1
|
Liu S, Chen H, Wen Z, Ouyang Y, Mei B, Li C. Association of fucosyltransferase 2 gene polymorphism with the susceptibility to norovirus infection in Han Chinese population. J Med Virol 2024; 96:e29848. [PMID: 39105389 DOI: 10.1002/jmv.29848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Fucosyltransferase 2 (FUT2) gene, which regulates the formation of Histoblood group antigens, could determine the human susceptibility to norovirus. This study aimed to investigate the correlation between FUT2 gene polymorphism and susceptibility to norovirus gastroenteritis in Han Chinese population. A total of 212 children patients with acute gastroenteritis were enrolled. The stool and serum samples were collected respectively. We used the qPCR method to detect the norovirus infection status from the stool samples, and we used serum samples to detect the FUT2 polymorphism. A case-control study was conducted to investigate the three common SNPs polymorphisms (rs281377, rs1047781, and rs601338) of FUT2 gene with sanger sequencing method. The results indicated that the homozygous genotypes and mutant allele of rs1047781 (A385T) would downgrade the risk of norovirus gastroenteritis in Chinese Han population (AA vs. TT, odds ratio [OR] = 0.098, 95% confidence interval [CI] = 0.026-0.370, p = 0.001; AA + AT vs. TT, OR = 0.118. 95% CI = 0.033-0.424, p = 0.001; A vs. T, OR = 0.528, 95% CI = 0.351-0.974, p = 0.002). There were no significant difference of rs281377 (C357T) and rs601338 (G428A) polymorphisms between norovirus positive and norovirus negative groups (p > 0.05). The haplotype T-T-G was less susceptible (OR = 0.49, 95% CI = 0.31-0.79, p = 0.0034) to norovirus infection compared to other haplotypes. Our results investigated the relationship between the FUT2 gene polymorphisms and norovirus susceptibility in Han Chinese population, and firstly revealed that children with homozygous genotypes and mutant alleles of FUT2 rs1047781 (A385T) were less susceptible to norovirus gastroenteritis.
Collapse
Affiliation(s)
- Shun Liu
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Hanyu Chen
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Zihan Wen
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Yaoling Ouyang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Chengbin Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China
| |
Collapse
|
2
|
Crouch LI, Rodrigues CS, Bakshani CR, Tavares-Gomes L, Gaifem J, Pinho SS. The role of glycans in health and disease: Regulators of the interaction between gut microbiota and host immune system. Semin Immunol 2024; 73:101891. [PMID: 39388764 DOI: 10.1016/j.smim.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
The human gut microbiota is home to a diverse collection of microorganisms that has co-evolved with the host immune system in which host-microbiota interactions are essential to preserve health and homeostasis. Evidence suggests that the perturbation of this symbiotic host-microbiome relationship contributes to the onset of major diseases such as chronic inflammatory diseases including Inflammatory Bowel Disease. The host glycocalyx (repertoire of glycans/sugar-chains at the surface of gut mucosa) constitutes a major biological and physical interface between the intestinal mucosa and microorganisms, as well as with the host immune system. Glycans are an essential niche for microbiota colonization and thus an important modulator of host-microorganism interactions both in homeostasis and in disease. In this review, we discuss the role of gut mucosa glycome as an instrumental pathway that regulates host-microbiome interactions in homeostasis but also in health to inflammation transition. We also discuss the power of mucosa glycosylation remodelling as an attractive preventive and therapeutic strategy to preserve gut homeostasis.
Collapse
Affiliation(s)
- Lucy I Crouch
- Department of Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK.
| | - Cláudia S Rodrigues
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Cassie R Bakshani
- Department of Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Leticia Tavares-Gomes
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Donato CM, Handley A, Byars SG, Bogdanovic-Sakran N, Lyons EA, Watts E, Ong DS, Pavlic D, At Thobari J, Satria CD, Nirwati H, Soenarto Y, Bines JE. Vaccine Take of RV3-BB Rotavirus Vaccine Observed in Indonesian Infants Regardless of HBGA Status. J Infect Dis 2024; 229:1010-1018. [PMID: 37592804 PMCID: PMC11011179 DOI: 10.1093/infdis/jiad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Histo-blood group antigen (HBGA) status may affect vaccine efficacy due to rotavirus strains binding to HBGAs in a P genotype-dependent manner. This study aimed to determine if HBGA status affected vaccine take of the G3P[6] neonatal vaccine RV3-BB. METHODS DNA was extracted from stool samples collected in a subset (n = 164) of the RV3-BB phase IIb trial in Indonesian infants. FUT2 and FUT3 genes were amplified and sequenced, with any single-nucleotide polymorphisms analyzed to infer Lewis and secretor status. Measures of positive cumulative vaccine take were defined as serum immune response (immunoglobulin A or serum-neutralizing antibody) and/or stool excretion of RV3-BB virus. Participants were stratified by HBGA status and measures of vaccine take. RESULTS In 147 of 164 participants, Lewis and secretor phenotype were determined. Positive vaccine take was recorded for 144 (97.9%) of 147 participants with the combined phenotype determined. Cumulative vaccine take was not significantly associated with secretor status (relative risk, 1.00 [95% CI, .94-1.06]; P = .97) or Lewis phenotype (relative risk, 1.03 [95% CI, .94-1.14]; P = .33), nor was a difference observed when analyzed by each component of vaccine take. CONCLUSIONS The RV3-BB vaccine produced positive cumulative vaccine take, irrespective of HBGA status in Indonesian infants.
Collapse
Affiliation(s)
- Celeste M Donato
- Enteric Diseases Group, Murdoch Children's Research Institute
- Department of Paediatrics, The University of Melbourne, Parkville
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne
| | - Amanda Handley
- Enteric Diseases Group, Murdoch Children's Research Institute
- Medicines Development for Global Health, Southbank
| | - Sean G Byars
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | | | - Eleanor A Lyons
- Enteric Diseases Group, Murdoch Children's Research Institute
| | - Emma Watts
- Enteric Diseases Group, Murdoch Children's Research Institute
| | - Darren S Ong
- Enteric Diseases Group, Murdoch Children's Research Institute
| | - Daniel Pavlic
- Enteric Diseases Group, Murdoch Children's Research Institute
| | | | | | - Hera Nirwati
- Center for Child Health
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | - Yati Soenarto
- Center for Child Health
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr Sardjito Hospital, Yogyakarta, Indonesia
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children's Research Institute
- Department of Paediatrics, The University of Melbourne, Parkville
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
4
|
Jajosky RP, Wu SC, Zheng L, Jajosky AN, Jajosky PG, Josephson CD, Hollenhorst MA, Sackstein R, Cummings RD, Arthur CM, Stowell SR. ABO blood group antigens and differential glycan expression: Perspective on the evolution of common human enzyme deficiencies. iScience 2023; 26:105798. [PMID: 36691627 PMCID: PMC9860303 DOI: 10.1016/j.isci.2022.105798] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyze biochemical reactions and play critical roles in human health and disease. Enzyme variants and deficiencies can lead to variable expression of glycans, which can affect physiology, influence predilection for disease, and/or directly contribute to disease pathogenesis. Although certain well-characterized enzyme deficiencies result in overt disease, some of the most common enzyme deficiencies in humans form the basis of blood groups. These carbohydrate blood groups impact fundamental areas of clinical medicine, including the risk of infection and severity of infectious disease, bleeding risk, transfusion medicine, and tissue/organ transplantation. In this review, we examine the enzymes responsible for carbohydrate-based blood group antigen biosynthesis and their expression within the human population. We also consider the evolutionary selective pressures, e.g. malaria, that may account for the variation in carbohydrate structures and the implications of this biology for human disease.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Biconcavity Inc, Lilburn, GA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Leon Zheng
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Audrey N. Jajosky
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, West Henrietta, NY, USA
| | | | - Cassandra D. Josephson
- Cancer and Blood Disorders Institute and Blood Bank/Transfusion Medicine Division, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie A. Hollenhorst
- Department of Pathology and Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert Sackstein
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
5
|
The Association between Symptomatic Rotavirus Infection and Histo-Blood Group Antigens in Young Children with Diarrhea in Pretoria, South Africa. Viruses 2022; 14:v14122735. [PMID: 36560739 PMCID: PMC9782691 DOI: 10.3390/v14122735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Recently, histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors of several viral pathogens. Among rotaviruses, HBGAs interact with the outer viral protein, VP4, which has been identified as a potential susceptibility factor, although the findings are inconsistent throughout populations due to HBGA polymorphisms. We investigated the association between HBGA phenotypes and rotavirus infection in children with acute gastroenteritis in northern Pretoria, South Africa. METHODS Paired diarrheal stool and saliva samples were collected from children aged ≤ 59 months (n = 342) with acute moderate to severe diarrhea, attending two health care facilities. Rotaviruses in the stool samples were detected by commercial EIA and the rotavirus strains were characterized by RT-PCR targeting the outer capsid VP7 (G-type) and VP4 (P-type) antigens for genotyping. Saliva-based ELISAs were performed to determine A, B, H, and Lewis antigens for blood group typing. RESULTS Blood type O was the most common blood group (62.5%) in this population, followed by groups A (26.0%), B (9.3%), and AB (2.2%). The H1-based secretors were common (82.7%) compared to the non-secretors (17.3%), and the Lewis antigen positive phenotypes (Le(a+b+)) were predominant (54.5%). Blood type A children were more likely to be infected by rotavirus (38.8%) than any other blood types. P[4] rotaviruses (21/49; 42.9%) infected only secretor individuals, whereas P[6] rotaviruses (3/49; 6.1%) only infected Le(a-b-), although the numbers were very low. On the contrary, P[8] rotaviruses infected children with a wide range of blood group phenotypes, including Le(a-b-) and non-secretors. CONCLUSIONS Our findings demonstrated that Lewis antigens, or the lack thereof, may serve as susceptibility factors to rotaviral infection by specific VP4 genotypes as observed elsewhere. Potentially, the P[8] strains remain the predominant human VP4 genotype due to their ability to bind to a variety of HBGA phenotypes.
Collapse
|
6
|
Hamajima R, Lusiany T, Minami S, Nouda R, Nurdin JA, Yamasaki M, Kobayashi N, Kanai Y, Kobayashi T. A reverse genetics system for human rotavirus G2P[4]. J Gen Virol 2022; 103. [PMID: 36748482 DOI: 10.1099/jgv.0.001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rotaviruses (RVs) are an important cause of acute gastroenteritis in young children. Recently, versatile plasmid-based reverse genetics systems were developed for several human RV genotypes; however, these systems have not been developed for all commonly circulating human RV genotypes. In this study, we established a reverse genetics system for G2P[4] human RV strain HN126. Nucleotide sequence analysis, including that of the terminal ends of the viral double-stranded RNA genome, revealed that HN126 possessed a DS-1-like genotype constellation. Eleven plasmids, each encoding 11 gene segments of the RV genome, and expression plasmids encoding vaccinia virus RNA capping enzyme (D1R and D12L), Nelson Bay orthoreovirus FAST, and NSP2 and NSP5 of HN126, were transfected into BHK-T7 cells, and recombinant strain HN126 was generated. Using HN126 or simian RV strain SA11 as backbone viruses, reassortant RVs carrying the outer and intermediate capsid proteins (VP4, VP7 and VP6) of HN126 and/or SA11 (in various combinations) were generated. Viral replication analysis of the single, double and triple reassortant viruses suggested that homologous combination of the VP4 and VP7 proteins contributed to efficient virus infectivity and interaction between other viral or cellular proteins. Further studies of reassortant viruses between simian and other human RV strains will contribute to developing an appropriate model for human RV research, as well as suitable backbone viruses for generation of recombinant vaccine candidates.
Collapse
Affiliation(s)
- Rina Hamajima
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan.,Present address: Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Chikusa, Japan
| | - Tina Lusiany
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Jeffery A Nurdin
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Chandwe K, Zyambo K, Mulenga C, Haritunians T, Amadi B, Kosek M, Heimburger DC, McGovern D, Kelly P. Histo-Blood Group Antigens, Enteropathogen Carriage and Environmental Enteropathy in Stunted Zambian Children. J Pediatr Gastroenterol Nutr 2022; 74:529-534. [PMID: 34724448 PMCID: PMC9046470 DOI: 10.1097/mpg.0000000000003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Stunting, the most common form of childhood undernutrition, is associated with environmental enteropathy (EE). Enteric infections are believed to play a role in the pathophysiology of EE and stunting though the exact mechanism remains undetermined. The FUT2 (secretor) and FUT3 (Lewis) genes have been shown to be associated with some symptomatic enteric infections in both children and adults. These genes are responsible for the presence of histo-blood group antigens (HBGAs) in various secretions and epithelial surfaces.We evaluated whether the secretor and Lewis status influences asymptomatic enteric infections and thus EE severity on duodenal biopsies of stunted children. METHODS In this case-control study, we used saliva samples to determine the secretor and Lewis status of stunted children (cases, n = 113) enrolled in a nutritional rehabilitation program and from their well-nourished counterparts (controls, n = 42). Where available, saliva was also collected from the mothers. Baseline stool samples were used to detect asymptomatic enteropathogen carriage. Duodenal biopsies were collected from a subgroup of stunted children (n = 77) who had an upper gastrointestinal endoscopy done as part of the evaluation process for their non-response to nutritional therapy. RESULTS The proportion of secretors was similar between the cases and the controls (82% vs 81%, P = 0.81). The stunted children had significantly higher rates of carrying multiple enteropathogens, but this was not associated with their secretor status nor that of their mothers. The secretor status was also not associated with mucosal morphometry of duodenal biopsies. CONCLUSION This case-control analysis in Zambian children does not support the hypothesis that fucosylation status determines asymptomatic enteropathogen carriage in stunting.
Collapse
Affiliation(s)
- Kanta Chandwe
- University of Zambia School of Medicine, Lusaka, Zambia
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
| | - Kanekwa Zyambo
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
| | - Chola Mulenga
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Beatrice Amadi
- University of Zambia School of Medicine, Lusaka, Zambia
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
| | | | - Douglas C. Heimburger
- University of Zambia School of Medicine, Lusaka, Zambia
- Vanderbilt University Medical Center
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Paul Kelly
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
- Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Peña-Gil N, Santiso-Bellón C, Gozalbo-Rovira R, Buesa J, Monedero V, Rodríguez-Díaz J. The Role of Host Glycobiology and Gut Microbiota in Rotavirus and Norovirus Infection, an Update. Int J Mol Sci 2021; 22:13473. [PMID: 34948268 PMCID: PMC8704558 DOI: 10.3390/ijms222413473] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rotavirus (RV) and norovirus (NoV) are the leading causes of acute gastroenteritis (AGE) worldwide. Several studies have demonstrated that histo-blood group antigens (HBGAs) have a role in NoV and RV infections since their presence on the gut epithelial surfaces is essential for the susceptibility to many NoV and RV genotypes. Polymorphisms in genes that code for enzymes required for HBGAs synthesis lead to secretor or non-secretor and Lewis positive or Lewis negative individuals. While secretor individuals appear to be more susceptible to RV infections, regarding NoVs infections, there are too many discrepancies that prevent the ability to draw conclusions. A second factor that influences enteric viral infections is the gut microbiota of the host. In vitro and animal studies have determined that the gut microbiota limits, but in some cases enhances enteric viral infection. The ways that microbiota can enhance NoV or RV infection include virion stabilization and promotion of virus attachment to host cells, whereas experiments with microbiota-depleted and germ-free animals point to immunoregulation as the mechanism by which the microbiota restrict infection. Human trials with live, attenuated RV vaccines and analysis of the microbiota in responder and non-responder individuals also allowed the identification of bacterial taxa linked to vaccine efficacy. As more information is gained on the complex relationships that are established between the host (glycobiology and immune system), the gut microbiota and intestinal viruses, new avenues will open for the development of novel anti-NoV and anti-RV therapies.
Collapse
Affiliation(s)
- Nazaret Peña-Gil
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Vicente Monedero
- Department of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain;
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| |
Collapse
|
9
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
10
|
Abstract
Histo-blood group antigen contains oligosaccharides that serve as receptors for norovirus (NoV) and rotavirus (RV). The receptors are only present on the surface of intestinal mucosal epithelial cells of secretors; therefore, secretors are susceptible to NoV and RV diarrhea and nonsecretors are resistant. The prevalence of secretors in different countries varies between 50% and 90%. Secretor rates evolved in response to environmental pressures such as infectious diseases.
Collapse
|
11
|
Abstract
Rotavirus is a major cause of severe pediatric diarrhea worldwide. In 2006, two live, oral rotavirus vaccines, Rotarix and RotaTeq, were licensed for use in infants and were rapidly adopted in many high- and middle-income settings where efficacy had been demonstrated in clinical trials. Following completion of additional successful trials in low-income settings, the World Health Organization (WHO) recommended rotavirus vaccination for all infants globally in 2009. In 2018, two new rotavirus vaccines, Rotasiil and Rotavac, were prequalified by WHO, further expanding global availability. As of March 2021, rotavirus vaccines have been introduced nationally in 106 countries. Since introduction, rotavirus vaccines have demonstrated effectiveness against severe disease and mortality, even among age groups not eligible for vaccination. Cross-genotypic protection has also been demonstrated, and the favorable benefit-risk profile of these vaccines continues to be confirmed via post-marketing surveillance. Ongoing research seeks to better understand reasons for the lower effectiveness observed in lower-resource settings, and to use these findings to optimize vaccine strategies worldwide.
Collapse
Affiliation(s)
- Rachel M Burke
- Viral Gastroenteritis Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacqueline E Tate
- Viral Gastroenteritis Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh D Parashar
- Viral Gastroenteritis Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
12
|
|
13
|
Estimation of secretor status of ABO antigens by high-resolution melting analysis of rs601338 (428G > A). Clin Chim Acta 2021; 517:86-91. [PMID: 33667483 DOI: 10.1016/j.cca.2021.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND FUT2 determines the secretor status of ABH antigens. Many lines of evidence suggest an association between secretor status and susceptibility to various clinical conditions. For this kind of study, large-scale genotyping of FUT2 is necessary. Because FUT2 has a pseudogene (SEC1) with high DNA sequence similarity and is rich in population-specific SNPs, we need to pay attention in designing the primers for genotyping FUT2. The se428 allele having a 428G > A nonsense SNP (W143X, rs601338) is the predominant non-secretor allele in Europeans, Latin Americans and Africans. On the other hand, se357,480,778del having the 778C > del frameshift SNP (P260Lfs*16, rs1799761) is almost exclusively found in Africans with frequencies of 1-4%. STUDY DESIGN AND METHODS We developed high-resolution melting (HRM) analyses using short (69-bp for 428G > A, 65-bp for 778C > del) amplicons for genotyping two SNPs directly and validated the method by analyzing 95 Ghanaians whose FUT2 genotypes were previously determined. RESULTS Two sets of assays clearly discriminated three genotypes of 428G > A (G/G, G/A, A/A), and two genotypes of 778C > del (C/C, C/del). In addition, the results obtained for the 95 Ghanaians by HRM analysis were in full agreement with previous ones. CONCLUSION The present HRM analysis reliably genotyped 428G > A. Thus, estimation of secretor status based on se428 using the present HRM analysis may be useful for large scale association studies of FUT2. In addition to 428G > A, genotyping of other causal polymorphisms for non-secretors with high frequency, as is the case with 778C > del for Africans, is desirable for more accurate estimation of the secretor status of the target populations.
Collapse
|
14
|
Rossouw E, Brauer M, Meyer P, du Plessis NM, Avenant T, Mans J. Virus Etiology, Diversity and Clinical Characteristics in South African Children Hospitalised with Gastroenteritis. Viruses 2021; 13:v13020215. [PMID: 33573340 PMCID: PMC7911269 DOI: 10.3390/v13020215] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Viral gastroenteritis remains a major cause of hospitalisation in young children. This study aimed to determine the distribution and diversity of enteric viruses in children ≤5 years, hospitalised with gastroenteritis at Kalafong Provincial Tertiary Hospital, Pretoria, South Africa, between July 2016 and December 2017. METHODS Stool specimens (n = 205) were screened for norovirus GI and GII, rotavirus, sapovirus, astrovirus and adenovirus by multiplex RT-PCR. HIV exposure and FUT2 secretor status were evaluated. Secretor status was determined by FUT2 genotyping. RESULTS At least one gastroenteritis virus was detected in 47% (96/205) of children. Rotavirus predominated (46/205), followed by norovirus (32/205), adenovirus (15/205), sapovirus (9/205) and astrovirus (3/205). Norovirus genotypes GI.3, GII.2, GII.3, GII.4, GII.7, GII.12, GII.21, and rotavirus strains G1P[8], G2P[4], G2P[6], G3P[4], G3P[8], G8P[4], G8P[6], G9P[6], G9P[8] and sapovirus genotypes GI.1, GI.2, GII.1, GII.4, GII.8 were detected; norovirus GII.4[P31] and rotavirus G3P[4] predominated. Asymptomatic norovirus infection (GI.3, GI.7, GII.4, GII.6, GII.13) was detected in 22% of 46 six-week follow up stools. HIV exposure (30%) was not associated with more frequent or severe viral gastroenteritis hospitalisations compared to unexposed children. Rotavirus preferentially infected secretor children (p = 0.143) and norovirus infected 78% secretors and 22% non-secretors. CONCLUSION Rotavirus was still the leading cause of gastroenteritis hospitalisations, but norovirus caused more severe symptoms.
Collapse
Affiliation(s)
- Esmari Rossouw
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Marieke Brauer
- Immunology Laboratory, Ampath, Pretoria 0001, South Africa;
| | - Pieter Meyer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa or
- National Health Laboratory Service, Tshwane Academic Division, Pretoria 0001, South Africa
| | - Nicolette M. du Plessis
- Department of Paediatrics, Kalafong Provincial Tertiary Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (N.M.d.P.); (T.A.)
| | - Theunis Avenant
- Department of Paediatrics, Kalafong Provincial Tertiary Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (N.M.d.P.); (T.A.)
| | - Janet Mans
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Correspondence: ; Tel.: +27-12-319-2660
| |
Collapse
|