergence and transmission. In this study, we aimed to compare knowledge, attitudes, and practices (KAP) of antibiotic use and ARB carriage in Ecuadorian communities before versus after the COVID-19 pandemic began. We leveraged data collected for a repeated measures observational study of third-generation cephalosporin-resistant E. coli (3GCR-EC) carriage among children in semi-rural communities in Quito, Ecuador between July 2018 and September 2021. We included 241 households that participated in surveys and child stool sample collection in 2019, before the pandemic, and in 2021, after the pandemic began. We estimated adjusted Prevalence Ratios (aPR) and 95% Confidence Intervals (CI) using logistic and Poisson regression models. Child antibiotic use in the last 3 months declined from 17% pre-pandemic to 5% in 2021 (aPR: 0.30; 95% CI 0.15, 0.61) and 3GCR-EC carriage among children declined from 40 to 23% (aPR: 0.48; 95% CI 0.32, 0.73). Multi-drug resistance declined from 86 to 70% (aPR: 0.32; 95% CI 0.13; 0.79), the average number of antibiotic resistance genes (ARGs) per 3GCR-EC isolate declined from 9.9 to 7.8 (aPR of 0.79; 95% CI 0.65, 0.96), and the diversity of ARGs was lower in 2021. In the context of Ecuador, where COVID-19 prevention and control measures were strictly enforced after its major cities experienced some of the world's the highest mortality rates from SARS-CoV-2 infections, antibiotic use and ARB carriage declined in semi-rural communities of Quito from 2019 to 2021.
Collapse
Affiliation(s)
- Heather K Amato
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA.
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| | - Fernanda Loayza
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Liseth Salinas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Diana Paredes
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Daniela García
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Soledad Sarzosa
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Carlos Saraiva-Garcia
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Blum Center for Developing Economies, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Jay P Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
8
|
Borghi M, Pereira MF, Schuenck RP. The Presence of Virulent and Multidrug-Resistant Clones of Carbapenem-Resistant Klebsiella pneumoniae in Southeastern Brazil. Curr Microbiol 2023; 80:286. [PMID: 37453006 DOI: 10.1007/s00284-023-03403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) represents an urgent threat to global public health due to the limited therapeutic options available to control this pathogen. This study aims to analyze the molecular epidemiology, antimicrobial resistance and virulence profile of CRKP isolated from patients at hospitals in Southeastern Brazil. KPC and other beta-lactamase genes were detected in all strains, which were also multidrug-resistant (MDR). In addition, 11 strains showed resistance to last-resort antimicrobials, such as colistin and tigecycline. MLST analysis revealed eight different sequence types (ST11, ST37, ST147, ST340, ST384, ST394, ST437, and ST628), being two (ST628 and ST394) reported for the first time in Brazil. Strains belonging to the clonal complex 258 (CC258) "high-risk clones" were prevalent in this study. The Galleria mellonella model showed the emergence of virulent CRKP strains in the healthcare environment and, suggests that colistin-resistant strains were associated with higher virulence. This study shows the presence of virulent CRKP-MDR strains in hospitals across Southeastern Brazil, and draws attention to the presence of highly virulent emerging CRKP-MDR ST628 strains, showing that virulent and resistant clones can emerge quickly, requiring constant monitoring.
Collapse
Affiliation(s)
- Mirla Borghi
- Department of Pathology, Molecular Biology and Bacterial Virulence Laboratory, Health Sciences Center, Federal University of Espírito Santo, Av. Marechal Campos, s/no, Maruípe, Vitória, ES, 29043-900, Brazil
| | - Monalessa Fábia Pereira
- Department of Pathology, Molecular Biology and Bacterial Virulence Laboratory, Health Sciences Center, Federal University of Espírito Santo, Av. Marechal Campos, s/no, Maruípe, Vitória, ES, 29043-900, Brazil
- Department of Biological Sciences, State University of Minas Gerais, Carangola, MG, Brazil
| | - Ricardo Pinto Schuenck
- Department of Pathology, Molecular Biology and Bacterial Virulence Laboratory, Health Sciences Center, Federal University of Espírito Santo, Av. Marechal Campos, s/no, Maruípe, Vitória, ES, 29043-900, Brazil.
| |
Collapse
|
9
|
Sheng J, Cave R, Ter-Stepanyan MM, Kotsinyan N, Chen J, Zhang L, Jiang T, Mkrtchyan HV. Whole-Genome Sequencing and Comparative Genomics Analysis of a Newly Emerged Multidrug-Resistant Klebsiella pneumoniae Isolate of ST967. Microbiol Spectr 2023; 11:e0401122. [PMID: 37022188 PMCID: PMC10269624 DOI: 10.1128/spectrum.04011-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Klebsiella pneumoniae is a common cause of hospital- and community-acquired infections globally, yet its population structure remains unknown for many regions, particularly in low- and middle-income countries (LMICs). Here, we report for the first-time whole-genome sequencing (WGS) of a multidrug-resistant K. pneumoniae isolate, ARM01, recovered from a patient in Armenia. Antibiotic susceptibility testing revealed that ARM01 was resistant to ampicillin, amoxicillin-clavulanic acid, ceftazidime, cefepime, norfloxacin, levofloxacin, and chloramphenicol. Genome sequencing analysis revealed that ARM01 belonged to sequence type 967 (ST967), capsule type K18, and antigen type O1. ARM01 carried 13 antimicrobial resistance (AMR) genes, including blaSHV-27, dfrA12, tet(A), sul1, sul2, catII.2, mphA, qnrS1, aadA2, aph3-Ia, strA, and strB and the extended-spectrum β-lactamase (ESBL) gene blaCTX-M-15, but only one known virulence factor gene, yagZ/ecpA, and one plasmid replicon, IncFIB(K)(pCAV1099-114), were detected. The plasmid profile, AMR genes, virulence factors, accessory gene profile, and evolutionary analyses of ARM01 showed high similarity to isolates recovered from Qatar (SRR11267909 and SRR11267906). The date of the most recent common ancestor (MRCA) of ARM01 was estimated to be around 2017 (95% confidence interval [CI], 2017 to 2018). Although in this study, we report the comparative genomics analysis of only one isolate, it emphasizes the importance of genomic surveillance for emerging pathogens, urging the need for implementation of more effective infection prevention and control practices. IMPORTANCE Whole-genome sequencing and population genetics analysis of K. pneumoniae are scarce from LMICs, and none has been reported for Armenia. Multilevel comparative analysis revealed that ARM01 (an isolate belonging to a newly emerged K. pneumoniae ST967 lineage) was genetically similar to two isolates recovered from Qatar. ARM01 was resistant to a wide range of antibiotics, reflecting the unregulated usage of antibiotics (in most LMICs, antibiotic use is typically unregulated.) Understanding the genetic makeup of these newly emerging lineages will aid in optimizing antibiotic use for patient treatment and contribute to the worldwide efforts of pathogen and AMR surveillance and implementation of more effective infection prevention and control strategies.
Collapse
Affiliation(s)
- Jie Sheng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rory Cave
- School of Biomedical Sciences, University of West London, London, United Kingdom
| | - Mary M. Ter-Stepanyan
- Yerevan State Medical University after Mkhitar Heratsi, Faculty of Public Health, Department of Epidemiology, Yerevan, Republic of Armenia
- Research Center of Maternal and Child Health Protection, Yerevan, Armenia
| | - Nune Kotsinyan
- National Centre for Disease Control and Prevention, Yerevan, Armenia
| | - Jiazhen Chen
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Taijiao Jiang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Guangzhou Laboratory, Guangzhou, China
| | - Hermine V. Mkrtchyan
- School of Biomedical Sciences, University of West London, London, United Kingdom
| |
Collapse
|
10
|
Morin-Le Bihan A, Le Neindre K, Dejoies L, Piau C, Donnio PY, Ménard G. Use of the quantitative antibiogram method for assessing nosocomial transmission of ESBL-producing Enterobacteriaceae in a French hospital. J Hosp Infect 2023; 135:132-138. [PMID: 36918068 DOI: 10.1016/j.jhin.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND ESBL-producing Enterobacteriaceae (eESBL) have a high prevalence in hospitals but real-time monitoring of nosocomial acquisition through conventional typing methods is challenging. Moreover, patient-to-patient transmission varies between the main species, namely Escherichia coli, and Klebsiella pneumoniae, then questioning the relevance of applying identical preventive measures. AIM To detect eESBL cross-transmission events (CTE) using combination of quantitative antibiogram with epidemiological data (combined-QA), and to rule on the effectiveness of standard or contact precautions for eESBL species. METHODS First, a validation set was used to confirm the relevance of the combined-QA by comparison to a combination of pulsed-field gel electrophoresis and epidemiological data (combined-PFGE). Secondly, a four-year retrospective analysis was conducted to detect eESBL-CTE in hospitalized patients. Two species were screened i.e. ESBL-E. coli (ESBL-Ec), and ESBL-K. pneumoniae (ESBL-Kp). During the study, only standard precautions were applied to ESBL-Ec patients whereas contact precautions were retained for ESBL-Kp. FINDINGS As a proof of concept, results between the two combined methods for the detection of CTE were identical for E. coli, and similar to at least 75% for K. pneumoniae. During the retrospective analysis, 722 patients with ESBL-Ec isolates and 280 with ESBL-Kp isolates were included. Nine CTE were identified for E. coli and 23 for K. pneumoniae, implying 20 (2.7%) and 36 (12.8%) patients, respectively. CONCLUSION The QA-combined method constitutes a rapid tool for epidemiological surveillance to detect CTE. In our hospital, standard precautions are sufficient to prevent acquisition of ESBL-Ec whereas contact precautions must be implemented to prevent acquisition of ESBL-Kp.
Collapse
Affiliation(s)
- Amélie Morin-Le Bihan
- CHU Rennes, SB2H (Service de Bactériologie-Hygiène Hospitalière), F-35000 Rennes, France
| | - Killian Le Neindre
- CHU Rennes, SB2H (Service de Bactériologie-Hygiène Hospitalière), F-35000 Rennes, France; INSERM, BRM (Bacterial RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France
| | - Loren Dejoies
- CHU Rennes, SB2H (Service de Bactériologie-Hygiène Hospitalière), F-35000 Rennes, France; INSERM, BRM (Bacterial RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France
| | - Caroline Piau
- CHU Rennes, SB2H (Service de Bactériologie-Hygiène Hospitalière), F-35000 Rennes, France
| | - Pierre-Yves Donnio
- CHU Rennes, SB2H (Service de Bactériologie-Hygiène Hospitalière), F-35000 Rennes, France; INSERM, BRM (Bacterial RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France
| | - Guillaume Ménard
- CHU Rennes, SB2H (Service de Bactériologie-Hygiène Hospitalière), F-35000 Rennes, France; INSERM, BRM (Bacterial RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France.
| |
Collapse
|
11
|
Lontsi Ngoula G, Houcke S, Matheus S, Nkontcho F, Pujo JM, Higel N, Ba A, Cook F, Gourjault C, Mounier R, Nacher M, Demar M, Djossou F, Hommel D, Kallel H. Impact of Antibiotic Consumption on the Acquisition of Extended-Spectrum β-Lactamase Producing Enterobacterales Carriage during the COVID-19 Crisis in French Guiana. Antibiotics (Basel) 2022; 12:58. [PMID: 36671259 PMCID: PMC9855120 DOI: 10.3390/antibiotics12010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
(1) Background: During the COVID-19 outbreak, several studies showed an increased prevalence of extended-spectrum β-lactamase producing Enterobacterales (ESBL-PE) carriage in intensive care units (ICUs). Our objective was to assess the impact of antibiotic prescriptions on the acquisition of ESBL-PE in ICUs during the COVID-19 crisis. (2) Methods: We conducted an observational study between 1 April 2020, and 31 December 2021, in the medical-surgical ICU of the Cayenne General Hospital. We defined two periods: Period 1 with routine, empirical antibiotic use, and Period 2 with no systematic empiric antibiotic prescription. (3) Results: ICU-acquired ESBL-PE carriage was 22.8% during Period 1 and 9.4% during Period 2 (p = 0.005). The main isolated ESBL-PE was Klebsiella pneumoniae (84.6% in Period 1 and 58.3% in Period 2). When using a generalized linear model with a Poisson family, exposure to cefotaxime was the only factor independently associated with ESBL-PE acquisition in ICU (p = 0.002, IRR 2.59 (95% IC 1.42-4.75)). The propensity scores matching estimated the increased risk for cefotaxime use to acquire ESBL-PE carriage at 0.096 (95% CI = 0.02-0.17), p = 0.01. (4) Conclusions: Exposure to cefotaxime in patients with severe COVID-19 is strongly associated with the emergence of ESBL-PE in the context of maximal infection control measures.
Collapse
Affiliation(s)
- Guy Lontsi Ngoula
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Stéphanie Houcke
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Séverine Matheus
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Flaubert Nkontcho
- Pharmacy Department, Cayenne General Hospital, 97306 Cayenne, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, 97300 Cayenne, French Guiana
| | - Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Nicolas Higel
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Absettou Ba
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Fabrice Cook
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Cyrille Gourjault
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Roman Mounier
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
- Department of Neuro-ICU, GHU-Paris, Paris University, 75014 Paris, France
| | - Mathieu Nacher
- Clinical Investigation Center, Antilles French Guiana (CIC Inserm 1424), Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Magalie Demar
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, 97300 Cayenne, French Guiana
- Polyvalent Biology Department, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Felix Djossou
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, 97300 Cayenne, French Guiana
- Tropical and Infectious Diseases Department, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Didier Hommel
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, 97306 Cayenne, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, 97300 Cayenne, French Guiana
| |
Collapse
|
12
|
Witt LS, Howard-Anderson JR, Jacob JT, Gottlieb LB. The impact of COVID-19 on multidrug-resistant organisms causing healthcare-associated infections: a narrative review. JAC Antimicrob Resist 2022; 5:dlac130. [PMID: 36601548 PMCID: PMC9798082 DOI: 10.1093/jacamr/dlac130] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) changed healthcare across the world. With this change came an increase in healthcare-associated infections (HAIs) and a concerning concurrent proliferation of MDR organisms (MDROs). In this narrative review, we describe the impact of COVID-19 on HAIs and MDROs, describe potential causes of these changes, and discuss future directions to combat the observed rise in rates of HAIs and MDRO infections.
Collapse
Affiliation(s)
- Lucy S Witt
- Corresponding author. E-mail: ; @drwittID, @JessH_A, @jestjac
| | - Jessica R Howard-Anderson
- Division of Infection Diseases, Emory University School of Medicine, Atlanta, GA, USA,Emory Antibiotic Resistance Group, Emory University, Atlanta, GA, USA
| | - Jesse T Jacob
- Division of Infection Diseases, Emory University School of Medicine, Atlanta, GA, USA,Emory Antibiotic Resistance Group, Emory University, Atlanta, GA, USA
| | - Lindsey B Gottlieb
- Division of Infection Diseases, Emory University School of Medicine, Atlanta, GA, USA,Emory Antibiotic Resistance Group, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Ali YM, Lynch NJ, Khatri P, Bamigbola IE, Chan ACY, Yabuki M, Demopulos GA, Heeney JL, Pai S, Baxendale H, Schwaeble WJ. Secondary Complement Deficiency Impairs Anti-Microbial Immunity to Klebsiella pneumoniae and Staphylococcus aureus During Severe Acute COVID-19. Front Immunol 2022; 13:841759. [PMID: 35572551 PMCID: PMC9094484 DOI: 10.3389/fimmu.2022.841759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
A high incidence of secondary Klebsiella pneumoniae and Staphylococcus aureus infection were observed in patients with severe COVID-19. The cause of this predisposition to infection is unclear. Our data demonstrate consumption of complement in acute COVID-19 patients reflected by low levels of C3, C4, and loss of haemolytic activity. Given that the elimination of Gram-negative bacteria depends in part on complement-mediated lysis, we hypothesised that secondary hypocomplementaemia is rendering the antibody-dependent classical pathway activation inactive and compromises serum bactericidal activity (SBA). 217 patients with severe COVID-19 were studied. 142 patients suffered secondary bacterial infections. Klebsiella species were the most common Gram-negative organism, found in 58 patients, while S. aureus was the dominant Gram-positive organism found in 22 patients. Hypocomplementaemia was observed in patients with acute severe COVID-19 but not in convalescent survivors three months after discharge. Sera from patients with acute COVID-19 were unable to opsonise either K. pneumoniae or S. aureus and had impaired complement-mediated killing of Klebsiella. We conclude that hyperactivation of complement during acute COVID-19 leads to secondary hypocomplementaemia and predisposes to opportunistic infections.
Collapse
Affiliation(s)
- Youssif M. Ali
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nicholas J. Lynch
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Priyanka Khatri
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ifeoluwa E. Bamigbola
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew C. Y. Chan
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Jonathan L. Heeney
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sumita Pai
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Helen Baxendale
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Wilhelm J. Schwaeble
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics (Basel) 2022; 11:349. [PMID: 35326812 PMCID: PMC8944448 DOI: 10.3390/antibiotics11030349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Infection of multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, brings public health issues and causes economic burden. Pathogenic bacteria develop several methods to resist antibiotic killing or inhibition, such as mutation of antibiotic function sites, activation of drug efflux pumps, and enzyme-mediated drug degradation. Antibiotic resistance components can be transferred between bacteria by mobile genetic elements including plasmids, transposons, and integrons, as well as bacteriophages. The development of antibiotic resistance limits the treatment options for bacterial infection, especially for MDR bacteria. Therefore, novel or alternative antibacterial agents are urgently needed. Antimicrobial peptides (AMPs) display multiple killing mechanisms against bacterial infections, including directly bactericidal activity and immunomodulatory function, as potential alternatives to antibiotics. In this review, the development of antibiotic resistance, the killing mechanisms of AMPs, and especially, the design, optimization, and delivery of AMPs are reviewed. Strategies such as structural change, amino acid substitution, conjugation with cell-penetration peptide, terminal acetylation and amidation, and encapsulation with nanoparticles will improve the antimicrobial efficacy, reduce toxicity, and accomplish local delivery of AMPs. In addition, clinical trials in AMP studies or applications of AMPs within the last five years were summarized. Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
15
|
Tang HJ, Lai CC, Chao CM. Changing Epidemiology of Respiratory Tract Infection during COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:antibiotics11030315. [PMID: 35326778 PMCID: PMC8944752 DOI: 10.3390/antibiotics11030315] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
The outbreak of COVID-19 has significantly changed the epidemiology of respiratory tract infection in several ways. The implementation of non-pharmaceutical interventions (NPIs) including universal masking, hand hygiene, and social distancing not only resulted in a decline in reported SARS-CoV-2 cases but also contributed to the decline in the non-COVID-19 respiratory tract infection-related hospital utilization. Moreover, it also led to the decreased incidence of previous commonly encountered respiratory pathogens, such as influenza and Streptococcus pneumoniae. Although antimicrobial agents are essential for treating patients with COVID-19 co-infection, the prescribing of antibiotics was significantly higher than the estimated prevalence of bacterial co-infection, which indicated the overuse of antibiotics or unnecessary antibiotic use during the COVID-19 pandemic. Furthermore, inappropriate antimicrobial exposure may drive the selection of drug-resistant microorganisms, and the disruption of infection control in COVID-19 setting measures may result in the spread of multidrug-resistant organisms (MDROs). In conclusion, NPIs could be effective in preventing respiratory tract infection and changing the microbiologic distribution of respiratory pathogens; however, we should continue with epidemiological surveillance to establish updated information, antimicrobial stewardship programs for appropriate use of antibiotic, and infection control prevention interventions to prevent the spread of MDROs during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan;
| | - Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan 710, Taiwan;
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan
- Correspondence:
| |
Collapse
|