1
|
Zampieri A, Carraro L, Mohammadpour H, Rovere GD, Milan M, Fasolato L, Cardazzo B. Presence and characterization of the human pathogenic Vibrio species in the microbiota of Manila clams using cultural and molecular methods. Int J Food Microbiol 2025; 433:111113. [PMID: 39987648 DOI: 10.1016/j.ijfoodmicro.2025.111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
The North Adriatic lagoons and the Po River Delta are important areas for farming Manila clams (Ruditapes philippinarum). These areas have been heavily impacted by climate change, reducing livestock numbers and increasing pathogen spread. Shellfish, particularly clams, are primary vectors for Vibrio pathogens affecting humans. In this study, the occurrence of human pathogenic Vibrio species on Manila clams was investigated using an integrated approach that combined culture-dependent and culture-independent techniques. Samples were collected over three years from farming areas in the northeastern Adriatic lagoons and the Po River Delta, regions seriously impacted by climate change and pollution. In this study, species of the human pathogen Vibrio were analyzed in the clam microbiota and characterized using recA-pyrH metabarcoding and shotgun metagenomics. Human pathogenic Vibrio species were widespread in the clam microbiota, especially in summer, demonstrating that the environmental conditions on the northern Adriatic coasts allowed the growth of these bacteria. V. parahaemolyticus and V. vulnificus were also quantified using qPCR in <50 % of summer samples Shotgun metagenomics revealed the similarity of V. parahaemolyticus strains to other worldwide genomes, enabling improved pathogen identification and tracking. In the future, climate change could cause these conditions to become even more favorable to these bacteria, potentially increasing pathogen spread. Consequently, enhanced monitoring and control of both the environment and seafood products should be planned to ensure food safety.
Collapse
Affiliation(s)
- Angela Zampieri
- Department of Comparative Biomedicine and Food Science (University of Padova), University of Padua, Viale Università 16, 35020 Legnaro, Pd, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science (University of Padova), University of Padua, Viale Università 16, 35020 Legnaro, Pd, Italy
| | - Hooriyeh Mohammadpour
- Department of Comparative Biomedicine and Food Science (University of Padova), University of Padua, Viale Università 16, 35020 Legnaro, Pd, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science (University of Padova), University of Padua, Viale Università 16, 35020 Legnaro, Pd, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science (University of Padova), University of Padua, Viale Università 16, 35020 Legnaro, Pd, Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science (University of Padova), University of Padua, Viale Università 16, 35020 Legnaro, Pd, Italy.
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science (University of Padova), University of Padua, Viale Università 16, 35020 Legnaro, Pd, Italy
| |
Collapse
|
2
|
Kim SY, Randall JR, Gu R, Nguyen QD, Davies BW. Antibacterial action, proteolytic immunity, and in vivo activity of a Vibrio cholerae microcin. Cell Host Microbe 2024; 32:1959-1971.e6. [PMID: 39260372 PMCID: PMC11563924 DOI: 10.1016/j.chom.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Microcins are small antibacterial proteins that mediate interbacterial competition. Their narrow-spectrum activity provides opportunities to discover microbiome-sparing treatments. However, microcins have been found almost exclusively in Enterobacteriaceae. Their broader existence and potential implications in other pathogens remain unclear. Here, we identify and characterize a microcin active against pathogenic Vibrio cholerae: MvcC. We show that MvcC is reliant on the outer membrane porin OmpT to cross the outer membrane. MvcC then binds the periplasmic protein OppA to reach and disrupt the cytoplasmic membrane. We demonstrate that MvcC's cognate immunity protein is a protease, which precisely cleaves MvcC to neutralize its activity. Importantly, we show that MvcC is active against diverse cholera isolates and in a mouse model of V. cholerae colonization. Our results provide a detailed analysis of a microcin outside of Enterobacteriaceae and its potential to influence V. cholerae infection.
Collapse
Affiliation(s)
- Sun-Young Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Justin R Randall
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Richard Gu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Quoc D Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Zhao D, Ali A, Zuck C, Uy L, Morris JG, Wong ACN. Vibrio cholerae Invasion Dynamics of the Chironomid Host Are Strongly Influenced by Aquatic Cell Density and Can Vary by Strain. Microbiol Spectr 2023; 11:e0265222. [PMID: 37074192 PMCID: PMC10269514 DOI: 10.1128/spectrum.02652-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023] Open
Abstract
Cholera has been a human scourge since the early 1800s and remains a global public health challenge, caused by the toxigenic strains of the bacterium Vibrio cholerae. In its aquatic reservoirs, V. cholerae has been shown to live in association with various arthropod hosts, including the chironomids, a diverse insect family commonly found in wet and semiwet habitats. The association between V. cholerae and chironomids may shield the bacterium from environmental stressors and amplify its dissemination. However, the interaction dynamics between V. cholerae and chironomids remain largely unknown. In this study, we developed freshwater microcosms with chironomid larvae to test the effects of cell density and strain on V. cholerae-chironomid interactions. Our results show that chironomid larvae can be exposed to V. cholerae up to a high inoculation dose (109 cells/mL) without observable detrimental effects. Meanwhile, interstrain variability in host invasion, including prevalence, bacterial load, and effects on host survival, was highly cell density-dependent. Microbiome analysis of the chironomid samples by 16S rRNA gene amplicon sequencing revealed a general effect of V. cholerae exposure on microbiome species evenness. Taken together, our results provide novel insights into V. cholerae invasion dynamics of the chironomid larvae with respect to various doses and strains. The findings suggest that aquatic cell density is a crucial driver of V. cholerae invasion success in chironomid larvae and pave the way for future work examining the effects of a broader dose range and environmental variables (e.g., temperature) on V. cholerae-chironomid interactions. IMPORTANCE Vibrio cholerae is the causative agent of cholera, a significant diarrheal disease affecting millions of people worldwide. Increasing evidence suggests that the environmental facets of the V. cholerae life cycle involve symbiotic associations with aquatic arthropods, which may facilitate its environmental persistence and dissemination. However, the dynamics of interactions between V. cholerae and aquatic arthropods remain unexplored. This study capitalized on using freshwater microcosms with chironomid larvae to investigate the effects of bacterial cell density and strain on V. cholerae-chironomid interactions. Our results suggest that aquatic cell density is the primary determinant of V. cholerae invasion success in chironomid larvae, while interstrain variability in invasion outcomes can be observed under specific cell density conditions. We also determined that V. cholerae exposure generally reduces species evenness of the chironomid-associated microbiome. Collectively, these findings provide novel insights into V. cholerae-arthropod interactions using a newly developed experimental host system.
Collapse
Affiliation(s)
- Dianshu Zhao
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Cameron Zuck
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Laurice Uy
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Adam Chun-Nin Wong
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Chrystal PW, Lambacher NJ, Doucette LP, Bellingham J, Schiff ER, Noel NCL, Li C, Tsiropoulou S, Casey GA, Zhai Y, Nadolski NJ, Majumder MH, Tagoe J, D'Esposito F, Cordeiro MF, Downes S, Clayton-Smith J, Ellingford J, Mahroo OA, Hocking JC, Cheetham ME, Webster AR, Jansen G, Blacque OE, Allison WT, Au PYB, MacDonald IM, Arno G, Leroux MR. The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision. Nat Commun 2022; 13:6595. [PMID: 36329026 PMCID: PMC9633640 DOI: 10.1038/s41467-022-33820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.
Collapse
Affiliation(s)
- Paul W Chrystal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Nils J Lambacher
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Lance P Doucette
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | | | - Elena R Schiff
- Moorfields Eye Hospital, London, UK
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicole C L Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geoffrey A Casey
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Yi Zhai
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan J Nadolski
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Mohammed H Majumder
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Julia Tagoe
- Lethbridge Outreach Genetics Service, Alberta Health Services, Lethbridge, AB, Canada
| | - Fabiana D'Esposito
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- ICORG, Imperial College London, London, UK
| | | | - Susan Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
- Genomics England, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Jennifer C Hocking
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gert Jansen
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada.
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, London, UK.
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|