1
|
Schumann A, Gaballa A, Wiedmann M. The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0019323. [PMID: 39382292 DOI: 10.1128/mmbr.00193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Zhang Q. Bacteria carrying mobile colistin resistance genes and their control measures, an updated review. Arch Microbiol 2024; 206:462. [PMID: 39516398 DOI: 10.1007/s00203-024-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The plasmid encoded mobile colistin resistance (MCRs) enzyme poses a significant challenge to the clinical efficacy of colistin, which is frequently employed as a last resort antibiotic for treating infections caused by multidrug resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A of the outer membrane of gram-negative bacteria, thereby facilitating the acquired colistin resistance. This review aims to summarize and critically discuss recent advancements in the distribution and pathogenesis of mcr-positive bacteria, as well as the various control measures available for treating these infections. In addition, the ecology of mcr genes, colistin-resistance mechanism, co-existence with other antibiotic resistant genes, and their impact on clinical treatment are also analyzed to address the colistin resistance crisis. These insights provide a comprehensive perspective on MCRs and serve as a valuable reference for future therapeutic approaches to effectively combat mcr-positive bacterial infections.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
3
|
Lawal OU, Bryan N, Parreira VR, Anderson R, Chen Y, Precious M, Goodridge L. Phylogenomics of novel clones of Aeromonas veronii recovered from a freshwater lake reveals unique biosynthetic gene clusters. Microbiol Spectr 2024; 12:e0117124. [PMID: 39513706 PMCID: PMC11619367 DOI: 10.1128/spectrum.01171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aquatic ecosystems serve as crucial reservoirs for pathogens and antimicrobial resistance genes, thus presenting a significant global health risk. Here, we investigated the phylogenomics of Aeromonas veronii from Lake Wilcox in Ontario. Among the 11 bacterial isolates, nine were identified as A. veronii. Notably, 67% of A. veronii isolates were potential human pathogens. Considerable genetic diversity was noted among the A. veronii isolates, suggesting the lake as a reservoir for multiple human pathogenic strains. Comparison of the A. veronii sequenced with global A. veronii genomes highlighted significant genetic diversity and suggests widespread dissemination of strains. All the isolates carried chromosomal genes encoding resistance to β-lactams. Although virulence gene content differed between human and non-human pathogenic strains, type III secretion systems was associated with human pathogenic isolates. The assessment of AMR genes in global isolates showed that β-lactam and tetracycline resistance genes were predominant. Although the machine learning-based pangenome-wide association approach performed did not yield any source-based genes, some genes were enriched in a few isolates from different sources. The mrkABCDF operon that mediates biofilm formation and genes encoding resistance to colistin, chloramphenicol, trimethoprim, and tetracycline were enriched in animal products, whereas macrolide resistance genes and Inc plasmid-types were linked to the aquatic environment. Novel biosynthetic gene clusters were identified, suggesting that A. veronii with varying pathogenic potential could produce unique secondary metabolites. There is a need for continuous tracking of pathogens in aquatic ecosystems to contribute to our understanding of their evolutionary dynamics and the ecological roles of their genetic elements. IMPORTANCE Lakes and other aquatic ecosystems can harbor harmful bacteria that can make people sick and resist antibiotics, posing a significant global health risk. In this study, we investigated Aeromonas veronii, a Gram-negative bacteria found in Lake Wilcox in Ontario. We used various techniques, including whole-genome sequencing (WGS), to analyze the bacteria and found that many of the isolates had the potential to cause human disease. We also discovered significant genetic diversity among the isolates, indicating that the lake may be a reservoir for multiple human pathogenic strains. All isolates carried genes that confer resistance to antibiotics, and some virulence genes were associated with human pathogenic isolates. This study highlights the importance of monitoring aquatic ecosystems for harmful bacteria to better understand their evolution, potential for human pathogenicity, and the ecological roles of their genetic elements. This knowledge can inform strategies for preventing the spread of antibiotic-resistant bacteria and protecting public health.
Collapse
Affiliation(s)
- Opeyemi U. Lawal
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Noah Bryan
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
- Bayview Secondary School, Richmond Hill, Ontario, Canada
| | - Valeria R. Parreira
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Rebecca Anderson
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Yanhong Chen
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Melinda Precious
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Ji C, He T, Wu B, Cao X, Fan X, Liu X, Li X, Yang M, Wang J, Xu L, Hu S, Xia L, Sun Y. Identification and characterization of a novel type II toxin-antitoxin system in Aeromonas veronii. Arch Microbiol 2024; 206:381. [PMID: 39153128 DOI: 10.1007/s00203-024-04101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
The bacterial type II toxin-antitoxin (TA) system is a rich genetic element that participates in various physiological processes. Aeromonas veronii is the main bacterial pathogen threatening the freshwater aquaculture industry. However, the distribution of type II TA system in A. veronii was seldom documented and its roles in the life activities of A. veronii were still unexplored. In this study, a novel type II TA system AvtA-AvtT was predicted in a fish pathogen Aeromonas veronii biovar sobria with multi-drug resistance using TADB 2.0. Through an Escherichia coli host killing and rescue assay, we demonstrated that AvtA and AvtT worked as a genuine TA system, and the predicted toxin AvtT actually functioned as an antitoxin while the predicted antitoxin AvtA actually functioned as a toxin. The binding ability of AvtA with AvtT proteins were confirmed by dot blotting analysis and co-immunoprecipitation assay. Furthermore, we found that the toxin and antitoxin labelled with fluorescent proteins were co-localized. In addition, it was found that the transcription of AvtAT bicistronic operon was repressed by the AvtAT protein complex. Deletion of avtA gene and avtT gene had no obvious effect on the drug susceptibility. This study provides first characterization of type II TA system AvtA-AvtT in aquatic pathogen A. veronii.
Collapse
Affiliation(s)
- Caihong Ji
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ting He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Binbin Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xiaomei Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xiaping Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xia Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xiaodan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Miao Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jihan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ling Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yunjun Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China.
| |
Collapse
|
5
|
Neil B, Cheney GL, Rosenzweig JA, Sha J, Chopra AK. Antimicrobial resistance in aeromonads and new therapies targeting quorum sensing. Appl Microbiol Biotechnol 2024; 108:205. [PMID: 38349402 PMCID: PMC10864486 DOI: 10.1007/s00253-024-13055-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human pathogens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aeromonas' innate transformative properties including its ability to share plasmids and integron-related gene cassettes between species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein, many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp. infections in humans. KEY POINTS: • Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited. • Quorum sensing is an essential virulence mechanism in Aeromonas infections. • Inhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.
Collapse
Affiliation(s)
- Blake Neil
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Gabrielle L Cheney
- John Sealy School of Medicine, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA
| | - Jian Sha
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA.
| |
Collapse
|
6
|
Gaballa A, Wiedmann M, Carroll LM. More than mcr: canonical plasmid- and transposon-encoded mobilized colistin resistance genes represent a subset of phosphoethanolamine transferases. Front Cell Infect Microbiol 2023; 13:1060519. [PMID: 37360531 PMCID: PMC10285318 DOI: 10.3389/fcimb.2023.1060519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Mobilized colistin resistance genes (mcr) may confer resistance to the last-resort antimicrobial colistin and can often be transmitted horizontally. mcr encode phosphoethanolamine transferases (PET), which are closely related to chromosomally encoded, intrinsic lipid modification PET (i-PET; e.g., EptA, EptB, CptA). To gain insight into the evolution of mcr within the context of i-PET, we identified 69,814 MCR-like proteins present across 256 bacterial genera (obtained by querying known MCR family representatives against the National Center for Biotechnology Information [NCBI] non-redundant protein database via protein BLAST). We subsequently identified 125 putative novel mcr-like genes, which were located on the same contig as (i) ≥1 plasmid replicon and (ii) ≥1 additional antimicrobial resistance gene (obtained by querying the PlasmidFinder database and NCBI's National Database of Antibiotic Resistant Organisms, respectively, via nucleotide BLAST). At 80% amino acid identity, these putative novel MCR-like proteins formed 13 clusters, five of which represented putative novel MCR families. Sequence similarity and a maximum likelihood phylogeny of mcr, putative novel mcr-like, and ipet genes indicated that sequence similarity was insufficient to discriminate mcr from ipet genes. A mixed-effect model of evolution (MEME) indicated that site- and branch-specific positive selection played a role in the evolution of alleles within the mcr-2 and mcr-9 families. MEME suggested that positive selection played a role in the diversification of several residues in structurally important regions, including (i) a bridging region that connects the membrane-bound and catalytic periplasmic domains, and (ii) a periplasmic loop juxtaposing the substrate entry tunnel. Moreover, eptA and mcr were localized within different genomic contexts. Canonical eptA genes were typically chromosomally encoded in an operon with a two-component regulatory system or adjacent to a TetR-type regulator. Conversely, mcr were represented by single-gene operons or adjacent to pap2 and dgkA, which encode a PAP2 family lipid A phosphatase and diacylglycerol kinase, respectively. Our data suggest that eptA can give rise to "colistin resistance genes" through various mechanisms, including mobilization, selection, and diversification of genomic context and regulatory pathways. These mechanisms likely altered gene expression levels and enzyme activity, allowing bona fide eptA to evolve to function in colistin resistance.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
KOMEDA TOMOKI, SHRESTHA SHOVITA, SHERCHAN JATANB, TOHYA MARI, HISHINUMA TOMOMI, SHRECHAND JEEVANB, TADA TATSUYA, KIRIKAE TERUO. Highly Colistin-resistant Aeromonas jandaei from a Human Blood Sample. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:188-193. [PMID: 38855938 PMCID: PMC11153054 DOI: 10.14789/jmj.jmj22-0047-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 06/11/2024]
Abstract
Aeromonas species are Gram-negative rods known to cause infections such as gastroenteritis, bacteremia and wound infections. Colistin is one of few treatments for multidrug-resistant Gram-negative bacteria. However, colistin-resistant bacteria carrying the mobilized colistin resistance (mcr) gene are a threat in healthcare settings worldwide. In recent years, colistin-resistant Aeromonas species have been detected in environmental and clinical samples. We analyzed the genomic characteristics of one highly colistin-resistant A. jandaei isolated from a blood sample in Nepal, which harbored four novel mcr-like genes on its chromosome. Our study strongly suggests that A. jandaei is a reservoir of colistin-resistant genes. Inappropriate use of drugs in medicine and food production should be reduced and continued global surveillance for colistin-resistant bacteria is necessary.
Collapse
Affiliation(s)
| | | | | | | | | | | | - TATSUYA TADA
- Corresponding author: Tatsuya Tada, Department of Microbiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-3803-3111(ext. 3529) FAX: +81-3-5684-7830 E-mail: , Research of the 6th Alumni Scientific Award for Medical Student, Juntendo University School of Medicine
| | | |
Collapse
|
8
|
Supa-Amornkul S, Intuy R, Ruangchai W, Chaturongakul S, Palittapongarnpim P. Evidence of international transmission of mobile colistin resistant monophasic Salmonella Typhimurium ST34. Sci Rep 2023; 13:7080. [PMID: 37127697 PMCID: PMC10151351 DOI: 10.1038/s41598-023-34242-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023] Open
Abstract
S. 4,[5],12:i:-, a monophasic variant of S. enterica serovar Typhimurium, is an important multidrug resistant serovar. Strains of colistin-resistant S. 4,[5],12:i:- have been reported in several countries with patients occasionally had recent histories of travels to Southeast Asia. In the study herein, we investigated the genomes of S. 4,[5],12:i:- carrying mobile colistin resistance (mcr) gene in Thailand. Three isolates of mcr-3.1 carrying S. 4,[5],12:i:- in Thailand were sequenced by both Illumina and Oxford Nanopore platforms and we analyzed the sequences together with the whole genome sequences of other mcr-3 carrying S. 4,[5],12:i:- isolates available in the NCBI Pathogen Detection database. Three hundred sixty-nine core genome SNVs were identified from 27 isolates, compared to the S. Typhimurium LT2 reference genome. A maximum-likelihood phylogenetic tree was constructed and revealed that the samples could be divided into three clades, which correlated with the profiles of fljAB-hin deletions and plasmids. A couple of isolates from Denmark had the genetic profiles similar to Thai isolates, and were from the patients who had traveled to Thailand. Complete genome assembly of the three isolates revealed the insertion of a copy of IS26 at the same site near iroB, suggesting that the insertion was an initial step for the deletions of fljAB-hin regions, the hallmark of the 4,[5],12:i:- serovar. Six types of plasmid replicons were identified with the majority being IncA/C. The coexistence of mcr-3.1 and blaCTX-M-55 was found in both hybrid-assembled IncA/C plasmids but not in IncHI2 plasmid. This study revealed possible transmission links between colistin resistant S. 4,[5],12:i:- isolates found in Thailand and Denmark and confirmed the important role of plasmids in transferring multidrug resistance.
Collapse
Affiliation(s)
- Sirirak Supa-Amornkul
- Mahidol International Dental School, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand
| | - Rattanaporn Intuy
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand
| | - Wuthiwat Ruangchai
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand
| | - Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand.
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
9
|
Detection of changes in biological characteristics of Aeromonas veronii TH0426 after deletion of lsrB gene by homologous recombination. Microb Pathog 2023; 174:105938. [PMID: 36526036 DOI: 10.1016/j.micpath.2022.105938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Aeromonas veronii is a widespread pathogenic microorganism that can infect humans, animals, and a variety of aquatilia, at the same time, can cause diseases, mainly sepsis and ulcer syndrome. In this research, we first deleted the gene of lsrB's nucleotide sequences by homologous recombination. The results showed that the median lethal dose (LD50) of the mutant strain (ΔlsrB) for zebrafish was 1.28-times higher than that of the TH0426 strain. The toxicity of TH0426 to epithelioma papulosum cyprini (EPC) cells was 1.15-times and 1.64-times higher than that of ΔlsrB, 1 and 2 h after infection. The production ability of the biofilm of ΔlsrB decreased by 1.38-times, and the adhesion ability of ΔlsrB to EPC cells greatly decreased by 1.96-times than the TH0426. The result of motility detection pointed out that the swimming ability of ΔlsrB was down by 1.67-times. The results indicated that almost all of them lost their flagella after deleting the lsrB gene. In general, the virulence of TH0426 was reduced after deleting the lsrB gene. The final results point out that the lsrB gene of TH0426 is related to motility, biofilm formation, adhesion, and virulence.
Collapse
|
10
|
Liang B, Ji X, Jiang B, Yuan T, Gerile CLM, Zhu L, Wang T, Li Y, Liu J, Guo X, Sun Y. Virulence, Antibiotic Resistance, and Phylogenetic Relationships of Aeromonas spp. Carried by Migratory Birds in China. Microorganisms 2022; 11:7. [PMID: 36677299 PMCID: PMC9862355 DOI: 10.3390/microorganisms11010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate antimicrobial resistance, virulence, and the genetic diversity of Aeromonas isolated from migratory birds from Guangxi Province, Guangdong Province, Ningxia Hui Autonomous Region, Jiangxi Province, and Inner Mongolia in China. A total of 810 samples were collected, including fresh feces, cloacal swabs, and throat swabs. The collected samples were processed and subjected to bacteriological examination. The resistance to 21 antibiotics was evaluated. A phylogenetic tree was constructed using concatenated gltA-groL-gyrB-metG-PPSA-recA sequences. Eight putative virulence factors were identified by PCR and sequencing, and a biofilm formation assay was performed using a modified microtiter plate method. In total, 176 Aeromonas isolates were isolated including A. sobria, A. hydrophila, A. veronii, and A. caviae. All isolates showed variable resistance against all 16 tested antibiotic discs, and only one antibiotic had no reference standard. Six kinds of virulence gene markers were discovered, and the detection rates were 46.0% (hlyA), 76.1% (aerA), 52.3% (alt), 4.5% (ast), 54.0% (fla), and 64.2% (lip). These strains were able to form biofilms with distinct magnitudes; 102 were weakly adherent, 14 were moderately adherent, 60 were non-adherent, and none were strongly adherent. Our results suggest that migratory birds carry highly virulent and multidrug-resistant Aeromonas and spread them around the world through migration, which is a potential threat to public health.
Collapse
Affiliation(s)
- Bing Liang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130117, China
| | - Xue Ji
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130117, China
| | - Bowen Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130117, China
| | - Tingyu Yuan
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250013, China
| | - Chao Lu Men Gerile
- Center for Animal Disease Control and Prevention of Yi Jin Huo Luo Banner, Ordos 017299, China
| | - Lingwei Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130117, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130117, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130117, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130117, China
| | - Xuejun Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130117, China
| | - Yang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130117, China
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250013, China
| |
Collapse
|
11
|
Xu L, Fan J, Fu H, Yang Y, Luo Q, Wan F. The variants of polymyxin susceptibility in different species of genus Aeromonas. Front Microbiol 2022; 13:1030564. [PMID: 36386612 PMCID: PMC9642839 DOI: 10.3389/fmicb.2022.1030564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/07/2022] [Indexed: 06/23/2024] Open
Abstract
The aquatic environment is an important medium for the accumulation and dissemination of antibiotic-resistant bacteria as it is often closely related to human activities. Previous studies paid little attention to the prevalence and mechanism of polymyxin-resistant bacteria in the aquatic environment. As a Gram-negative opportunistic pathogen widely distributed in aquatic ecosystems, the antibiotic-resistant profile of Aeromonas spp. deserves much attention. In this study, we identified 61 Aeromonas spp. isolates from water samples in the section of the Yangtze River. The total polymyxin B (PMB) resistance rate of these strains was 49.18% (30/61), showing a high level of polymyxin resistance in Aeromonas spp. The MIC50 and MIC90 for PMB exhibited a significant discrepancy among different species (p < 0.001). The MIC50 and MIC90 for PMB in the Aeromonas hydrophila were 128 mg/L and above 128 mg/L while in Aeromonas caviae and Aeromonas veronii, the MIC50 and MIC90 value were both 2 mg/L. Only two A. veronii strains (MIC = 2 mg/L) and one A. caviae strain (MIC = 0.5 mg/L) were identified as carrying mobilized polymyxin resistant gene mcr-3.42, and mcr-3.16. All mcr genes were located in the chromosome. This is the first report that the downstream region of mcr-3.42 was the truncated mcr-3-like gene separated by the insertion sequences of ISAs20 (1,674 bp) and ISAs2 (1,084 bp). Analysis of epidemiology of mcr-positive Aeromonas genomes from GenBank database showed that the genus Aeromonas and the aquatic environment might be the potential container and reservoir of mcr-3. By the whole-genome sequencing and qRT-PCR, we inferred that the sequence differences in the AAA domain of MlaF protein and its expression level among these three species might be involved in the development of polymyxin resistance. Our study provided evidences of the possible mechanism for the variety of polymyxin susceptibility in different species of the genus Aeromonas and a theoretical basis for the surveillance of the aquatic environment.
Collapse
Affiliation(s)
- Linna Xu
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, China
| | - Junfeng Fan
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, China
| | - Hao Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuyi Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Wan
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Chen C, Zu S, Zhang D, Zhao Z, Ji Y, Xi H, Shan X, Qian A, Han W, Gu J. Oral vaccination with recombinant Lactobacillus casei expressing Aha1 fused with CTB as an adjuvant against Aeromonas veronii in common carp (Cyprinus carpio). Microb Cell Fact 2022; 21:114. [PMID: 35698139 PMCID: PMC9191526 DOI: 10.1186/s12934-022-01839-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022] Open
Abstract
Aeromonas veronii (A. veronii) is a pathogenic that can infect human, animal and aquatic organisms, in which poses a huge threat to the health of many aquatic organisms such as Cyprinus carpio. In this study, Lactobacillus casei (L. casei) strain CC16 was used as antigen deliver carrier and fused with cholera toxin B subunit (CTB) as an adjuvant to construct the recombinant L. casei pPG-Aha1/Lc CC16(surface-displayed) and pPG-Aha1-CTB/Lc CC16(surface-displayed) expressing Aha1 protein of A. veronii, respectively. And the immune responses in Cyprinus carpio by oral route was explored. Our results demonstrated that the recombinant strains could stimulate high serum specific antibody immunoglobulin M (IgM) and induce a stronger acid phosphatase (ACP), alkaline phosphatase (AKP), C3, C4, lysozyme (LZM), Lectin and superoxide dismutase (SOD) activity in Cyprinus carpio compared with control groups. Meanwhile, the expression of Interleukin-10 (IL-10), Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), immunoglobulin Z1 (IgZ1) and immunoglobulin Z2 (IgZ2) in the tissues were significantly upregulated compared with Lc-pPG or PBS groups, indicating that humoral and cell immune response were triggered. Additionally, recombinant L. casei could survive and colonize in fish intestine. Significantly, recombinant L. casei provides immune protection against A. veronii infection, which Cyprinus carpio received pPG-Aha1-CTB/Lc CC16 (64.29%) and pPG-Aha1/Lc CC16 (53.57%) had higher survival rates compared with the controls. Thus, we demonstrated that recombinant pPG-Aha1/Lc CC16 and pPG-Aha1-CTB/Lc CC16 may be the promising strategy for the development of an oral vaccine against A. veronii.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Shuo Zu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, People's Republic of China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Zelin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
13
|
Synthesis of the Aeromonas veronii strain Bs8 disaccharide repeating unit. Carbohydr Res 2022; 514:108530. [PMID: 35263695 PMCID: PMC8983578 DOI: 10.1016/j.carres.2022.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
Presented herein is the synthesis of the Aeromonas veronii disaccharide repeating unit which has been achieved in 11 steps starting from d-fucose and d-galactosamine.
Collapse
|
14
|
Liu F, Yuwono C, Tay ACY, Wehrhahn MC, Riordan SM, Zhang L. Analysis of global Aeromonas veronii genomes provides novel information on source of infection and virulence in human gastrointestinal diseases. BMC Genomics 2022; 23:166. [PMID: 35227192 PMCID: PMC8883699 DOI: 10.1186/s12864-022-08402-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aeromonas veronii is a Gram-negative rod-shaped motile bacterium that inhabits mainly freshwater environments. A. veronii is a pathogen of aquatic animals, causing diseases in fish. A. veronii is also an emerging human enteric pathogen, causing mainly gastroenteritis with various severities and also often being detected in patients with inflammatory bowel disease. Currently, limited information is available on the genomic information of A. veronii strains that cause human gastrointestinal diseases. Here we sequenced, assembled and analysed 25 genomes (one complete genome and 24 draft genomes) of A. veronii strains isolated from patients with gastrointestinal diseases using combine sequencing technologies from Illumina and Oxford Nanopore. We also conducted comparative analysis of genomes of 168 global A. veronii strains isolated from different sources. RESULTS We found that most of the A. veronii strains isolated from patients with gastrointestinal diseases were closely related to each other, and the remaining were closely related to strains from other sources. Nearly 300 putative virulence factors were identified. Aerolysin, microbial collagenase and multiple hemolysins were present in all strains isolated from patients with gastrointestinal diseases. Type III Secretory System (T3SS) in A. veronii was in AVI-1 genomic island identified in this study, most likely acquired via horizontal transfer from other Aeromonas species. T3SS was significantly less present in A. veronii strains isolated from patients with gastrointestinal diseases as compared to strains isolated from fish and domestic animals. CONCLUSIONS This study provides novel information on source of infection and virulence of A. veronii in human gastrointestinal diseases.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alfred Chin Yen Tay
- Helicobacter Research Laboratory, School of Pathology and Laboratory Medicine, Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Australia
| | - Michael C Wehrhahn
- Douglass Hanly Moir Pathology, 14 Giffnock Ave, Macquarie Park, NSW, 2113, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
15
|
Emergence of a highly colistin-resistant Aeromonas jandaei clinical isolate harboring four genes encoding phosphoethanolamine transferases in Nepal. Int J Antimicrob Agents 2022; 59:106544. [DOI: 10.1016/j.ijantimicag.2022.106544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
|
16
|
Zhang L, Jin S, Feng C, Song H, Raza SHA, Yu H, Zhang L, Chi T, Qi Y, Zhang D, Qian A, Liu N, Shan X. Aeromonas veronii virulence and adhesion attenuation mediated by the gene aodp. JOURNAL OF FISH DISEASES 2022; 45:231-247. [PMID: 34875118 DOI: 10.1111/jfd.13544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 05/13/2023]
Abstract
Aeromonas veronii (A. veronii) is an opportunistic pathogen of fish-human-livestock, which poses a threat to the development of aquaculture. Based on our previous studies on proteomics and genomics, we found out that the aodp gene may be related to the virulence of A. veronii TH0426. However, aodp gene encodes a hypothetical protein with an unknown function, and its role in A. veronii TH0426 is not clear. Here, we first constructed a mutant strain (△-aodp) to investigate the functional role of aodp in A. veronii TH0426. Compared with the wild strain A. veronii TH0426, the growth rate of strain △-aodp was slower and was resistant to neomycin and kanamycin, but sensitive to cephalexin. The swimming and swarming ability of △-aodp strain decreased, and the pathogenicity to mice decreased by 15.84-fold. Besides, the activity of caspase-3 in EPCs infected with △-aodp strain was 1.49-fold lower than that of the wild strain. We examined 20 factors closely related to A. veronii virulence, among them 17 genes were down-regulated as a result of aodp deficiency. This study laid a foundation for further studies on the pathogenesis of A. veronii.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shengnan Jin
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chao Feng
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haichao Song
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | | | - Huabo Yu
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Liang Zhang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Teng Chi
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanling Qi
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongxing Zhang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ning Liu
- Department of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Xiaofeng Shan
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|