1
|
Qiu J, Jiang C, Wang S, He C, Chen D, Lan J, Xu J, Lee YW, Shi J. Geographic variations in the Fusarium species and toxins associated with maize ear rot in China. Int J Food Microbiol 2025; 436:111208. [PMID: 40253951 DOI: 10.1016/j.ijfoodmicro.2025.111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Diverse species of the Fusarium genus are usually the primary cause of maize ear rot, which reduces yield and quality, as well as contamination of toxic secondary metabolites. There has been little combined analysis of the diversity of pathogens and toxins in maize kernels in China, and this information is important for disease and mycotoxin control. To address this, a large-scale survey including 1217 samples was performed across China from 2019 to 2021. The most prominent contaminants were B-series fumonisins (FB1, FB2, and FB3), with greater levels of FB1 were found in southern regions. Trichothecenes and zearalenone were also serious concerns; deoxynivalenol (DON) and nivalenol (NIV) primarily originated from northeast and southwest China, respectively. Fusarium fujikuroi species complex (FFSC) and Fusarium sambucinum species complex (FSAMSC) were the most prevalent species complexes. F. verticillioides dominated in the former complex and widespread in all sampling sites. In FSAMSC, DON-producing F. graminearum and F. boothii were the predominant pathogens in the northeast, whereas all NIV type F. meridionale inhabited in the southwest. The FFSC and FSAMSC strains were pathogenic to maize ear and stalk, with varying severities. The FSAMSC strains also could infect wheat heads, and smaller amounts of toxins were found in FFSC strains inoculated wheat samples without causing any symptoms.
Collapse
Affiliation(s)
- Jianbo Qiu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Can Jiang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shufang Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Can He
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Daoming Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Lan
- Institute of Quality and Safety of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150001, China
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yin-Won Lee
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianrong Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
2
|
Asiedu DD, Miedaner T. Genetic and Genomic Tools in Breeding for Resistance to Fusarium Stalk Rot in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:819. [PMID: 40094830 PMCID: PMC11902793 DOI: 10.3390/plants14050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Maize (Zea mays L.) is the world's most productive cereal crop, yet it is threatened by several diseases. Among them, Fusarium stalk rot (FSR) causes an average global yield loss of 4.5%. The mycotoxins deoxynivalenol, zearalenone, fumonisins, and moniliformin persist in grain and silage after harvest and pose a risk to human and animal health. This review describes the lifestyle of the fungal pathogens that cause FSR, studies how to optimize resistance evaluation, identifies quantitative trait loci (QTLs) and candidate genes (CGs), and, finally, considers the methods for selecting FSR resistance, especially through genomic selection. To screen maize genotypes for FSR resistance, several artificial inoculation methods have been employed in most studies, including toothpick insertion, ball-bearing pellets, root infection, and the oat kernel method. However, these methods have several limitations in effectively inducing FSR disease infection. Needle injection of inoculum into the stem is recommended, especially when combined with a quantitative or percentage scale because it effectively phenotypes maize populations for FSR resistance. Nine studies with larger populations (≥150 progenies) investigated the genetic architecture of FSR resistance. The inheritance is clearly quantitative. Four major QTLs and several minor QTLs are reported to confer resistance to FSR pathogens, and a few CGs have been identified. Genomic selection is recommended as an effective method for developing routinely FSR-resistant maize, but only two studies have explored this area. An omics analysis (proteomics, transcriptomics, and metabolomics) of the expression of candidate genes should validate their role in FSR resistance, and their use might accelerate selection.
Collapse
Affiliation(s)
| | - Thomas Miedaner
- State Plant Breeding Institute, Universität Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
3
|
Li Y, Li X, Mao X, Yuan C, You Y, Zhao J, Zhou S, Wu Y. Effect of UV-C irradiation treatment on mycotoxins production in Fusarium species inoculated wheat seeds during wheat germination. Food Chem 2024; 467:142369. [PMID: 39672041 DOI: 10.1016/j.foodchem.2024.142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Wheat is a most important food crop worldwide. Wheat is reported to be susceptible to a variety of fungi, which could induce huge economic losses and the contamination of potential mycotoxins could bring serious toxic effects. In this work, UV-C irradiation treatment on Fusarium infected wheat seeds during germination was investigated. The results show that UV-C irradiation treatment could promote the germination rate of wheat in inoculated seeds samples. In addition, UV-C treatment could significantly inhibit Fumonisins and Beauvericin mycotoxins production. However, Enniatins production in inoculated wheat seed samples are enhanced in long-term UV-C irradiation treatment samples. Metabolites of Fumonisins, Beauvericin, and Enniatins are evaluated with major metabolic pathways including methylation/demethylation, hydrogenation/dehydrogenation, oxidation/deoxidation, and acetylation. In conclusion, short time UV treatment for 15 min is the best for the inhibition of target Fusarium mycotoxins production, which will be benefit for the improvement of the quality and safety of wheats.
Collapse
Affiliation(s)
- Yanshen Li
- Functional Food Engineering and Technology Research Center of Shandong Province, Yantai University, Yantai, Shandong 264000, PR China
| | - Xinru Li
- Functional Food Engineering and Technology Research Center of Shandong Province, Yantai University, Yantai, Shandong 264000, PR China
| | - Xin Mao
- Functional Food Engineering and Technology Research Center of Shandong Province, Yantai University, Yantai, Shandong 264000, PR China.
| | - Chaofan Yuan
- Functional Food Engineering and Technology Research Center of Shandong Province, Yantai University, Yantai, Shandong 264000, PR China
| | - Yanli You
- Functional Food Engineering and Technology Research Center of Shandong Province, Yantai University, Yantai, Shandong 264000, PR China
| | - Jiqiang Zhao
- Functional Food Engineering and Technology Research Center of Shandong Province, Yantai University, Yantai, Shandong 264000, PR China
| | - Shuang Zhou
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, PR China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, PR China
| |
Collapse
|
4
|
Gargouri S, Masiello M, Somma S, Haidukowski M, Khaterchi R, Chekali S, Derouich S, Balmas V, Moretti A. Maize-fusarium interactions: Tunisian insights into mycotoxin ecology. Fungal Biol 2024; 128:2460-2470. [PMID: 39653492 DOI: 10.1016/j.funbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/11/2024] [Accepted: 07/04/2024] [Indexed: 01/05/2025]
Abstract
Maize is a worldwide crop yet can be associated with mycotoxigenic fungi, much investigated in humid tropical and cooler, wet temperate regions. However, in hot, arid/semi-arid regions data on their occurrence are poor. In this paper, we focused on interactions between maize and Fusarium fungal species in Tunisia, which has a Mediterranean climate, with hot, dry summers and milder, damper winters. Maize kernels, stalks, and roots were sampled from 19 agricultural fields and 56, 72, and 88 % of samples, respectively, yielded Fusarium isolates. Based on molecular identifications, these were mainly F. verticillioides (67 %), and other species of Fusarium fujikuroi species complex and members of Fusarium incarnatum-equiseti-, oxysporum-, burgessii-, solani- and concolor species complexes. In addition, five isolates were identified as Clonostachys rosea. Fusarium verticilloides and Fusarium proliferatum, that produce fumonisins, suspected carcinogenic compounds, were isolated from all kinds of samples, whereas the other species were isolated only from root and stems. Fumonisin B1 was higher in kernels than in silage, while deoxynivalenol, potent protein synthesis inhibiting compound, was detected (at low levels) in grains and silage. A subset of selected strains, representative of all species identified, was also used to evaluate their ability to produce mycotoxins.Fusarium verticillioides, Fusariumproliferatum and Fusarium nygamai produced high levels of fumonisin B1in vitro, as well as beauvericin and enniatins. These findings confirm that, even in hot arid regions, which generally do not favour fungal growth, mycotoxin-producing fungi can be reason of concern for human and animal health.
Collapse
Affiliation(s)
- Samia Gargouri
- Institut National de la Recherche Agronomique de Tunisie, rue HédiKarray, 2049, Tunisia
| | - Mario Masiello
- Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy.
| | - Stefania Somma
- Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy
| | - Miriam Haidukowski
- Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy
| | - Rihab Khaterchi
- Institut National de la Recherche Agronomique de Tunisie, rue HédiKarray, 2049, Tunisia
| | - Samira Chekali
- Institut National de la Recherche Agronomique de Tunisie, rue HédiKarray, 2049, Tunisia
| | - Sonia Derouich
- Institut National de la Recherche Agronomique de Tunisie, rue HédiKarray, 2049, Tunisia
| | - Virgilio Balmas
- Department of Agriculture, University of Sassari, Via E. De Nicola, 9071, Sassari, Italy
| | - Antonio Moretti
- Research National Council, Institute of Sciences of Food Production, CNR-ISPA, Via Amendola 122/O, 70126, Bari, Italy
| |
Collapse
|
5
|
Visagie CM, Meyer H, Yilmaz N. Maize-Fusarium associations and their mycotoxins: Insights from South Africa. Fungal Biol 2024; 128:2408-2421. [PMID: 39653488 DOI: 10.1016/j.funbio.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 01/05/2025]
Abstract
For maize, a staple food in South Africa, there is a lack of comprehensive knowledge on the mycotoxin-producing fungal diversity. In this study, a fungal community profile was established using culture-dependent methods for 56 maize seed samples that were also analysed for 13 mycotoxins. The fungal isolates were identified by morphology and DNA sequencing. A total of 723 fungal isolates from 21 genera and 99 species were obtained and characterised. Fusarium was the most common genus (isolated from 52 samples), followed by Cladosporium (n = 45), Aspergillus (n = 41), Talaromyces (n = 40), and Penicillium (n = 38). Fusarium communities were dominated by the Fusarium fujikuroi species complex, which includes species such as Fusarium verticillioides and Fusarium temperatum, while Fusarium awaxy and Fusarium mirum are reported here for the first time from South Africa. As for the deoxynivalenol (DON) producing species, only Fusarium boothii and Fusarium graminearum were isolated to a lesser extent. DON (n = 37), fumonisins (FUM) (n = 32), and zearalenone (ZEA) (n = 6) were detected. The presence of a particular species did not guarantee the presence of the corresponding mycotoxins, while the inverse was also true. The occurrence of DON and/or FUM in South African maize remains a health concern, so continuous monitoring of both fungal species and their mycotoxins is important.
Collapse
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Hannalien Meyer
- Southern African Grain Laboratory (SAGL), Grain Building-Agri Hub Office Park, 477 Witherite Street, The Willows, Pretoria, 0040, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Akohoue F, Koch S, Lieberherr B, Kessel B, Presterl T, Miedaner T. Effectiveness of introgression of resistance loci for Gibberella ear rot from two European flint landraces into adapted elite maize (Zea mays L.). PLoS One 2023; 18:e0292095. [PMID: 37756342 PMCID: PMC10530019 DOI: 10.1371/journal.pone.0292095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
European flint landraces are a major class of maize possessing favorable alleles for improving host resistance to Gibberella ear rot (GER) disease which reduces yield and contaminates the grains with mycotoxins. However, the incorporation of these landraces into breeding programs requires a clear understanding of the effectiveness of their introgression into elite materials. We evaluated 15 pre-selected doubled haploid (DH) lines from two European flint landraces, "Kemater Landmais Gelb" (KE) and "Petkuser Ferdinand Rot" (PE), together with two adapted elite flint lines and seven standard lines for GER severity as the main trait, and several adaptation traits (plant height, days to silking, seed-set, plant vigor) across four environments. From this evaluation, three KE DH lines and one PE DH line, with the lowest GER severity, were selected and used as donor parents that were crossed with the two adapted and GER susceptible flint lines (Flint1 and Flint2) to develop six bi-parental DH populations with 34-145 DH lines each. Each DH population was evaluated across two locations. Correlations between GER severity, which was the target trait, and adaptation traits were weak (-0.02 to 0.19). GER severity of lines from PE landrace was on average 2-fold higher than lines from KE landrace, indicating a clear superiority of the KE landrace lines. Mean GER severity of the DH populations was 39.4-61.0% lower than the adapted elite flint lines. All KE-derived DH populations were on average more resistant (27.0-36.7%) than the PE-derived population (51.0%). Highly resistant lines (1.3-5.2%) were found in all of the populations, suggesting that the DH populations can be successfully integrated into elite breeding programs. The findings demonstrate that selected KE landrace lines used as donors were effective in improving GER resistance of the adapted elite inbreds.
Collapse
Affiliation(s)
- Félicien Akohoue
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Silvia Koch
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Bärbel Lieberherr
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Bettina Kessel
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Thomas Presterl
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Chen X, Abdallah MF, Landschoot S, Audenaert K, De Saeger S, Chen X, Rajkovic A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins (Basel) 2023; 15:577. [PMID: 37756003 PMCID: PMC10534665 DOI: 10.3390/toxins15090577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Maize is frequently contaminated with multiple mycotoxins, especially those produced by Aspergillus flavus and Fusarium verticillioides. As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of A. flavus and F. verticillioides and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize. The gathered data predict the (co-)occurrence and virulence of A. flavus and F. verticillioides would increase worldwide, especially in European cold climate countries. Studies on the interaction of both fungi regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. However, the (co-)contamination of AFB1 and FB1 has risen worldwide in the last decade. Primarily, this co-contamination increased by 32% in Europe (2010-2020 vs. 1992-2009). This implies that fungi and mycotoxins would severely threaten European-grown maize.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng 2028, South Africa
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| |
Collapse
|
8
|
Akohoue F, Miedaner T. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1050891. [PMID: 36388551 PMCID: PMC9662303 DOI: 10.3389/fpls.2022.1050891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Fusarium (FER) and Gibberella ear rots (GER) are the two most devastating diseases of maize (Zea mays L.) which reduce yield and affect grain quality worldwide, especially by contamination with mycotoxins. Genetic improvement of host resistance to effectively tackle FER and GER diseases requires the identification of stable quantitative trait loci (QTL) to facilitate the application of genomics-assisted breeding for improving selection efficiency in breeding programs. We applied improved meta-analysis algorithms to re-analyze 224 QTL identified in 15 studies based on dense genome-wide single nucleotide polymorphisms (SNP) in order to identify meta-QTL (MQTL) and colocalized genomic loci for fumonisin (FUM) and deoxynivalenol (DON) accumulation, silk (SR) and kernel (KR) resistances of both FER and GER, kernel dry-down rate (KDD) and husk coverage (HC). A high-resolution genetic consensus map with 36,243 loci was constructed and enabled the projection of 164 of the 224 collected QTL. Candidate genes (CG) mining was performed within the most refined MQTL, and identified CG were cross-validated using publicly available transcriptomic data of maize under Fusarium graminearum infection. The meta-analysis revealed 40 MQTL, of which 29 were associated each with 2-5 FER- and/or GER-related traits. Twenty-eight of the 40 MQTL were common to both FER and GER resistances and 19 MQTL were common to silk and kernel resistances. Fourteen most refined MQTL on chromosomes 1, 2, 3, 4, 7 and 9 harbored a total of 2,272 CG. Cross-validation identified 59 of these CG as responsive to FER and/or GER diseases. MQTL ZmMQTL2.2, ZmMQTL9.2 and ZmMQTL9.4 harbored promising resistance genes, of which GRMZM2G011151 and GRMZM2G093092 were specific to the resistant line for both diseases and encoded "terpene synthase21 (tps21)" and "flavonoid O-methyltransferase2 (fomt2)", respectively. Our findings revealed stable refined MQTL harboring promising candidate genes for use in breeding programs for improving FER and GER resistances with reduced mycotoxin accumulation. These candidate genes can be transferred into elite cultivars by integrating refined MQTL into genomics-assisted backcross breeding strategies.
Collapse
|
9
|
Shabana YM, Ghoneem KM, Rashad YM, Arafat NS, Fitt BDL, Richard B, Qi A. Distribution and Biodiversity of Seed-Borne Pathogenic and Toxigenic Fungi of Maize in Egypt and Their Correlations with Weather Variables. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182347. [PMID: 36145747 PMCID: PMC9506050 DOI: 10.3390/plants11182347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 05/23/2023]
Abstract
Studies of the biodiversity of plant pathogenic and toxigenic fungi are attracting great attention to improve the predictability of their epidemics and the development of their control programs. Two hundred maize grain samples were gathered from 25 maize-growing governorates in Egypt and 189 samples were processed for the isolation and identification of seed-borne fungal microbiome. Twenty-six fungal genera comprising 42 species were identified according to their morphological characteristics and ITS DNA sequence analysis. Occurrence and biodiversity indicators of these fungal species were calculated. Ustilago maydis, Alternaria alternata, Aspergillus flavus, A. niger, Penicillium spp., Cladosporium spp. and Fusarium verticillioides were the highly frequent (>90% for each), recording the highest relative abundance (˃50%). Al-Menia governorate showed the highest species diversity and richness, followed by Sohag, Al-Nobaria and New Valley governorates. Correlations of 18 fungal species with temperature, relative humidity, precipitation, wind speed, and solar radiation were analyzed using canonical correspondence analysis. Results showed that relative humidity, temperature, and wind speed, respectively, were the most impactful weather variables. However, the occurrence and distribution of these fungi were not clearly grouped into the distinctive climatic regions in which maize crops are grown. Monitoring the occurrence and distribution of the fungal pathogens of maize grains in Egypt will play an important role in predicting their outbreaks and developing appropriate future management strategies. The findings in this study may be useful to other maize-growing countries that have similar climatic conditions.
Collapse
Affiliation(s)
- Yasser M. Shabana
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Khalid M. Ghoneem
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Younes M. Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21500, Egypt
| | - Nehal S. Arafat
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Bruce D. L. Fitt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordsire, UK
| | - Benjamin Richard
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordsire, UK
| | - Aiming Qi
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Hertfordsire, UK
| |
Collapse
|
10
|
Navale VD, Sawant AM, Gowda VU, Vamkudoth KR. Assembly, Annotation, and Comparative Whole Genome Sequence of Fusarium verticillioides Isolated from Stored Maize Grains. Pathogens 2022; 11:810. [PMID: 35890054 PMCID: PMC9320718 DOI: 10.3390/pathogens11070810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/27/2022] Open
Abstract
Fusarium verticillioides is a plant pathogenic fungus affecting a wide range of crops worldwide due to its toxigenic properties. F. verticillioides BIONCL4 strain was isolated from stored maize grain samples in India, and produces high amount of fumonisin B1 (FB1). We report a comparative genomic analysis of F. verticillioides, covering the basic genome information, secretome, and proteins involved in host-pathogen interactions and mycotoxin biosynthesis. Whole-genome sequencing (WGS) was performed using the Illumina platform with an assembly size of 42.91 Mb, GC content of 48.24%, and 98.50% coverage with the reference genome (GCA000149555). It encodes 15,053 proteins, including 2058 secretory proteins, 676 classical secretory proteins, and 569 virulence and pathogenicity-related proteins. There were also 1447 genes linked to carbohydrate active enzymes (CaZymes) and 167 genes related to mycotoxin production. Furthermore, F. verticillioides genome comparison revealed information about the species' evolutionary history. The overall study helps in disease prevention and management of mycotoxins to ensure food safety.
Collapse
Affiliation(s)
- Vishwambar D. Navale
- CSIR-National Chemical Laboratory, Biochemical Sciences Division, Pune 411008, India; (V.D.N.); (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amol M. Sawant
- CSIR-National Chemical Laboratory, Biochemical Sciences Division, Pune 411008, India; (V.D.N.); (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varun U. Gowda
- Theomics, International Private Limited, Bangalore 560038, India;
| | - Koteswara Rao Vamkudoth
- CSIR-National Chemical Laboratory, Biochemical Sciences Division, Pune 411008, India; (V.D.N.); (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Deoxynivalenol: An Overview on Occurrence, Chemistry, Biosynthesis, Health Effects and Its Detection, Management, and Control Strategies in Food and Feed. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycotoxins are fungi-produced secondary metabolites that can contaminate many foods eaten by humans and animals. Deoxynivalenol (DON), which is formed by Fusarium, is one of the most common occurring predominantly in cereal grains and thus poses a significant health risk. When DON is ingested, it can cause both acute and chronic toxicity. Acute signs include abdominal pain, anorexia, diarrhea, increased salivation, vomiting, and malaise. The most common effects of chronic DON exposure include changes in dietary efficacy, weight loss, and anorexia. This review provides a succinct overview of various sources, biosynthetic mechanisms, and genes governing DON production, along with its consequences on human and animal health. It also covers the effect of environmental factors on its production with potential detection, management, and control strategies.
Collapse
|
12
|
Al-Askar AA, Ghoneem KM, Hafez EE, Saber WIA. A Case Study in Saudi Arabia: Biodiversity of Maize Seed-Borne Pathogenic Fungi in Relation to Biochemical, Physiological, and Molecular Characteristics. PLANTS (BASEL, SWITZERLAND) 2022; 11:829. [PMID: 35336711 PMCID: PMC8954539 DOI: 10.3390/plants11060829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/02/2023]
Abstract
Microbiodiversity is usually correlated with environmental conditions. This investigation is a case study to cover the lack of knowledge on the correlation of biochemical, physiological, and molecular attributes with the distribution of seed-borne pathogenic fungi of maize under the environmental conditions of the Kingdom of Saudi Arabia to help forecast any destructive epidemics. Forty-one fungal species belonging to 24 genera were detected using standard moist blotter (SMB), deep freezing blotter (DFB), and agar plate (AP) techniques. SMB was superior in detecting the maximum numbers (36 species) of seed-borne mycoflora. The pathogenicity assay revealed that, among 18 seed-borne fungal pathogens used, 12 isolates caused high percentages of rotted seeds and seedling mortality symptoms, which were identified molecularly using an internal transcribed spacer sequence. Two Curvularia spp. and Sarocladium zeae were reported for the first time in KSA. The strains showed various enzymatic activities and amino acid profiles under different environmental setups. Temperature and humidity were the environmental variables influencing the fungal pathogenicity. The highest pathogenicity was correlated with the presence and concentration of threonine, alanine, glutamic, aspartic acids, and protein. The study concluded with the discovery of four new phytopathogens in KSA and, further, evidenced a marked correlation among the investigated variables. Nevertheless, more studies are encouraged to include additional physiological properties of the phytopathogens, such as toxigenic activity, as well as extend the fungal biodiversity study to other plants.
Collapse
Affiliation(s)
- Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Ghoneem
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt;
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
13
|
Wang W, Wang B, Sun X, Qi X, Zhao C, Chang X, Khaskheli MI, Gong G. Symptoms and pathogens diversity of Corn Fusarium sheath rot in Sichuan Province, China. Sci Rep 2021; 11:2835. [PMID: 33531583 PMCID: PMC7854677 DOI: 10.1038/s41598-021-82463-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
To elucidate the symptoms and pathogens diversity of corn Fusarium sheath rot (CFSR), diseased samples were collected from 21 county-level regions in 12 prefecture-level districts of Sichuan Province from 2015 to 2018 in the present study. In the field, two symptom types appeared including small black spots with a linear distribution and wet blotches with a tawny or brown color. One hundred thirty-seven Fusarium isolates were identified based on morphological characteristics and phylogenetic analysis (EF1-α), and Koch's postulates were also assessed. The results identified the isolates as 8 species in the Fusarium genus, including F. verticillioides, F. proliferatum, F. fujikuroi, F. asiaticum, F. equiseti, F. meridionale, F. graminearum and F. oxysporum, with isolation frequencies of 30.00, 22.67, 15.33, 7.33, 6.00, 5.33, 3.33 and 1.33%, respectively. Fusarium verticillioides and F. proliferatum were the dominant and subdominant species, respectively. Two or more Fusarium species such as F. verticillioides and F. proliferatum were simultaneously identified at a mixed infection rate of 14.67% in the present study. The pathogenicity test results showed that F. proliferatum and F. fujikuroi exhibited the highest virulence, with average disease indices of 30.28 ± 2.87 and 28.06 ± 1.96, followed by F. equiseti and F. verticillioides, with disease indices of 21.48 ± 2.14 and 16.21 ± 1.84, respectively. Fusarium asiaticum, F. graminearum and F. meridonale showed lower virulence, with disease indices of 13.80 ± 2.07, 11.57 ± 2.40 and 13.89 ± 2.49, respectively. Finally, F. orysporum presented the lowest virulence in CFSR, with a disease index of 10.14 ± 1.20. To the best of our knowledge, this is the first report of F. fujikuroi, F. meridionale and F. asiaticum as CFSR pathogens in China.
Collapse
Affiliation(s)
- Wei Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaofang Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobo Qi
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Conghao Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Ibrahim Khaskheli
- Department of Plant Protection, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|