1
|
Mitchell JK, Matthee S, Ndhlovu A, Miller M, Buss P, Matthee CA. The Microbiome and Coxiella Diversity Found in Amblyomma hebraeum and Dermacentor rhinocerinus Ticks Sampled from White Rhinoceros. MICROBIAL ECOLOGY 2025; 88:48. [PMID: 40402315 PMCID: PMC12098525 DOI: 10.1007/s00248-025-02549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
The microbiome and the prevalence of the pathogenic bacterium Coxiella burnetii in ticks associated with white rhinoceros, Ceratotherium simum, is unknown. Targeted Illumina 16S rRNA amplicon sequencing was used to characterize the bacterial microbiome diversity found within 40 Amblyomma hebraeum and 40 Dermacentor rhinocerinus ticks collected from 40 white rhinoceros individuals in the Kruger National Park, South Africa. Specific emphasis was also given to further investigate the prevalence of the pathogenic C. burnetti in these tick species. At the phylum level, Proteobacteria dominated both tick microbiomes, followed by Actinobacteria and Firmicutes; Coxiella was the most abundant genus within A. hebraeum and Rickettsia within D. rhinocerinus. While alpha diversity did not differ significantly between the two tick species, beta diversity revealed significant species-specific differences in bacterial community composition. Additionally, there was no correlation between sampling region and microbiome diversity or composition for either tick species. Twenty-five Coxiella amplicon sequence variants (ASVs) were identified, forming three distinct monophyletic Coxiella clades and a fourth single ASV lineage. The Coxiella clades showed a correlation to tick species identity with D. rhinocerinus harboring significantly greater Coxiella diversity than A. hebraeum-potentially indicative of different coevolutionary pathways between the bacteria and their respective hosts. PCR of the IS1111 transposase gene for 238 ticks detected a 66.1% (56.7-74.4%) prevalence for C. burnetii in D. rhinocerinus compared to 55.8% in A. hebraeum (46.5-64.8%). These findings support a notion that each tick species is characterized by its own microbiome community composition and that both A. hebraeum and D. rhinocerinus may act as reservoirs and potential vectors of C. burnetii to white rhinoceros.
Collapse
Affiliation(s)
- Jemma K Mitchell
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Sonja Matthee
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Andrew Ndhlovu
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- School for Climate Studies, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Michele Miller
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Peter Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Private Bag X402, Skukuza, 1350, South Africa
| | - Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
2
|
Smit A, Mulandane FC, Wójcik SH, Malabwa C, Sili G, Mandara S, Vineer HR, Dlamkile Z, Stoltsz WH, Morar-Leather D, Makepeace BL, Neves L. Infection Rates and Characterisation of Rickettsia africae (Rickettsiaceae) Detected in Amblyomma Species from Southern Africa. Microorganisms 2024; 12:1663. [PMID: 39203504 PMCID: PMC11357051 DOI: 10.3390/microorganisms12081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Tick-borne rickettsioses are considered among the oldest known vector-borne zoonotic diseases. Among the rickettsiae, Rickettsia africae is the most reported and important in Africa, as it is the aetiological agent of African tick bite fever (ATBF). Studies describing the prevalence of R. africae in southern Africa are fragmented, as they are limited to small geographical areas and focused on Amblyomma hebraeum and Amblyomma variegatum as vectors. Amblyomma spp. ticks were collected in Angola, Mozambique, South Africa, Zambia and Zimbabwe during the sampling period from March 2020 to September 2022. Rickettsia africae was detected using the ompA gene, while characterisation was conducted using omp, ompA, ompB and gltA genes. In total, 7734 Amblyomma spp. ticks were collected and were morphologically and molecularly identified as Amblyomma eburneum, A. hebraeum, Amblyomma pomposum and A. variegatum. Low levels of variability were observed in the phylogenetic analysis of the R. africae concatenated genes. The prevalence of R. africae ranged from 11.7% in South Africa to 35.7% in Zambia. This is one of the largest studies on R. africae prevalence in southern Africa and highlights the need for the inclusion of ATBF as a differential diagnosis when inhabitants and travellers present with flu-like symptoms in the documented countries.
Collapse
Affiliation(s)
- Andeliza Smit
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | | | - Stephané H. Wójcik
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | - Choolwe Malabwa
- Central Veterinary Research Institute, Lusaka P.O. Box 33980, Zambia;
| | - Gourgelia Sili
- Department of Basic Science, Faculty of Veterinary Medicine, University Jose Eduardo dos Santos, Huambo P.O. Box 2458, Angola;
| | - Stephen Mandara
- Department of Animal Production Sciences, Marondera University of Agricultural Sciences and Technology, Marondera P.O. Box 35, Zimbabwe;
| | - Hannah Rose Vineer
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Zinathi Dlamkile
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | - Wilhelm H. Stoltsz
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | - Darshana Morar-Leather
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
| | - Benjamin L. Makepeace
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Luis Neves
- Ticks Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (S.H.W.); (Z.D.); (W.H.S.); (D.M.-L.); (L.N.)
- Biotechnology Centre, Eduardo Mondlane University, Maputo 1102, Mozambique;
| |
Collapse
|
3
|
Ichikawa T, Qiu Y, Ando S, Takeuchi Y, Nagasaka A. The case of Mediterranean spotted fever of the traveler returned from Zambia. Ticks Tick Borne Dis 2024; 15:102347. [PMID: 38714072 DOI: 10.1016/j.ttbdis.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
We report the case of a traveler who returned from Zambia and was diagnosed with Mediterranean spotted fever (MSF), an infectious disease caused by Rickettsia conorii conorii. The patient presented to Sapporo City General Hospital with symptoms of fever, malaise, headache, and rash. The pathogen was identified by Polymerase Chain Reaction assays and subsequent analyses. The patient improved with 10-day treatment of oral doxycycline. Although some cases of MSF have been reported in sub-Saharan Africa, none have been reported in Zambia. Rhipicephalus sanguineus sensu lato, the vector of the Rickettsia conorii conorii, has been found in various areas of Zambia. Our case report highlights the potential threat of Mediterranean spotted fever in urban areas of Zambia.
Collapse
Affiliation(s)
- Takahiro Ichikawa
- Sapporo City General Hospital Department of Infectious Diseases, 13-1-1, Kita-11-jonishi, Chuo-ku, Sapporo 060-8604, Japan.
| | - Yongjin Qiu
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo: Kita 8, Nishi 5, Kita-ku, Sapporo 060-0808, Japan
| | - Shuji Ando
- National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuto Takeuchi
- Sapporo City General Hospital Department of Infectious Diseases, 13-1-1, Kita-11-jonishi, Chuo-ku, Sapporo 060-8604, Japan
| | - Atsushi Nagasaka
- Sapporo City General Hospital Department of Infectious Diseases, 13-1-1, Kita-11-jonishi, Chuo-ku, Sapporo 060-8604, Japan
| |
Collapse
|
4
|
Mbiri P, Matomola OC, Muleya W, Mhuulu L, Diegaardt A, Noden BH, Changula K, Chimwamurombe P, Matos C, Weiss S, Nepolo E, Chitanga S. Molecular Detection and Characterization of Rickettsia Species in Ixodid Ticks from Selected Regions of Namibia. Microorganisms 2024; 12:912. [PMID: 38792739 PMCID: PMC11124484 DOI: 10.3390/microorganisms12050912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Rickettsial pathogens are among the emerging and re-emerging vector-borne zoonoses of public health importance. Reports indicate human exposure to Rickettsial pathogens in Namibia through serological surveys, but there is a lack of data on infection rates in tick vectors, hindering the assessment of the relative risk to humans. Our study sought to screen Ixodid ticks collected from livestock for the presence of Rickettsia species in order to determine infection rates in ticks and to determine the Rickettsia species circulating in the country. We collected and pooled Hyalomma and Rhipicephalus ticks from two adjacent regions of Namibia (Khomas and Otjozondjupa) and observed an overall minimum Rickettsia infection rate of 8.6% (26/304), with an estimated overall pooled prevalence of 9.94% (95% CI: 6.5-14.3). There were no statistically significant differences in the estimated pooled prevalence between the two regions or tick genera. Based on the nucleotide sequence similarity and phylogenetic analysis of the outer membrane protein A (n = 9) and citrate synthase (n = 12) genes, BLAST analysis revealed similarity between Rickettsia africae (n = 2) and Rickettsia aeschlimannii (n = 11), with sequence identities ranging from 98.46 to 100%. Our initial study in Namibia indicates that both zoonotic R. africae and R. aeschlimannii are in circulation in the country, with R. aeschlimannii being the predominant species.
Collapse
Affiliation(s)
- Pricilla Mbiri
- Department of Production Animal Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Ophelia Chuma Matomola
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Walter Muleya
- Department of Preclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Lusia Mhuulu
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Azaria Diegaardt
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Bruce Howard Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Percy Chimwamurombe
- Department of Natural and Applied Sciences, Namibia University of Science & Technology, Windhoek 10005, Namibia;
| | - Carolina Matos
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Sabrina Weiss
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Emmanuel Nepolo
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Simbarashe Chitanga
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, P.O. Box 50110, Lusaka 10101, Zambia
| |
Collapse
|
5
|
Pardo A, Villasante A, Romero J. Skin Microbial Community Associated to Strawberry Disease in Farmed Rainbow Trout ( Oncorhynchus mykiss Walbaum, 1792). Microorganisms 2024; 12:217. [PMID: 38276202 PMCID: PMC10818565 DOI: 10.3390/microorganisms12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Aquaculture plays a crucial role in addressing the growing global demand for food. However, diseases associated with intensive aquaculture practices, especially those affecting the skin, can present significant challenges to both fish health and the industry as a whole. Strawberry disease (SD), also known as red-mark syndrome, is a persistent and non-lethal skin condition observed in Rainbow Trout (Oncorhynchus mykiss) in the United States and various European countries. SD is a nonlethal skin condition of an unclear etiology that affects rainbow trout reared in freshwater close to the harvest period. We used a RNA-based approach to examine active microbiota in the SD skin lesions and compared to non-injured skin. Our results, based on using 16S rRNA gene next-generation sequencing, showed that the skin microbiota was dominated by the phyla Firmicutes, Proteobacteria, and Actinobacteria. The comparisons of the skin microbiota between injured and non-injured samples showed differences in the alpha diversity (Fisher index) and beta diversity metrics (ANOSIM). At the genus level, both Pseudomonas and Candidatus Midichloria were highlighted as the most abundant taxa detected in samples obtained from fish affected with strawberry diseases. In contrast, the most abundant taxa in non-injured skin were Escherichia-Shigella, Streptococcus, and Pseudoalteromonas. In conclusion, our study on SD revealed distinct differences in the microbiota composition between skin lesions and non-injured skin. This is the first description of microbiota associated with SD-injured skin samples using an RNA approach.
Collapse
Affiliation(s)
- Alda Pardo
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (A.P.); (A.V.)
- Cooperative Program for Aquaculture (Ph.D.), Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Alejandro Villasante
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (A.P.); (A.V.)
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500000, Chile
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (A.P.); (A.V.)
| |
Collapse
|
6
|
Majid A, Almutairi MM, Alouffi A, Tanaka T, Yen TY, Tsai KH, Ali A. First report of spotted fever group Rickettsia aeschlimannii in Hyalomma turanicum, Haemaphysalis bispinosa, and Haemaphysalis montgomeryi infesting domestic animals: updates on the epidemiology of tick-borne Rickettsia aeschlimannii. Front Microbiol 2023; 14:1283814. [PMID: 38163073 PMCID: PMC10756324 DOI: 10.3389/fmicb.2023.1283814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Tick-borne Rickettsia spp. have long been known as causative agents for zoonotic diseases. We have previously characterized Rickettsia spp. in different ticks infesting a broad range of hosts in Pakistan; however, knowledge regarding Rickettsia aeschlimannii in Haemaphysalis and Hyalomma ticks is missing. This study aimed to obtain a better understanding about R. aeschlimannii in Pakistan and update the knowledge about its worldwide epidemiology. Among 369 examined domestic animals, 247 (66%) were infested by 872 ticks. Collected ticks were morphologically delineated into three genera, namely, Rhipicephalus, Hyalomma, and Haemaphysalis. Adult females were the most prevalent (number ₌ 376, 43.1%), followed by nymphs (303, 34.74%) and males (193, 22.13%). Overall, genomic DNA samples of 223 tick were isolated and screened for Rickettsia spp. by the amplification of rickettsial gltA, ompA, and ompB partial genes using conventional PCR. Rickettsial DNA was detected in 8 of 223 (3.58%) ticks including nymphs (5 of 122, 4.0%) and adult females (3 of 86, 3.48%). The rickettsial gltA, ompA, and ompB sequences were detected in Hyalomma turanicum (2 nymphs and 1 adult female), Haemaphysalis bispinosa (1 nymph and 1 adult female), and Haemaphysalis montgomeryi (2 nymphs and 1 adult female). These rickettsial sequences showed 99.71-100% identity with R. aeschlimannii and phylogenetically clustered with the same species. None of the tested Rhipicephalus microplus, Hyalomma isaaci, Hyalomma scupense, Rhipicephalus turanicus, Hyalomma anatolicum, Rhipicephalus haemaphysaloides, Rhipicephalus sanguineus, Haemaphysalis cornupunctata, and Haemaphysalis sulcata ticks were found positive for rickettsial DNA. Comprehensive surveillance studies should be adopted to update the knowledge regarding tick-borne zoonotic Rickettsia species, evaluate their risks to humans and livestock, and investigate the unexamined cases of illness after tick bite among livestock holders in the country.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tsai-Ying Yen
- Department of Public Health, Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Department of Public Health, Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
7
|
Zeb J, Song B, Khan MA, Senbill H, Aziz MU, Hussain S, Waris A, E-Tabor A, Sparagano OA. Genetic diversity of vector-borne pathogens in ixodid ticks infesting dogs from Pakistan with notes on Ehrlichia canis, Rickettsia raoultii and Dirofilaria immitis detection. Parasit Vectors 2023; 16:214. [PMID: 37381006 DOI: 10.1186/s13071-023-05804-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Vector-/tick-borne pathogens (V/TBPs) pose a potential threat to human and animal health globally. Information regarding canine V/TBPs is scarce and no specific study has been conducted so far to explore the microbial diversity within ticks infesting dogs from Pakistan. Herein, this knowledge gap is addressed by assessing the genetic diversity and prevalence pattern of V/TBPs in ixodid ticks with special implications for public and canine health. METHODS A total of 1150 hard ticks were collected from 300 dogs across central Khyber Pakhtunkhwa (KP), Pakistan. After morpho-molecular identification, 120 tick samples were screened for the presence of V/TBPs by amplifying 16S rRNA/gltA (Rickettsia/Ehrlichia and Wolbachia sp.), 18S rRNA (Theileria sp.) and cox1 (Dirofilaria sp.) genes through PCR followed by sequencing and phylogenetic study. RESULTS In toto, 50 ixodid ticks (50/120, 41.7%) were found positive for V/TBPs DNA. The detected V/TBPs were categorized into five genera and eight species, viz. Ehrlichia (E. canis and Ehrlichia sp.), Rickettsia (R. massiliae, R. raoultii and Rickettsia sp.), Theileria (T. annulata), Dirofilaria (D. immitis) and Wolbachia (Wolbachia sp.). The pathogen prevalence patterns showed that R. massiliae was the most prevalent zoonotic V/TBP (19.5%), followed by E. canis (10.8%), Rickettsia sp. (7.5%), R. raoultii (6.7%), T. annulata (5.8%), D. immitis (5.8%), Wolbachia sp. (4.2%) and Ehrlichia sp. (3.3%), respectively. Among the screened tick species, most Rhipicephalus sanguineus sensu lato samples were found positive for V/TBP DNA (20/20,100%) followed by Rh. turanicus sensu stricto (13/20, 65%), Hyalomma dromedarii (8/20, 40%), Rh. haemaphysaloides (6/20, 30%), Hy. excavatum (2/20, 10%) and Rh. microplus (1/20, 5%). Co-occurrence of V/TBP was also detected in tick specimens (single V/TBP infection: 32 ticks; double and triple: 13 and 5 tick samples). The detected pathogens shared a phylogenetic relationship with similar isolates published in NCBI GenBank from Old and New World countries. CONCLUSION Ixodid ticks infesting dogs harbor a diverse array of V/TBPs including zoonotic agents from Pakistan. Furthermore, the presence of D. immitis in ticks that infest dogs raises the possibility that this parasite has either attained its dead-end host (i.e. the tick) while feeding on dogs or has expanded its range of intermediate/paratenic hosts. Further research work is needed to investigate the epidemiology and confirm the vector competence of screened tick species for these pathogens from Pakistan.
Collapse
Affiliation(s)
- Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Sciences, City University of Hong Kong, Kowloon, 518057, 999077, Hong Kong, SAR, China.
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Sciences, City University of Hong Kong, Kowloon, 518057, 999077, Hong Kong, SAR, China
| | - Munsif Ali Khan
- Vector-Borne Diseases Control Unit, District Health Office, Abbottabad, 22010, Pakistan
| | - Haytham Senbill
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Sciences, City University of Hong Kong, Kowloon, 518057, 999077, Hong Kong, SAR, China
| | - Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Sciences, City University of Hong Kong, Kowloon, 518057, 999077, Hong Kong, SAR, China
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, 518057, 999077, Hong Kong, SAR, China
| | - Ala E-Tabor
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Olivier Andre Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Sciences, City University of Hong Kong, Kowloon, 518057, 999077, Hong Kong, SAR, China.
| |
Collapse
|
8
|
Molecular survey of Anaplasma and Ehrlichia species in livestock ticks from Kassena-Nankana, Ghana; with a first report of Anaplasma capra and Ehrlichia minasensis. Arch Microbiol 2023; 205:92. [PMID: 36795247 DOI: 10.1007/s00203-023-03430-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Tick-borne pathogens harm livestock production and pose a significant risk to public health. To combat these effects, it is necessary to identify the circulating pathogens to create effective control measures. This study identified Anaplasma and Ehrlichia species in ticks collected from livestock in the Kassena-Nankana Districts between February 2020 and December 2020. A total of 1550 ticks were collected from cattle, sheep and goats. The ticks were morphologically identified, pooled and screened for pathogens using primers that amplify a 345 bp fragment of the 16SrRNA gene and Sanger sequencing. The predominant tick species collected was Amblyomma variegatum (62.98%). From the 491 tick pools screened, 34 (6.92%) were positive for Ehrlichia and Anaplasma. The pathogens identified were Ehrlichia canis (4.28%), Ehrlichia minasensis (1.63%), Anaplasma capra (0.81%) and Anaplasma marginale (0.20%). This study reports the first molecular identification of the above-mentioned Ehrlichia and Anaplasma species in ticks from Ghana. With the association of human infections with the zoonotic pathogen A. capra, livestock owners are at risk of infections, calling for the development of effective control measures.
Collapse
|
9
|
Onyiche TE, Labruna MB, Saito TB. Unraveling the epidemiological relationship between ticks and rickettsial infection in Africa. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.952024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tick-borne rickettsioses are emerging and re-emerging diseases of public health concern caused by over 30 species of Rickettsia. Ticks are obligate hematophagous arthropods with over 700 species of Ixodid ticks known worldwide. The escalating geographical dispersal of tick vectors and concomitant increase in the incidences of tick-borne diseases have fueled interest in the ecology of tick-borne pathogens. This review focuses on aspects of the Rickettsia pathogen, including biology, taxonomy, phylogeny, genetic diversity, epidemiology of the disease, and the role of vertebrate host in the perpetuation of rickettsioses in Africa. Our review also highlights some of the species of Rickettsia that are responsible for disease, the role of tick vectors (both hard and soft ticks) and the species of Rickettsia associated with diverse tick species across the continent. Additionally, this article emphasizes the evolutionary perspective of rickettsiae perpetuation and the possible role of amplifying vertebrate host and other small mammals, domestic animals and wildlife in the epidemiology of Rickettsia species. We also specifically, discussed the role of avian population in the epidemiology of SFG rickettsiae. Furthermore, we highlighted tick-borne rickettsioses among travelers due to African tick-bite fever (ATBF) and the challenges to surveillance of rickettsial infection, and research on rickettsiology in Africa. Our review canvasses the need for more rickettsiologists of African origin based within the continent to further research towards understanding the biology, characterization, and species distribution, including the competent tick vectors involved in their transmission of rickettsiae across the continent in collaboration with established researchers in western countries. We further highlighted the need for proper funding to encourage research despite competing demands for resources across the various sectors. We finalize by discussing the similarities between rickettsial diseases around the world and which steps need to be taken to help foster our understanding on the eco-epidemiology of rickettsioses by bridging the gap between the growing epidemiological data and the molecular characterization of Rickettsia species.
Collapse
|