1
|
Rangaraj S, Agarwal A, Banerjee S. Bird's Eye View on Mycobacterium tuberculosis-HIV Coinfection: Understanding the Molecular Synergism, Challenges, and New Approaches to Therapeutics. ACS Infect Dis 2025. [PMID: 40229972 DOI: 10.1021/acsinfecdis.4c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is the most common secondary infection in the Human Immunodeficiency Virus (HIV) infected population, accounting for more than one-fourth of deaths in people living with HIV (PLWH). Reciprocally, HIV infection increases the susceptibility to primary TB or reactivation of latent TB by several folds. The synergistic interactions between M.tb and HIV not only potentiate their deleterious impact but also complicate the clinical management of both the diseases. M.tb-HIV coinfected patients have a high risk of failure of accurate diagnosis, treatment inefficiency for both TB and HIV, concurrent nontuberculous mycobacterial infections, other comorbidities such as diabetes mellitus, severe cytotoxicity due to drug overburden, and immune reconstitution inflammatory syndrome (IRIS). The need of the hour is to understand M.tb-HIV coinfection biology and their collective impact on the host immunocompetence and to think of out-of-the-box treatment perspectives, including host-directed therapy under the rising view of homeostatic medicines. This review aims to highlight the molecular players, both from the pathogens and host, that facilitate the synergistic interactions and host-associated proteins/enzymes regulating immunometabolism, underlining potential targets for designing and screening chemical inhibitors to reduce the burden of both pathogens concomitantly during M.tb-HIV coinfection. To appreciate the necessity of revisiting therapeutic approaches and research priorities, we provide a glimpse of anti-TB and antiretroviral drug-drug interactions, project the gaps in our understanding of coinfection biology, and also enlist some key research initiatives that will help us deal with the synergistic epidemic of M.tb-HIV coinfection.
Collapse
Affiliation(s)
- Siranjeevi Rangaraj
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Anushka Agarwal
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
2
|
Adduri S, Bohorquez JA, Adejare O, Rincon D, Tucker T, Konduru NV, Yi G. Spatial transcriptomic analysis of HIV and tuberculosis coinfection in a humanized mouse model reveals specific transcription patterns, immune responses and early morphological alteration signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635571. [PMID: 39975088 PMCID: PMC11838271 DOI: 10.1101/2025.01.29.635571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) coinfection is one of the biggest public health concerns worldwide. Both pathogens are adept at modulating immune response and, in the case of Mtb, even inducing structural modification of the affected tissue. The present study aimed at understanding the early phenotypical and functional changes in immune cell infiltration in the affected organ, using a humanized mouse model. The humanized mice were infected with either HIV or Mtb in single infection, or with both pathogens in coinfection. Three weeks after the infection, lung samples were collected, and spatial transcriptomics analysis was performed. This analysis revealed high infiltration of CD4+ T cells in Mtb infection, but not in HIV or coinfection. Coinfected mice also showed a minimal number of NK cells compared to the other groups. In addition to infection status, histological features also influenced the immune cell infiltration pattern in the lungs. Two distinct airway regions with distinct immune cell abundance patterns were detected by spatial transcriptome profiling. A lymphoid cell aggregate detected in coinfection lung exhibited distinct transcript profile. The cellular architecture in the lymphoid cell aggregate did not follow the spatial patterns seen in mature granulomas. However, lymphoid cell aggregates exhibited granuloma gene expression signatures, and pathways associated with reactive oxygen species production, oxidative phosphorylation, and TGFβ and interferon signaling similar to granulomas. This study revealed specific transcription patterns, immune responses and morphological alteration signaling in the early stage of HIV and Mtb infections.
Collapse
Affiliation(s)
- Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | - Jose Alejandro Bohorquez
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | - Omoyeni Adejare
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | | | - Torry Tucker
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | - Nagarjun V Konduru
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | - Guohua Yi
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| |
Collapse
|
3
|
Singh B, Sharan R, Ravichandran G, Escobedo R, Shivanna V, Dick EJ, Hall-Ursone S, Arora G, Alvarez X, Singh DK, Kaushal D, Mehra S. Indoleamine-2,3-dioxygenase inhibition improves immunity and is safe for concurrent use with cART during Mtb/SIV coinfection. JCI Insight 2024; 9:e179317. [PMID: 39114981 PMCID: PMC11383603 DOI: 10.1172/jci.insight.179317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic immune activation promotes tuberculosis (TB) reactivation in the macaque Mycobacterium tuberculosis (M. tuberculosis)/SIV coinfection model. Initiating combinatorial antiretroviral therapy (cART) early lowers the risk of TB reactivation, but immune activation persists. Studies of host-directed therapeutics (HDTs) that mitigate immune activation are, therefore, required. Indoleamine 2,3, dioxygenase (IDO), a potent immunosuppressor, is one of the most abundantly induced proteins in NHP and human TB granulomas. Inhibition of IDO improves immune responses in the lung, leading to better control of TB, including adjunctive to TB chemotherapy. The IDO inhibitor D-1 methyl tryptophan (D1MT) is, therefore, a bona fide TB HDT candidate. Since HDTs against TB are likely to be deployed in an HIV coinfection setting, we studied the effect of IDO inhibition in M. tuberculosis/SIV coinfection, adjunctive to cART. D1MT is safe in this setting, does not interfere with viral suppression, and improves the quality of CD4+ and CD8+ T cell responses, including reconstitution, activation and M. tuberculosis-specific cytokine production, and access of CD8+ T cells to the lung granulomas; it reduces granuloma size and necrosis, type I IFN expression, and the recruitment of inflammatory IDO+ interstitial macrophages (IMs). Thus, trials evaluating the potential of IDO inhibition as HDT in the setting of cART in M. tuberculosis/HIV coinfected individuals are warranted.
Collapse
|
4
|
Bohórquez JA, Adduri S, Ansari D, John S, Florence J, Adejare O, Singh G, Konduru NV, Jagannath C, Yi G. A novel humanized mouse model for HIV and tuberculosis co-infection studies. Front Immunol 2024; 15:1395018. [PMID: 38799434 PMCID: PMC11116656 DOI: 10.3389/fimmu.2024.1395018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Danish Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Sahana John
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Jon Florence
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Omoyeni Adejare
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Gaurav Singh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| | - Nagarjun V. Konduru
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, United States
| |
Collapse
|
5
|
Bohórquez JA, Adduri S, Ansari D, John S, Florence J, Adejare O, Singh G, Konduru N, Jagannath C, Yi G. A Novel Humanized Mouse Model for HIV and Tuberculosis Co-infection Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583545. [PMID: 38496484 PMCID: PMC10942347 DOI: 10.1101/2024.03.05.583545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. Further, co-infections with HIV and Mtb have severe effects in the host, with people infected with HIV being fifteen to twenty-one times more likely to develop active TB. The use of an appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans would be a useful tool for conducting basic and translational research in HIV/Mtb infections. The present study was focused on developing a humanized mouse model for investigations on HIV-Mtb co-infection. Using NSG-SGM3 mice that can engraft human stem cells, our studies showed that they were able to engraft human CD34+ stem cells which then differentiate into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced the development of granulomatous lesions in the lungs, detected by CT scan and histopathology. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Our results suggest that the humanized NSG-SGM3 mice are able to recapitulate the effects of HIV and Mtb infections and co-infection in the human host at pathological, immunological and metabolism levels, providing a dependable small animal model for studying HIV/Mtb co-infection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Danish Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Sahana John
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Jon Florence
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Omoyeni Adejare
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Gaurav Singh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Nagarjun Konduru
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|