1
|
Manjate F, João ED, Mwangi P, Chirinda P, Mogotsi M, Garrine M, Messa A, Vubil D, Nobela N, Kotloff K, Nataro JP, Nhampossa T, Acácio S, Weldegebriel G, Tate JE, Parashar U, Mwenda JM, Alonso PL, Cunha C, Nyaga M, Mandomando I. Genomic analysis of DS-1-like human rotavirus A strains uncovers genetic relatedness of NSP4 gene with animal strains in Manhiça District, Southern Mozambique. Sci Rep 2024; 14:30705. [PMID: 39730435 PMCID: PMC11680989 DOI: 10.1038/s41598-024-79767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024] Open
Abstract
Post rotavirus vaccine introduction in Mozambique (September 2015), we documented a decline in rotavirus-associated diarrhoea and genotypes changes in our diarrhoeal surveillance spanning 2008-2021. This study aimed to perform whole-genome sequencing of rotavirus strains from 2009 to 2012 (pre-vaccine) and 2017-2018 (post-vaccine). Rotavirus strains previously detected by conventional PCR as G2P[4], G2P[6], G3P[4], G8P[4], G8P[6], and G9P[6] from children with moderate-to-severe and less-severe diarrhoea and without diarrhoea (healthy community controls) were sequenced using Illumina MiSeq® platform and analysed using bioinformatics tools. All these G and P-type combinations exhibited DS-1-like constellation in the rest of the genome segments as, I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that strains from children with and without diarrhoea clustered together with other Mozambican and global strains. Notably, the NSP4 gene of strains G3P[4] and G8P[4] in children with diarrhoea clustered with animal strains, such as bovine and caprine, with similarity identities ranging from 89.1 to 97.0% nucleotide and 89.5-97.0% amino acids. Our findings revealed genetic similarities among rotavirus strains from children with and without diarrhoea, as well as with animal strains, reinforcing the need of implementing studies with One Health approach in our setting, to elucidate the genetic diversity of this important pathogen.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Eva D João
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Peter Mwangi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Milton Mogotsi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Karen Kotloff
- Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - James P Nataro
- Department of Paediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Goitom Weldegebriel
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Jacqueline E Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Umesh Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Jason M Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Pedro L Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Celso Cunha
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Martin Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique.
- ISGlobal, Barcelona, 08036, Spain.
| |
Collapse
|
2
|
Potgieter RL, Mwangi PN, Mogotsi MT, Uwimana J, Mutesa L, Muganga N, Murenzi D, Tusiyenge L, Seheri ML, Steele AD, Mwenda JM, Nyaga MM. Genomic Analysis of Rwandan G9P[8] Rotavirus Strains Pre- and Post-RotaTeq ® Vaccine Reveals Significant Distinct Sub-Clustering in a Post-Vaccination Cohort. Viruses 2023; 15:2321. [PMID: 38140562 PMCID: PMC10747556 DOI: 10.3390/v15122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Although the introduction of rotavirus vaccines has substantially contributed to the reduction in rotavirus morbidity and mortality, concerns persist about the re-emergence of variant strains that might alter vaccine effectiveness in the long term. The G9 strains re-emerged in Africa during the mid-1990s and have more recently become predominant in some countries, such as Ghana and Zambia. In Rwanda, during the 2011 to 2015 routine surveillance period, G9P[8] persisted during both the pre- and post-vaccine periods. The pre-vaccination cohort was based on the surveillance period of 2011 to 2012, and the post-vaccination cohort was based on the period of 2013 to 2015, excluding 2014. The RotaTeq® vaccine that was first introduced in Rwanda in 2012 is genotypically heterologous to Viral Protein 7 (VP7) G9. This study elucidated the whole genome of Rwandan G9P[8] rotavirus strains pre- and post-RotaTeq® vaccine introduction. Fecal samples from Rwandan children under the age of five years (pre-vaccine n = 23; post-vaccine n = 7), conventionally genotyped and identified as G9P[8], were included. Whole-genome sequencing was then performed using the Illumina® MiSeq platform. Phylogenetic analysis and pair-wise sequence analysis were performed using MEGA6 software. Distinct clustering of three post-vaccination study strains was observed in all 11 gene segments, compared to the other Rwandan G9P[8] study strains. Specific amino acid differences were identified across the gene segments of these three 2015 post-vaccine strains. Important amino acid differences were identified at position N242S in the VP7 genome segment of the three post-vaccine G9 strains compared to the other G9 strains. This substitution occurs at a neutralization epitope site and may slightly affect protein interaction at that position. These findings indicate that the Rwandan G9P[8] strains revealed a distinct sub-clustering pattern among post-vaccination study strains circulating in Rwanda, with changes at neutralization epitopes, which may play a role in neutralization escape from vaccine candidates. This emphasizes the need for continuous whole-genome surveillance to better understand the evolution and epidemiology of the G9P[8] strains post-vaccination.
Collapse
Affiliation(s)
- Robyn-Lee Potgieter
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| | - Peter N. Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| | - Jeannine Uwimana
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Leon Mutesa
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
- Centre for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Narcisse Muganga
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Didier Murenzi
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Lisine Tusiyenge
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (M.L.S.); (A.D.S.)
| | - A. Duncan Steele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (M.L.S.); (A.D.S.)
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 06, Congo;
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| |
Collapse
|
3
|
Degiuseppe JI, Martelli A, Barrios Mathieur C, Stupka JA. Genetic diversity of rotavirus A in Argentina during 2019-2022: detection of G6 strains and insights regarding its dissemination. Arch Virol 2023; 168:251. [PMID: 37702836 DOI: 10.1007/s00705-023-05874-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
One of the challenges associated with introducing a vaccine is monitoring its impact through clinical and molecular surveillance. The aims of this study were to analyze the genetic diversity of rotavirus A in Argentina between 2019 and 2022 and to assess the phylogenetic and phylodynamic features of the unusual G6 strains detected. A significant decline in the Wa-like genogroup strains was observed, and G6 strains were detected for the first time in Argentina, in association with P[8] and P[9]. Spatiotemporal analysis showed that the G6-lineage I strains detected recently in Argentina and Brazil might have emerged from European strains. This study provides recent evidence of the genetic diversity of rotaviruses in isolated cases. It is considered important to support continuous surveillance of rotavirus in the post-vaccine scenario, mainly to evaluate potential changes that may occur after the COVID-19 pandemic.
Collapse
Affiliation(s)
- Juan Ignacio Degiuseppe
- Argentine Reference Laboratory for Rotavirus and Norovirus, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina.
| | - Antonella Martelli
- Laboratory of Clinical Virology, Centro de Educación Médica e Investigaciones Clínicas "Dr. Norberto Quirno" (CEMIC), Galván 4102, Buenos Aires, Argentina
| | - Christian Barrios Mathieur
- Argentine Reference Laboratory for Rotavirus and Norovirus, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina
| | - Juan Andrés Stupka
- Argentine Reference Laboratory for Rotavirus and Norovirus, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina
| |
Collapse
|
4
|
Sashina TA, Velikzhanina EI, Morozova OV, Epifanova NV, Novikova NA. Detection and full-genotype determination of rare and reassortant rotavirus A strains in Nizhny Novgorod in the European part of Russia. Arch Virol 2023; 168:215. [PMID: 37524885 DOI: 10.1007/s00705-023-05838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Reassortant DS-1-like rotavirus A strains have been shown to circulate widely in many countries around the world. In Russia, the prevalence of such strains remains unclear due to the preferred use of the traditional binary classification system. In this work, we obtained partial sequence data from all 11 genome segments and determined the full-genotype constellations of rare and reassortant rotaviruses circulating in Nizhny Novgorod in 2016-2019. DS-1-like G3P[8] and G8P[8] strains were found, reflecting the global trend. Most likely, these strains were introduced into the territory of Russia from other countries but subsequently underwent further evolutionary changes locally. G3P[8], G9P[8], and G12P[8] Wa-like strains of subgenotypic lineages that are unusual for the territory of Russia were also identified. Reassortant G2P[8], G4P[4], and G9P[4] strains with one Wa-like gene (VP4 or VP7) on a DS-1-like backbone were found, and these apparently had a local origin. Feline-like G3P[9] and G6P[9] strains were found to be phylogenetically close to BA222 isolated from a cat in Italy but carried some traces of reassortment with human strains from Russia and other countries. Thus, full-genotype determination of rotavirus A strains in Nizhny Novgorod has clarified some questions related to their origin and evolution.
Collapse
Affiliation(s)
- Tatiana A Sashina
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation.
| | - E I Velikzhanina
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - O V Morozova
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - N V Epifanova
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - N A Novikova
- Laboratory of molecular epidemiology of viral infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| |
Collapse
|
5
|
Manjate F, João ED, Mwangi P, Chirinda P, Mogotsi M, Messa A, Garrine M, Vubil D, Nobela N, Nhampossa T, Acácio S, Tate JE, Parashar U, Weldegebriel G, Mwenda JM, Alonso PL, Cunha C, Nyaga M, Mandomando I. Genomic characterization of the rotavirus G3P[8] strain in vaccinated children, reveals possible reassortment events between human and animal strains in Manhiça District, Mozambique. Front Microbiol 2023; 14:1193094. [PMID: 37342557 PMCID: PMC10277737 DOI: 10.3389/fmicb.2023.1193094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 06/23/2023] Open
Abstract
Mozambique introduced the rotavirus vaccine (Rotarix®; GlaxoSmithKline Biologicals, Rixensart, Belgium) in 2015, and since then, the Centro de Investigação em Saúde de Manhiça has been monitoring its impact on rotavirus-associated diarrhea and the trend of circulating strains, where G3P[8] was reported as the predominant strain after the vaccine introduction. Genotype G3 is among the most commonly detected Rotavirus strains in humans and animals, and herein, we report on the whole genome constellation of G3P[8] detected in two children (aged 18 months old) hospitalized with moderate-to-severe diarrhea at the Manhiça District Hospital. The two strains had a typical Wa-like genome constellation (I1-R1-C1-M1-A1-N1-T1-E1-H1) and shared 100% nucleotide (nt) and amino acid (aa) identities in 10 gene segments, except for VP6. Phylogenetic analysis demonstrated that genome segments encoding VP7, VP6, VP1, NSP3, and NSP4 of the two strains clustered most closely with porcine, bovine, and equine strains with identities ranging from 86.9-99.9% nt and 97.2-100% aa. Moreover, they consistently formed distinct clusters with some G1P[8], G3P[8], G9P[8], G12P[6], and G12P[8] strains circulating from 2012 to 2019 in Africa (Mozambique, Kenya, Rwanda, and Malawi) and Asia (Japan, China, and India) in genome segments encoding six proteins (VP2, VP3, NSP1-NSP2, NSP5/6). The identification of segments exhibiting the closest relationships with animal strains shows significant diversity of rotavirus and suggests the possible occurrence of reassortment events between human and animal strains. This demonstrates the importance of applying next-generation sequencing to monitor and understand the evolutionary changes of strains and evaluate the impact of vaccines on strain diversity.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Eva D. João
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Peter Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Milton Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene, Mozambique
| | - Jacqueline E. Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Umesh Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Goitom Weldegebriel
- African Rotavirus Surveillance Network, Immunization, Vaccines, and Development Program, Regional Office for Africa, World Health Organization, Brazzaville, Democratic Republic of Congo
| | - Jason M. Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines, and Development Program, Regional Office for Africa, World Health Organization, Brazzaville, Democratic Republic of Congo
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Martin Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene, Mozambique
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Mwangi PN, Potgieter RL, Simwaka J, Mpabalwani EM, Mwenda JM, Mogotsi MT, Magagula N, Esona MD, Steele AD, Seheri ML, Nyaga MM. Genomic Analysis of G2P[4] Group A Rotaviruses in Zambia Reveals Positive Selection in Amino Acid Site 7 of Viral Protein 3. Viruses 2023; 15:501. [PMID: 36851715 PMCID: PMC9965253 DOI: 10.3390/v15020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The G2P[4] genotype is among the rotavirus strains that circulate commonly in humans. Several countries have reported its immediate upsurge after the introduction of rotavirus vaccination, raising concern about sub-optimal vaccine effectiveness against this genotype in the long term. This study aimed to gain insight into the evolution of post-vaccine Zambian G2P[4] group A rotavirus (RVA) strains and their overall genetic make-up by analysis of sequence alignments at the amino acid (AA) level. Twenty-nine Zambian G2P[4] rotavirus strains were subjected to whole-genome sequencing using the Illumina MiSeq® platform. All the strains exhibited the typical DS-1-like genotype constellation, and the nucleotide sequences of the 11 genome segments showed high nucleotide similarities (>97%). Phylogenetic analyses together with representative global G2P[4] RVA showed that Zambian strains clustered into human lineages IV (for VP2, VP4, VP7, NSP1, and NSP5), V (for VP1, VP3, VP6, NSP2, and NSP3), and XXIII (for NSP4). The AA differences between the lineages where the study strains clustered and lineages of global reference strains were identified and analyzed. Selection pressure analysis revealed that AA site seven in the Viral Protein 3 (VP3) genome segment was under positive selection. This site occurs in the region of intrinsic disorder in the VP3 protein, and Zambian G2P[4] strains could potentially be utilizing this intrinsically disordered region to survive immune pressure. The Zambian G2P[4] strains from 2012 to 2016 comprised the G2P[4] strains that have been circulating globally since the early 2000s, highlighting the epidemiological fitness of these contemporary G2P[4] strains. Continuous whole-genome surveillance of G2P[4] strains remains imperative to understand their evolution during the post-vaccination period.
Collapse
Affiliation(s)
- Peter N. Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Robyn-Lee Potgieter
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Julia Simwaka
- Institute of Basic and Biomedical Sciences, Department of Biomedical Sciences, The Levy Mwanawasa Medical University, Lusaka 10101, Zambia
| | - Evans M. Mpabalwani
- Department of Paediatrics and Child Health, School of Medicine, University of Zambia, Ridgeway, Lusaka RW50000, Zambia
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 06, Congo
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nonkululeko Magagula
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Mathew D. Esona
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - A. Duncan Steele
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
7
|
Omatola CA, Olaniran AO. Genetic heterogeneity of group A rotaviruses: a review of the evolutionary dynamics and implication on vaccination. Expert Rev Anti Infect Ther 2022; 20:1587-1602. [PMID: 36285575 DOI: 10.1080/14787210.2022.2139239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Human rotavirus remains a major etiology of acute gastroenteritis among under 5-year children worldwide despite the availability of oral vaccines. The genetic instability of rotavirus and the ability to form different combinations from the different G- and P-types reshapes the antigenic landscape of emerging strains which often display limited or no antigen identities with the vaccine strain. As evidence also suggests, the selection of the antigenically distinct novel or rare strains and their successful spread in the human population has raised concerns regarding undermining the effectiveness of vaccination programs. AREAS COVERED We review aspects related to current knowledge about genetic and antigenic heterogeneity of rotavirus, the mechanism of genetic diversity and evolution, and the implication of genetic change on vaccination. EXPERT OPINION Genetic changes in the segmented genome of rotavirus can alter the antigenic landscape on the virion capsid and further promote viral fitness in a fully vaccinated population. Against this background, the potential risk of the appearance of new rotavirus strains over the long term would be better predicted by a continued and increased close monitoring of the variants across the globe to identify any change associated with disease dynamics.
Collapse
Affiliation(s)
- Cornelius A Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, Republic of South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, Republic of South Africa
| |
Collapse
|
8
|
Nogbou ND, Ramashia M, Nkawane GM, Allam M, Obi CL, Musyoki AM. Whole-Genome Sequencing of a Colistin-Resistant Acinetobacter baumannii Strain Isolated at a Tertiary Health Facility in Pretoria, South Africa. Antibiotics (Basel) 2022; 11:594. [PMID: 35625238 PMCID: PMC9138137 DOI: 10.3390/antibiotics11050594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii's (A. baumannii) growing resistance to all available antibiotics is of concern. The study describes a colistin-resistant A. baumannii isolated at a clinical facility from a tracheal aspirate sample. Furthermore, it determines the isolates' niche establishment ability within the tertiary health facility. METHODS An antimicrobial susceptibility test, conventional PCR, quantitative real-time PCR, phenotypic evaluation of the efflux pump, and whole-genome sequencing and analysis were performed on the isolate. RESULTS The antimicrobial susceptibility pattern revealed a resistance to piperacillin/tazobactam, ceftazidime, cefepime, cefotaxime/ceftriaxone, imipenem, meropenem, gentamycin, ciprofloxacin, trimethoprim/sulfamethoxazole, tigecycline, and colistin. A broth microdilution test confirmed the colistin resistance. Conventional PCR and quantitative real-time PCR investigations revealed the presence of adeB, adeR, and adeS, while mcr-1 was not detected. A MIC of 0.38 µg/mL and 0.25 µg/mL was recorded before and after exposure to an AdeABC efflux pump inhibitor. The whole-genome sequence analysis of antimicrobial resistance-associated genes detected beta-lactam: blaOXA-66; blaOXA-23; blaADC-25; blaADC-73; blaA1; blaA2, and blaMBL; aminoglycoside: aph(6)-Id; aph(3″)-Ib; ant(3″)-IIa and armA) and a colistin resistance-associated gene lpsB. The whole-genome sequence virulence analysis revealed a biofilm formation system and cell-cell adhesion-associated genes: bap, bfmR, bfmS, csuA, csuA/B, csuB, csuC, csuD, csuE, pgaA, pgaB, pgaC, and pgaD; and quorum sensing-associated genes: abaI and abaR and iron acquisition system associated genes: barA, barB, basA, basB, basC, basD, basF, basG, basH, basI, basJ, bauA, bauB, bauC, bauD, bauE, bauF, and entE. A sequence type classification based on the Pasteur scheme revealed that the isolate belongs to sequence type ST2. CONCLUSIONS The mosaic of the virulence factors coupled with the resistance-associated genes and the phenotypic resistance profile highlights the risk that this strain is at this South African tertiary health facility.
Collapse
Affiliation(s)
- Noel-David Nogbou
- Microbiological Pathology Department, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.-D.N.); (M.R.); (G.M.N.)
| | - Mbudzeni Ramashia
- Microbiological Pathology Department, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.-D.N.); (M.R.); (G.M.N.)
| | - Granny Marumo Nkawane
- Microbiological Pathology Department, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.-D.N.); (M.R.); (G.M.N.)
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Chikwelu Lawrence Obi
- School of Sciences and Technology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| | - Andrew Munyalo Musyoki
- Microbiological Pathology Department, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.-D.N.); (M.R.); (G.M.N.)
| |
Collapse
|
9
|
Mitra S, Lo M, Saha R, Deb AK, Debnath F, Miyoshi S, Dutta S, Chawla‐Sarkar M. Epidemiology of major entero‐pathogenic viruses and genetic characterization of Group A rotaviruses among children (≤5 years) with acute gastroenteritis in eastern India, 2018‐2020. J Appl Microbiol 2022; 133:758-783. [DOI: 10.1111/jam.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Suvrotoa Mitra
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| | - Mahadeb Lo
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| | - Ritubrita Saha
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| | - Alok K. Deb
- Division of Epidemiology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Falguni Debnath
- Division of Epidemiology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Shin‐Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
- Collaborative Research Centre of Okayama University for Infectious Disease ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Shanta Dutta
- Regional Virus Research and Diagnostic Laboratory, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road Scheme‐XM, Beliaghata Kolkata India
| | - Mamta Chawla‐Sarkar
- Division of Virology, ICMR‐National Institute of Cholera and Enteric Diseases, P‐33, C.I.T. Road, Scheme‐XM, Beliaghata Kolkata India
| |
Collapse
|
10
|
Whole genome analysis of rotavirus strains circulating in Benin before vaccine introduction, 2016-2018. Virus Res 2022; 313:198715. [PMID: 35247484 DOI: 10.1016/j.virusres.2022.198715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Species A Rotaviruses (RVA) still play a major role in causing acute diarrhea in children under five years old worldwide. Currently, an 11-gene classification system is used to designate the full genotypic constellations of circulating strains. Viral proteins and non-structural proteins in the order VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 are represented by the genotypes Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx, respectively. In Benin, ROTAVAC® vaccine was introduced into the Expanded Programme on Immunization in December 2019. To monitor circulating RVA strains for changes that may affect vaccine performance, in-depth analysis of strains prior to vaccine introduction are needed. Here we report, the whole-gene characterization (11 ORFs) for 72 randomly selected RVA strains of common and unusual genotypes collected in Benin from the 2016-2018 seasons. The sequenced strains were 15 G1P[8], 20 G2P[4], 5 G9P[8], 14 G12P[8], 9 G3P[6], 2 G1P[6], 3 G2P[6], 2 G9P[4], 1 G12P[6], and 1 G1G9P[8]/P[4]. The study strains exhibited two genetic constellations designed as Wa-like G1/G9/G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and DS-1-like G2/G3/G12-P[4]/P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Genotype G9P[4] strains possessed a DS-1-like genetic constellation with an E6 NSP4 gene, G9-P[4]-I2-R2-C2-M2-A2-N2-T2-E6-H2. The mixed genotype showed both Wa-like and DS-1-like profiles with a T6 NSP3 gene G1/G9P[8]/[4]-I1/I2-R1/R2-C1/C2-M1/M2-A1/A2-N1/N2-T1/T6-E1/E6-H1/H2. At the allelic level, the analysis of the Benin strains, reference strains (with known alleles), vaccine strains (with known alleles) identified 2-13 and 1-17 alleles for DS-1-like and Wa-like strains, respectively. Most of the study strains clustered into previously defined alleles, but we defined 3 new alleles for the VP7 (G3=1 new allele and G12=2 new alleles) and VP4 (P[4]=1 new allele and P[6]=2 new alleles) genes which formed the basis of the VP7 and VP4 gene clusters, respectively. For the remaining 9 genes, 0-6 new alleles were identified for both Wa-like and DS-1-like strains. This analysis of whole genome sequences of RVA strains circulating in Benin described genetic point mutations and reassortment events as well as novel alleles. Further detailed studies on these new alleles are needed and these data can also provide a baseline for studies on RVA in the post-vaccination period.
Collapse
|
11
|
|
12
|
Mphahlele MJ, Groome MJ, Page NA, Bhagwandin N, Mwenda JM, Steele AD. A decade of rotavirus vaccination in Africa - Saving lives and changing the face of diarrhoeal diseases: Report of the 12 th African Rotavirus Symposium. Vaccine 2021; 39:2319-2324. [PMID: 33775436 DOI: 10.1016/j.vaccine.2021.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
The African Rotavirus Network organised the 12th African Rotavirus Symposium (ARS) from 30 July to 1 August 2019 in Johannesburg, South Africa. The symposium theme "A decade of rotavirus vaccination in Africa - Saving lives and changing the face of diarrhoeal diseases", included sessions aimed at sharing ideas and expertise on prevention and control of diarrhoeal disease in Africa. Inter alia, the delegates reviewed global and regional epidemiological trends on rotavirus diarrhoea, progress and experiences on rotavirus vaccine introduction, including vaccine safety monitoring and impact in Africa, scientific advances in developing newer rotavirus vaccines, surveillance and research on other diarrhoeal pathogens, and providing an enabling environment for networking. Importantly, the 12th ARS served to commemorate the 20th anniversary of the African Rotavirus Network (AfrRN) coinciding with the 50th anniversary of the South African Medical Research Council. Four oral, live-attenuated rotavirus vaccines are currently prequalified by the WHO (Rotarix, RotaTeq, Rotavac and RotaSiil). African countries utilising rotavirus vaccines in routine national immunisation programmes are realising their effectiveness and impact on diarrhoeal disease morbidity. An ~40% reduction in hospitalisations of <5-year-olds with acute gastroenteritis following rotavirus vaccine introduction, was reported between 2006 and 2018 in 92,000 children from the WHO-coordinated African Rotavirus Surveillance Network (AfrRSN) comprising 33 Member States. This was corroborated by a meta-analysis of published data, sourced from January 2000 to August 2018 that reported substantial reductions in rotavirus hospitalisations in countries using rotavirus vaccines. However, it was highlighted that the transition of some countries from Gavi-eligibility and vaccine supply shortfalls present significant challenges to achieving the full impact of rotavirus immunization in Africa. The wide diversity of rotavirus genotypes continues in Africa, with variation observed both geographically and temporally. There is currently no evidence to suggest that the emergence of rotavirus strains not included in the current vaccines do escape vaccine-induced immunity.
Collapse
Affiliation(s)
- M Jeffrey Mphahlele
- South African Medical Research Council, 1 Soutpansberg Road, Pretoria 0001, South Africa; Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa.
| | - Michelle J Groome
- South African Medical Research Council/Wits Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola A Page
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Sandringham, Johannesburg 2131, South Africa
| | - Niresh Bhagwandin
- South African Medical Research Council, Francie van Zijl Drive, Parow Valley, Cape Town 7505, South Africa
| | - Jason M Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, People's Republic of Congo
| | - A Duncan Steele
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa; Enteric and Diarrhoeal Diseases Programme, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
13
|
Rasebotsa S, Uwimana J, Mogotsi MT, Rakau K, Magagula NB, Seheri ML, Mwenda JM, Mphahlele MJ, Sabiu S, Mihigo R, Mutesa L, Nyaga MM. Whole-Genome Analyses Identifies Multiple Reassortant Rotavirus Strains in Rwanda Post-Vaccine Introduction. Viruses 2021; 13:v13010095. [PMID: 33445703 PMCID: PMC7828107 DOI: 10.3390/v13010095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Children in low-and middle-income countries, including Rwanda, experience a greater burden of rotavirus disease relative to developed countries. Evolutionary mechanisms leading to multiple reassortant rotavirus strains have been documented over time which influence the diversity and evolutionary dynamics of novel rotaviruses. Comprehensive rotavirus whole-genome analysis was conducted on 158 rotavirus group A (RVA) samples collected pre- and post-vaccine introduction in children less than five years in Rwanda. Of these RVA positive samples, five strains with the genotype constellations G4P[4]-I1-R2-C2-M2-A2-N2-T1-E1-H2 (n = 1), G9P[4]-I1-R2-C2-M2-A1-N1-T1-E1-H1 (n = 1), G12P[8]-I1-R2-C2-M1-A1-N2-T1-E2-H3 (n = 2) and G12P[8]-I1-R1-C1-M1-A2-N2-T2-E1-H1 (n = 1), with double and triple gene reassortant rotavirus strains were identified. Phylogenetic analysis revealed a close relationship between the Rwandan strains and cognate human RVA strains as well as the RotaTeq® vaccine strains in the VP1, VP2, NSP2, NSP4 and NSP5 gene segments. Pairwise analyses revealed multiple differences in amino acid residues of the VP7 and VP4 antigenic regions of the RotaTeq® vaccine strain and representative Rwandan study strains. Although the impact of such amino acid changes on the effectiveness of rotavirus vaccines has not been fully explored, this analysis underlines the potential of rotavirus whole-genome analysis by enhancing knowledge and understanding of intergenogroup reassortant strains circulating in Rwanda post vaccine introduction.
Collapse
Affiliation(s)
- Sebotsana Rasebotsa
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
| | - Jeannine Uwimana
- Department of Laboratory, Clinical Biology, Kigali University Teaching Hospital, P.O. Box 4285, Kigali, Rwanda;
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
| | - Kebareng Rakau
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
| | - Nonkululeko B. Magagula
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, P.O. Box 06, Brazzaville, Congo; (J.M.M.); (R.M.)
| | - M. Jeffrey Mphahlele
- Diarrheal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (K.R.); (N.B.M.); (M.L.S.); (M.J.M.)
- South African Medical Research Council, 1 Soutpansberg Road, Pretoria 0001, South Africa
| | - Saheed Sabiu
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
| | - Richard Mihigo
- World Health Organization, Regional Office for Africa, P.O. Box 06, Brazzaville, Congo; (J.M.M.); (R.M.)
| | - Leon Mutesa
- Centre for Human Genetics, University of Rwanda, College of Medicine and Health Sciences, P.O. Box 4285, Kigali, Rwanda;
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (S.R.); (M.T.M.); (S.S.)
- Correspondence: ; Tel.: +27-51-401-9158
| |
Collapse
|
14
|
Munlela B, João ED, Donato CM, Strydom A, Boene SS, Chissaque A, Bauhofer AFL, Langa J, Cassocera M, Cossa-Moiane I, Chilaúle JJ, O’Neill HG, de Deus N. Whole Genome Characterization and Evolutionary Analysis of G1P[8] Rotavirus A Strains during the Pre- and Post-Vaccine Periods in Mozambique (2012-2017). Pathogens 2020; 9:pathogens9121026. [PMID: 33291333 PMCID: PMC7762294 DOI: 10.3390/pathogens9121026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Mozambique introduced the Rotarix® vaccine (GSK Biologicals, Rixensart, Belgium) into the National Immunization Program in September 2015. Although G1P[8] was one of the most prevalent genotypes between 2012 and 2017 in Mozambique, no complete genomes had been sequenced to date. Here we report whole genome sequence analysis for 36 G1P[8] strains using an Illumina MiSeq platform. All strains exhibited a Wa-like genetic backbone (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). Phylogenetic analysis showed that most of the Mozambican strains clustered closely together in a conserved clade for the entire genome. No distinct clustering for pre- and post-vaccine strains were observed. These findings may suggest no selective pressure by the introduction of the Rotarix® vaccine in 2015. Two strains (HJM1646 and HGM0544) showed varied clustering for the entire genome, suggesting reassortment, whereas a further strain obtained from a rural area (MAN0033) clustered separately for all gene segments. Bayesian analysis for the VP7 and VP4 encoding gene segments supported the phylogenetic analysis and indicated a possible introduction from India around 2011.7 and 2013.0 for the main Mozambican clade. Continued monitoring of rotavirus strains in the post-vaccine period is required to fully understand the impact of vaccine introduction on the diversity and evolution of rotavirus strains.
Collapse
Affiliation(s)
- Benilde Munlela
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo 3453, Mozambique
- Correspondence: or (B.M.); (E.D.J.); Tel.: +258-848814087 (B.M.); +258-827479229 (E.D.J.)
| | - Eva D. João
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
- Correspondence: or (B.M.); (E.D.J.); Tel.: +258-848814087 (B.M.); +258-827479229 (E.D.J.)
| | - Celeste M. Donato
- Enteric Diseases Group, Murdoch Children’s Research Institute, 50 Flemington Road, Parkville, Melbourne 3052, Australia;
- Department of Paediatrics, the University of Melbourne, Parkville 3010, Australia
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Amy Strydom
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein 9301, South Africa; (A.S.); (H.G.O.)
| | - Simone S. Boene
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo 3453, Mozambique
| | - Assucênio Chissaque
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Adilson F. L. Bauhofer
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Jerónimo Langa
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
| | - Marta Cassocera
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Idalécia Cossa-Moiane
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
- Institute of Tropical Medicine (ITM), Kronenburgstraat 43, 2000 Antwerp, Belgium
| | - Jorfélia J. Chilaúle
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
| | - Hester G. O’Neill
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein 9301, South Africa; (A.S.); (H.G.O.)
| | - Nilsa de Deus
- Instituto Nacional de Saúde (INS), Distrito de Marracuene, Maputo 3943, Mozambique; (S.S.B.); (A.C.); (A.F.L.B.); (J.L.); (M.C.); (I.C.-M.); (J.J.C.); (N.d.D.)
- Departamento de Ciências Biológicas, Universidade Eduardo Mondlane, Maputo 3453, Mozambique
| |
Collapse
|
15
|
Molecular Epidemiology of Rotavirus A Strains Pre- and Post-Vaccine (Rotarix ®) Introduction in Mozambique, 2012-2019: Emergence of Genotypes G3P[4] and G3P[8]. Pathogens 2020; 9:pathogens9090671. [PMID: 32824938 PMCID: PMC7557584 DOI: 10.3390/pathogens9090671] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022] Open
Abstract
Group A rotavirus (RVA) remains the most important etiological agent associated with severe acute diarrhea in children. Rotarix® monovalent vaccine was introduced into Mozambique’s Expanded Program on Immunization in September 2015. In the present study, we report the diversity and prevalence of rotavirus genotypes, pre- (2012–2015) and post-vaccine (2016–2019) introduction in Mozambique, among diarrheic children less than five years of age. Genotyping data were analyzed for five sentinel sites for the periods indicated. The primary sentinel site, Mavalane General Hospital (HGM), was analyzed for the period 2012–2019, and for all five sites (country-wide analyses), 2015–2019. During the pre-vaccine period, G9P[8] was the most predominant genotype for both HGM (28.5%) and the country-wide analysis (46.0%). However, in the post-vaccine period, G9P[8] was significantly reduced. Instead, G3P[8] was the most common genotype at HGM, while G1P[8] predominated country-wide. Genotypes G9P[4] and G9P[6] were detected for the first time, and the emergence of G3P[8] and G3P[4] genotypes were observed during the post-vaccine period. The distribution and prevalence of rotavirus genotypes were distinct in pre- and post-vaccination periods, while uncommon genotypes were also detected in the post-vaccine period. These observations support the need for continued country-wide surveillance to monitor changes in strain diversity, due to possible vaccine pressure, and consequently, the effect on vaccine effectiveness.
Collapse
|