1
|
Thomas KM, Spitzer N. Silver nanoparticles induce formation of multi-protein aggregates that contain cadherin but do not colocalize with nanoparticles. Toxicol In Vitro 2024; 98:105837. [PMID: 38692336 DOI: 10.1016/j.tiv.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Silver nanoparticles (AgNPs) are increasingly incorporated in diverse products to confer antimicrobial properties. They are released into the environment during manufacture, after disposal, and from the products during use. Because AgNPs bioaccumulate in brain, it is important to understand how they interact with neural cell physiology. We found that the focal adhesion (FA)-associated protein cadherin aggregated in a dose-dependent response to AgNP exposure in differentiating cultured B35 neuroblastoma cells. These aggregates tended to colocalize with F-actin inclusions that form in response to AgNP and also contain β-catenin. However, using hyperspectral microscopy, we demonstrate that these multi-protein aggregates did not colocalize with the AgNPs themselves. Furthermore, expression and organization of the FA protein vinculin did not change in cells exposed to AgNP. Our findings suggest that AgNPs activate an intermediate mechanism which leads to formation of aggregates via specific protein-protein interactions. Finally, we detail the changes in hyperspectral profiles of AgNPs during different stages of cell culture and immunocytochemistry processing. AgNPs in citrate-stabilized solution present mostly blue with some rainbow spectra and these are maintained upon mounting in Prolong Gold. Exposure to tissue culture medium results in a uniform green spectral shift that is not further altered by fixation and protein block steps of immunocytochemistry.
Collapse
Affiliation(s)
- Kaden M Thomas
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, USA
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, USA.
| |
Collapse
|
2
|
Migliaccio G, Ferraro R, Wang Z, Cristini V, Dogra P, Caserta S. Exploring Cell Migration Mechanisms in Cancer: From Wound Healing Assays to Cellular Automata Models. Cancers (Basel) 2023; 15:5284. [PMID: 37958456 PMCID: PMC10647277 DOI: 10.3390/cancers15215284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE Cell migration is a critical driver of metastatic tumor spread, contributing significantly to cancer-related mortality. Yet, our understanding of the underlying mechanisms remains incomplete. METHODS In this study, a wound healing assay was employed to investigate cancer cell migratory behavior, with the aim of utilizing migration as a biomarker for invasiveness. To gain a comprehensive understanding of this complex system, we developed a computational model based on cellular automata (CA) and rigorously calibrated and validated it using in vitro data, including both tumoral and non-tumoral cell lines. Harnessing this CA-based framework, extensive numerical experiments were conducted and supported by local and global sensitivity analyses in order to identify the key biological parameters governing this process. RESULTS Our analyses led to the formulation of a power law equation derived from just a few input parameters that accurately describes the governing mechanism of wound healing. This groundbreaking research provides a powerful tool for the pharmaceutical industry. In fact, this approach proves invaluable for the discovery of novel compounds aimed at disrupting cell migration, assessing the efficacy of prospective drugs designed to impede cancer invasion, and evaluating the immune system's responses.
Collapse
Affiliation(s)
- Giorgia Migliaccio
- Dipartimento di Ingegneria Chimica, dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, 80125 Naples, Italy; (G.M.); (R.F.)
| | - Rosalia Ferraro
- Dipartimento di Ingegneria Chimica, dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, 80125 Naples, Italy; (G.M.); (R.F.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 80145 Naples, Italy
| | - Zhihui Wang
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (Z.W.); (V.C.); (P.D.)
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (Z.W.); (V.C.); (P.D.)
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (Z.W.); (V.C.); (P.D.)
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica, dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, 80125 Naples, Italy; (G.M.); (R.F.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 80145 Naples, Italy
| |
Collapse
|
3
|
Modulation of intestinal epithelial cell proliferation and apoptosis by Lactobacillus gasseri SF1183. Sci Rep 2022; 12:20248. [PMID: 36424419 PMCID: PMC9691729 DOI: 10.1038/s41598-022-24483-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
The gut microbiota exerts a variety of positive effects on the intestinal homeostasis, including the production of beneficial molecules, control of the epithelial barrier integrity and the regulation of the balance between host's cell death and proliferation. The interactions between commensal bacteria and intestinal cells are still under-investigated and is then of paramount importance to address such interactions at the molecular and cellular levels. We report an in vitro analysis of the effects of molecules secreted by Lactobacillus gasseri SF1183 on HCT116 cells, selected as a model of intestinal epithelial cells. SF1183 is a L. gasseri strain isolated from an ileal biopsy of a human healthy volunteer, able to prevent colitis symptoms in vivo. Expanding previous findings, we show that bioactive molecules secreted by SF1183 reduce the proliferation of HCT116 cells in a reversible manner determining a variation in cell cycle markers (p21WAF, p53, cyclin D1) and resulting in the protection of HCT116 cells from TNF-alfa induced apoptosis, an effect potentially relevant for the protection of the epithelial barrier integrity and reconstitution of tissue homeostasis. Consistently, SF1183 secreted molecules increase the recruitment of occludin, a major component of TJ, at the cell-cell contacts, suggesting a reinforcement of the barrier function.
Collapse
|
4
|
Fontana R, Guidone D, Angrisano T, Calabrò V, Pollice A, La Mantia G, Vivo M. Mutation of the Conserved Threonine 8 within the Human ARF Tumour Suppressor Protein Regulates Autophagy. Biomolecules 2022; 12:biom12010126. [PMID: 35053274 PMCID: PMC8773949 DOI: 10.3390/biom12010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The ARF tumour suppressor plays a well-established role as a tumour suppressor, halting cell growth by both p53-dependent and independent pathways in several cellular stress response circuits. However, data collected in recent years challenged the traditional role of this protein as a tumour suppressor. Cancer cells expressing high ARF levels showed that its expression, far from being dispensable, is required to guarantee tumour cell survival. In particular, ARF can promote autophagy, a self-digestion pathway that helps cells cope with stressful growth conditions arising during both physiological and pathological processes. Methods: We previously showed that ARF is regulated through the activation of the protein kinase C (PKC)-dependent pathway and that an ARF phospho-mimetic mutant on the threonine residue 8, ARF-T8D, sustains cell proliferation in HeLa cells. We now explored the role of ARF phosphorylation in both basal and starvation-induced autophagy by analysing autophagic flux in cells transfected with either WT and ARF phosphorylation mutants by immunoblot and immunofluorescence. Results: Here, we show that endogenous ARF expression in HeLa cells is required for starvation-induced autophagy. Further, we provide evidence that the hyper-expression of ARF-T8D appears to inhibit autophagy in both HeLa and lung cancer cells H1299. This effect is due to the cells’ inability to elicit autophagosomes formation upon T8D expression. Conclusions: Our results lead to the hypothesis that ARF phosphorylation could be a mechanism through which the protein promotes or counteracts autophagy. Several observations underline how autophagy could serve a dual role in cancer progression, either protecting healthy cells from damage or aiding cancerous cells to survive. Our results indicate that ARF phosphorylation controls protein’s ability to promote or counteract autophagy, providing evidence of the dual role played by ARF in cancer progression.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Daniela Guidone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Alessandra Pollice
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Girolama La Mantia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Maria Vivo
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Correspondence:
| |
Collapse
|
5
|
Prescription, over-the-counter (OTC), herbal, and other treatments and preventive uses for COVID-19. ENVIRONMENTAL AND HEALTH MANAGEMENT OF NOVEL CORONAVIRUS DISEASE (COVID-19 ) 2021. [PMCID: PMC8237643 DOI: 10.1016/b978-0-323-85780-2.00001-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current COVID-19 pandemic has spread rapidly worldwide and has challenged fragile health care systems, vulnerable socioeconomic conditions, and population risk factors, and has led to an overwhelming tendency to misuse prescription drugs and self-medication with prescription drugs, over-the-counter (OTC) drugs, herbals products, and unproven chemicals as a desperate preventive or curative measure for COVID-19. In this chapter, we present the legislative differences between prescription drugs, OTC drugs, and herbals. Various approved and nonapproved prescription and OTC drugs as symptomatic treatment for COVID-19 are listed and evaluated based on their reported efficacy, safety, and toxicological profile. We also present the various herbal products that are currently studied and used as treatment and preventive for COVID-19. The efficacy, toxicology profile, safety, and legal issues of some speculative preventive and treatment options against COVID-19, such as Miracle Mineral Solution (MMS), chlorine dioxide solution (CDS), colloidal silver, and hydrogen peroxide is presented. The chapter also emphasizes the specific strategies that need to be implemented to guide the population in the effective and safe use of prescribed medications, such as the Medication Therapy Management or Pharmaceutical Care process. Finally, this chapter aims to provide a deeper insight into the lack of health literacy in the population and the effect that drug utilization research (DUR) has in the decision making of health authorities and general public. We aim to provide the current information about the various treatment and preventive options used for COVID-19.
Collapse
|
6
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
7
|
Huang Q, Zhang J, Zhang Y, Timashev P, Ma X, Liang XJ. Adaptive changes induced by noble-metal nanostructures in vitro and in vivo. Theranostics 2020; 10:5649-5670. [PMID: 32483410 PMCID: PMC7254997 DOI: 10.7150/thno.42569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
The unique features of noble-metal nanostructures (NMNs) are leading to unprecedented expansion of research and exploration of their application in therapeutics, diagnostics and bioimaging fields. With the ever-growing applications of NMNs, both therapeutic and environmental NMNs are likely to be exposed to tissues and organs, requiring careful studies towards their biological effects in vitro and in vivo. Upon NMNs exposure, tissues and cells may undergo a series of adaptive changes both in morphology and function. At the cellular level, the accumulation of NMNs in various subcellular organelles including lysosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus may interfere with their functions, causing changes in a variety of cellular functions, such as digestion, protein synthesis and secretion, energy metabolism, mitochondrial respiration, and proliferation. In animals, retention of NMNs in metabolic-, respiratory-, immune-related, and other organs can trigger significant physiological and pathological changes to these organs and influence their functions. Exploring how NMNs interact with tissues and cells and the underlying mechanisms are of vital importance for their future applications. Here, we illustrate the characteristics of NMNs-induced adaptive changes both in vitro and in vivo. Potential strategies in the design of NMNs are also discussed to take advantage of beneficial adaptive changes and avoid unfavorable changes for the proper implementation of these nanoplatforms.
Collapse
Affiliation(s)
- Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Masi M, Cimmino A, Salzano F, Di Lecce R, Górecki M, Calabrò V, Pescitelli G, Evidente A. Higginsianins D and E, Cytotoxic Diterpenoids Produced by Colletotrichum higginsianum. JOURNAL OF NATURAL PRODUCTS 2020; 83:1131-1138. [PMID: 32191467 DOI: 10.1021/acs.jnatprod.9b01161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two new diterpenoids with tetrasubstituted 3-oxodihydrofuran substituents, named higginsianins D (1) and E (2), were isolated from the mycelium of the fungus Colletotrichum higginsianum grown in liquid culture. They were characterized as methyl 2-[6-hydroxy-5,8a-dimethyl-2-methylene-5-(4-methylpent-3-enyl)-decahydronaphthalen-1-ylmethyl]-4,5-dimethyl-3-oxo-2,3-dihydrofuran-2-carboxylate and its 21-epimer by using NMR, HRESIMS, and chemical methods. The relative configurations of higginsianins D and E, which did not afford crystals suitable for X-ray analysis, were determined by NOESY experiments and by comparison with NMR data of higginsianin B. The absolute configuration was established by comparison of experimental and calculated electronic circular dichroism data. The evaluation of 1 and 2 for antiproliferative activity against human A431 cells derived from epidermoid carcinoma and H1299 non-small-cell lung carcinoma cells revealed that 2 exhibited higher cytotoxic activity than 1, with an IC50 value of 1.0 μM against A431 cells. Remarkably, both 1 and 2 were almost ineffective against immortalized keratinocytes, used as a preneoplastic cell line model.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Górecki
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 3, 56124 Pisa, Italy
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 Street, 01-224 Warsaw, Poland
| | | | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 3, 56124 Pisa, Italy
| | | |
Collapse
|
9
|
Mendoza-Almanza G, Rocha-Zavaleta L, Aguilar-Zacarías C, Ayala-Luján J, Olmos J. Cry1A Proteins are Cytotoxic to HeLa but not to SiHa Cervical Cancer Cells. Curr Pharm Biotechnol 2020; 20:1018-1027. [PMID: 31376817 DOI: 10.2174/1389201020666190802114739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bacillus thuringiensis toxins are effective against multiple biological targets such as insects, nematodes, mites, protozoa, and importantly, human cancer cells. One of the main mechanisms by which Cry toxins to trigger cell death is the specific recognition of cadherin-like membrane cell receptors. OBJECTIVE This work aimed to assess the cytotoxicity of the Cry1Ab and Cry1Ac toxins from Bacillus thuringiensis in HeLa, cervical cancer cell line, as well as their antitumor activity in mouse models. METHODS We analyzed several biological targets of Cry1Ab and Cry1Ac including erythrocytes, insect larvae, as well as cancer and non-cancer cell lines. The viability of HeLa, SiHa, MCF7 and HaCat cells was assessed by MTT 24 h after the administration of Cry toxins. We also studied apoptosis as a possible cytotoxicity mechanism in HeLa. The capacity of Cry toxins to eliminate tumors in xenograft mouse models was also analyzed. RESULTS Both toxins, Cry1Ab and Cry1Ac, showed specific cytotoxic activity in HeLa (HPV18+) cervical cancer cell line, with a Cry1Ab LC50 of 2.5 µg/ml, and of 0.5 µg/ml for Cry1Ac. Apoptosis was differentially induced in HeLa cells using the same concentration of Cry1Ab and Cry1Ac toxins. Cry1Ac eliminated 50% of the tumors at 10 µg/ml, and eliminate 100% of the tumors at 30 and 50 µg/ml. CONCLUSION Bacillus thuringiensis Cry1A toxins show dual cytotoxic activity, in insects as well as in HeLa cancer cell line.
Collapse
Affiliation(s)
- Gretel Mendoza-Almanza
- Catedra CONACYT, Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Cecilia Aguilar-Zacarías
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Jorge Ayala-Luján
- Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Jorge Olmos
- Departamento de Biotecnologia Marina, Centro de Investigacion Científica y Educacion Superior de Ensenada, Ensenada, Mexico
| |
Collapse
|
10
|
Xiao H, Chen Y, Alnaggar M. Silver nanoparticles induce cell death of colon cancer cells through impairing cytoskeleton and membrane nanostructure. Micron 2019; 126:102750. [PMID: 31522088 DOI: 10.1016/j.micron.2019.102750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
Abstract
Globally, colon cancer is a predominant cause of increased morbidity and mortality annually; therefore, in addition to traditional treatments, new protocols are under continuous investigation. Nanotechnology-based cancer therapy is a new strategy and considered one of the most promising research directions for colon cancer. In this study, we used a silver nanoparticle (AgNP)-based methodology to treat colon cancer cells, and single cell approaches to examine how AgNPs exerted inhibiting effects on cells. We found that AgNPs could apparently destroy cytoskeleton and topography structures, alter cell membrane nanostructures, and thus increase membrane roughness, and depress cell membrane adhesion properties and cell stiffness. We also found that AgNPs caused mitochondrial dysfunctions including hyperpolarization of membrane potential and reactive oxygen species (ROS) accumulation. Notably, AgNPs altered all phenotypes or functions of cells in a dose-dependent manner. Therefore, our research provided a new paradigm for revealing killing mechanisms of AgNPs against colon cancer cells from single cell biophysical aspects, which could advance AgNP-based nanotechnology cancer therapy.
Collapse
Affiliation(s)
- Hefang Xiao
- Department of Gastrointestinal Surgery, The People's Hospital of Ganzhou, Ganzhou, Jiangxi 341000, PR China.
| | - Yan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632 Guangdong, PR China
| | - Mohammed Alnaggar
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632 Guangdong, PR China; Tongji Chibi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Chibi, Hubei, PR China.
| |
Collapse
|