1
|
Das L, Das S. A comprehensive insights of cancer immunotherapy resistance. Med Oncol 2025; 42:57. [PMID: 39883235 DOI: 10.1007/s12032-025-02605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
Cancer is a major global health issue that is usually treated with multiple therapies, such as chemotherapy and targeted therapies like immunotherapy. Immunotherapy is a new and alternative approach to treating various types of cancer that are difficult to treat with other methods. Although immune checkpoint inhibitors have shown promise for long-term efficacy, they have limited effectiveness in common cancer types such as breast, prostate, and lung. Some patients do not respond to immunotherapy, while others develop resistance to the treatment over time, which is classified as primary or acquired resistance. Cancer immunotherapy, specifically immune checkpoint inhibitor-based resistance involves multiple factors such as genes, metabolism, inflammation, and angiogenesis. However, cutting-edge research has identified the mechanisms of immunotherapy resistance and possible solutions. Current research may improve biomarker identification and modify treatment strategies, which will lead to better clinical outcomes. This review provides a comprehensive discussion of the current mechanisms of immunotherapy resistance, related biomarker modulation, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Laavanya Das
- Department of Food and Nutrition, Brainware University, 398, Ramkrishnapur Rd, Barasat, Kolkata, West Bengal, 700125, India
| | - Subhadip Das
- Department of In Vivo Pharmacology, TCG Lifesciences Pvt. Ltd, BN 7, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
2
|
Goldkamp AK, Atchison RG, Falkenberg SM, Dassanayake RP, Neill JD, Casas E. Transfer RNA-derived fragment production in calves challenged with Mycoplasma bovis or co-infected with bovine viral diarrhea virus and Mycoplasma bovis in several tissues and blood. Front Vet Sci 2024; 11:1463431. [PMID: 39582886 PMCID: PMC11583443 DOI: 10.3389/fvets.2024.1463431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Understanding the molecular mechanisms underlying immune response can allow informed decisions in drug or vaccine development, and aid in the identification of biomarkers to predict exposure or evaluate treatment efficacy. The objective of this study was to identify differentially expressed transfer RNA-derived fragments (tRFs) in calves challenged with Mycoplasma bovis (M. bovis) or co-infected with M. bovis and bovine viral diarrhea virus (BVDV). Serum, white blood cells (WBC), liver, mesenteric lymph node (MLN), tracheal-bronchial lymph node (TBLN), spleen, and thymus were collected from Control (n = 2), M. bovis (MB; n = 3), and co-infected (Dual; n = 3) animals, and small RNAs extracted for sequencing. An average of 94% of reads were derived from 5` halves and/or 5` tRFs in serum, liver, WBC, TBLN, spleen, MLN, and thymus. The expression of tRFs in lymphatic tissues (MLN, TBLN, Thymus, Spleen) were highly correlated with each other (r ≥ 0.82), but not with serum and WBC. A total of 25 and 65 differentially expressed tRFs were observed in liver and thymus, respectively. There were no differentially expressed tRFs found in other tissues analyzed. Nineteen thymus tRFs were differentially expressed in Dual compared to Control and MB, and the predicted targets of these tRFs were associated with MAPK signaling pathways and ERK1 and ERK2 cascades. The differentially expressed tRFs found in thymus and liver may underlie mechanisms of thymic depletion or liver inflammation previously observed in BVDV. Additional studies should be pursued to investigate differential expression of the predicted tRF targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Eduardo Casas
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
3
|
Malhotra J, De S, Nguyen K, Lee P, Villaflor V. Genomic and molecular alterations associated with primary resistance to immune checkpoint inhibitors. Cancer Immunol Immunother 2024; 73:234. [PMID: 39271499 PMCID: PMC11399531 DOI: 10.1007/s00262-024-03825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
The clinical response to immune checkpoint inhibitors may vary by tumor type and many tumors present with either primary or acquired resistance to immunotherapy. Improved understanding of the molecular and immunologic mechanisms underlying immunotherapy resistance is essential for developing biomarkers and for guiding the optimum approach to selecting treatment regimens and sequencing. This is increasingly important for tumors with primary resistance as effective biomarkers in this setting can guide clinicians about appropriate treatment regimen selection in the first-line setting. Multiple potential biological mechanisms of primary resistance have been proposed but most are yet to be validated in prospective clinical cohorts. Individual biomarkers have poor specificity and sensitivity, and the development of validated and integrated predictive models may guide which patient will benefit from monotherapy versus combination therapy. In this review, we discuss the emerging data identifying the molecular mechanisms of primary resistance to immunotherapy and explore potential therapeutic strategies to target these.
Collapse
Affiliation(s)
- Jyoti Malhotra
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kim Nguyen
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Percy Lee
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Victoria Villaflor
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| |
Collapse
|
4
|
de Matos Rodrigues J, Lokhande L, Olsson LM, Hassan M, Johansson A, Janská A, Kumar D, Schmidt L, Nikkarinen A, Hollander P, Glimelius I, Porwit A, Gerdtsson AS, Jerkeman M, Ek S. CD163+ macrophages in mantle cell lymphoma induce activation of prosurvival pathways and immune suppression. Blood Adv 2024; 8:4370-4385. [PMID: 38959399 PMCID: PMC11375268 DOI: 10.1182/bloodadvances.2023012039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is dependent on a supportive tumor immune microenvironment (TIME) in which infiltration of CD163+ macrophages has a negative prognostic impact. This study explores how abundance and spatial localization of CD163+ cells are associated with the biology of MCL, using spatial multiomic investigations of tumor and infiltrating CD163+ and CD3+ cells. A total of 63 proteins were measured using GeoMx digital spatial profiling in tissue microarrays from 100 diagnostic MCL tissues. Regions of interest were selected in tumor-rich and tumor-sparse tissue regions. Molecular profiling of CD163+ macrophages, CD20+ MCL cells, and CD3+ T-cells was performed. To validate protein profiles, 1811 messenger RNAs were measured in CD20+ cells and 2 subsets of T cells. Image analysis was used to extract the phenotype and position of each targeted cell, thereby allowing the exploration of cell frequencies and cellular neighborhoods. Proteomic investigations revealed that CD163+ cells modulate their immune profile depending on their localization and that the immune inhibitory molecules, V-domain immunoglobulin suppressor of T-cell activation and B7 homolog 3, have higher expression in tumor-sparse than in tumor-rich tissue regions and that targeting should be explored. We showed that MCL tissues with more abundant infiltration of CD163+ cells have a higher proteomic and transcriptional expression of key components of the MAPK pathway. Thus, the MAPK pathway may be a feasible therapeutic target in patients with MCL with CD163+ cell infiltration. We further showed the independent and combined prognostic values of CD11c and CD163 beyond established risk factors.
Collapse
Affiliation(s)
| | | | - Lina M. Olsson
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - May Hassan
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | - Anna Janská
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | - Lina Schmidt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Anna Nikkarinen
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Peter Hollander
- Department of Immunology, Genetics and Pathology, Clinical and Experimental Pathology, Uppsala University, Uppsala, Sweden
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Porwit
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Mats Jerkeman
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Takayanagi SI, Chuganji S, Tanaka M, Wang B, Hasegawa S, Fukumoto K, Wasano N, Kakitani M, Ochiai N, Kawai Y, Ueda T, Ishikawa A, Kurimoto Y, Fukui A, Kamibayashi S, Imai E, Kunisato A, Nozawa H, Kaneko S. A culture method with berbamine, a plant alkaloid, enhances CAR-T cell efficacy through modulating cellular metabolism. Commun Biol 2024; 7:685. [PMID: 38834758 PMCID: PMC11150386 DOI: 10.1038/s42003-024-06297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Memory T cells demonstrate superior in vivo persistence and antitumor efficacy. However, methods for manufacturing less differentiated T cells are not yet well-established. Here, we show that producing chimeric antigen receptor (CAR)-T cells using berbamine (BBM), a natural compound found in the Chinese herbal medicine Berberis amurensis, enhances the antitumor efficacy of CAR-T cells. BBM is identified through cell-based screening of chemical compounds using induced pluripotent stem cell-derived T cells, leading to improved viability with a memory T cell phenotype. Transcriptomics and metabolomics using stem cell memory T cells reveal that BBM broadly enhances lipid metabolism. Furthermore, the addition of BBM downregulates the phosphorylation of p38 mitogen-activated protein kinase and enhanced mitochondrial respiration. CD19-CAR-T cells cultured with BBM also extend the survival of leukaemia mouse models due to their superior in vivo persistence. This technology offers a straightforward approach to enhancing the antitumor efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Shin-Ichiro Takayanagi
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan.
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Biomedical Science Research Laboratories 2, Research Division, Kyowa Kirin Co., Ltd., Tokyo, Japan.
| | - Sayaka Chuganji
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Tanaka
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Bo Wang
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Saki Hasegawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Fukumoto
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nariaki Wasano
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Makoto Kakitani
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Nakaba Ochiai
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuki Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akihiro Ishikawa
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuko Kurimoto
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Asami Fukui
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Sanae Kamibayashi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eri Imai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Kunisato
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hajime Nozawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Wójcik M, Plata-Babula A, Głowaczewska A, Sirek T, Orczyk A, Małecka M, Grabarek BO. Expression profile of mRNAs and miRNAs related to mitogen-activated kinases in HaCaT cell culture treated with lipopolysaccharide a and adalimumab. Cell Cycle 2024; 23:385-404. [PMID: 38557266 PMCID: PMC11174132 DOI: 10.1080/15384101.2024.2335051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Studies indicate that mitogen-activated protein kinases (MAPKs) exhibit activation and overexpression within psoriatic lesions. This study aimed to investigate alterations in the expression patterns of genes encoding MAPKs and microRNA (miRNA) molecules that potentially regulate their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes when exposed to bacterial lipopolysaccharide A (LPS) and adalimumab. HaCaT cells underwent treatment with 1 µg/mL LPS for 8 hours, followed by treatment with 8 µg/mL adalimumab for 2, 8, or 24 hours. Untreated cells served as controls. The molecular analysis involved microarray, quantitative real-time polymerase chain reaction (RTqPCR), and enzyme-linked immunosorbent assay (ELISA) analyses. Changes in the expression profile of seven mRNAs: dual specificity phosphatase 1 (DUSP1), dual specificity phosphatase 3 (DUSP3), dual specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase 9 (MAPK9), mitogen-activated protein kinase kinase kinase 2 (MAP3K2), mitogen-activated protein kinase kinase 2 (MAP2K2), and MAP kinase-activated protein kinase 2 (MAPKAPK2, also known as MK2) in cell culture exposed to LPS or LPS and the drug compared to the control. It was noted that miR-34a may potentially regulate the activity of DUSP1, DUSP3, and DUSP4, while miR-1275 is implicated in regulating MAPK9 expression. Additionally, miR-382 and miR-3188 are potential regulators of DUSP4 levels, and miR-200-5p is involved in regulating MAPKAPK2 and MAP3K2 levels. Thus, the analysis showed that these mRNA molecules and the proteins and miRNAs they encode appear to be useful molecular markers for monitoring the efficacy of adalimumab therapy.
Collapse
Affiliation(s)
- Michał Wójcik
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Aleksandra Plata-Babula
- Department of Nursing and Maternity, High School of Strategic Planning in Dabrowa Gornicza, Dabrowa Gornicza, Poland
| | - Amelia Głowaczewska
- Faculty of Health Sciences, University of Applied Sciences in Nysa, Nysa, Poland
| | - Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Aneta Orczyk
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Mariola Małecka
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, Poland
| | | |
Collapse
|
7
|
Wu WY, Jiao X, Song WX, Wu P, Xiao PQ, Huang XF, Wang K, Zhan SF. Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC. Front Endocrinol (Lausanne) 2023; 14:1187882. [PMID: 37347115 PMCID: PMC10281056 DOI: 10.3389/fendo.2023.1187882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a highly contagious respiratory disease that has posed a serious threat to people's daily lives and caused an unprecedented challenge to public health and people's health worldwide. Lung squamous cell carcinoma (LUSC) is a common type of lung malignancy with a highly aggressive nature and poor prognosis. Patients with LUSC could be at risk for COVID-19, We conducted this study to examine the potential for naringenin to develop into an ideal medicine and investigate the underlying action mechanisms of naringenin in COVID-19 and LUSC due to the anti-viral, anti-tumor, and anti-inflammatory activities of naringenin. Methods LUSC related genes were obtained from TCGA, PharmGKB, TTD,GeneCards and NCBI, and then the transcriptome data for COVID-19 was downloaded from GEO, DisGeNET, CTD, DrugBank, PubChem, TTD, NCBI Gene, OMIM. The drug targets of Naringenin were revealed through CTD, BATMAN, TCMIP, SymMap, Chemical Association Networks, SwissTargetPrediction, PharmMapper, ECTM, and DGIdb. The genes related to susceptibility to COVID-19 in LUSC patients were obtained through differential analysis. The interaction of COVID-19/LUSC related genes was evaluated and demonstrated using STRING to develop a a COX risk regression model to screen and evaluate the association of genes with clinical characteristics. To investigate the related functional and pathway analysis of the common targets of COVID-19/LUSC and Naringenin, KEGG and GO enrichment analysis were employed to perform the functional analysis of the target genes. Finally, The Hub Gene was screened and visualized using Cytoscape, and molecular docking between the drug and the target was performed using Autodock. Results We discovered numerous COVID-19/LUSC target genes and examined their prognostic value in LUSC patients utilizing a variety of bioinformatics and network pharmacology methods. Furthermore, a risk score model with strong predictive performance was developed based on these target genes to assess the prognosis of LUSC patients with COVID-19. We intersected the therapeutic target genes of naringenin with the LUSC, COVID-19-related targets, and identified 354 common targets, which could be used as potential target genes for naringenin to treat COVID-19/LUSC. The treatment of COVID-19/LUSC with naringenin may involve oxidative stress, anti-inflammatory, antiviral, antiviral, apoptosis, immunological, and multiple pathways containing PI3K-Akt, HIF-1, and VEGF, according to the results of the GO and KEGG enrichment analysis of these 354 common targets. By constructing a PPI network, we ascertained AKT1, TP53, SRC, MAPK1, MAPK3, and HSP90AA1 as possible hub targets of naringenin for the treatment of COVID-19/LUSC. Last but not least, molecular docking investigations showed that naringenin has strong binding activity in COVID-19/LUSC. Conclusion We revealed for the first time the pharmacological targets and potential molecular processes of naringenin for the treatment of COVID-19/LUSC. However, these results need to be confirmed by additional research and validation in real LUSC patients with COVID-19.
Collapse
Affiliation(s)
- Wen-yu Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Jiao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-xin Song
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-qi Xiao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Zhu M, Sun Y, Bai H, Wang Y, Yang B, Wang Q, Kuang H. Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review. Front Pharmacol 2023; 14:1159985. [PMID: 37063281 PMCID: PMC10090286 DOI: 10.3389/fphar.2023.1159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer poses a serious threat to human health, and the search for safe and effective drugs for its treatment has aroused interest and become a long-term goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique anti-cancer advantages, has achieved outstanding results in long-term clinical practice. Accumulating evidence shows that saponins are key bioactive components in TCM and have great research and development applications for their significant role in the treatment of cancer. Saponins are a class of glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling pathways. Presently, few advances have been made in physiological and pathological studies on the effect of saponins on signal transduction pathways involved in cancer treatment. This paper reviews the phytochemistry and extraction methods of saponins of TCM and their effects on signal transduction pathways in cancer. It aims to provide theoretical support for in-depth studies on the anticancer effects of saponins.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| |
Collapse
|
9
|
Jeong KY. Challenges to addressing the unmet medical needs for immunotherapy targeting cold colorectal cancer. World J Gastrointest Oncol 2023; 15:215-224. [PMID: 36908316 PMCID: PMC9994045 DOI: 10.4251/wjgo.v15.i2.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 02/14/2023] Open
Abstract
With the establishment of the immune surveillance mechanism since the 1950s, attempts have been made to activate the immune system for cancer treatment through the discovery of various cytokines or the development of antibodies up to now. The fruits of these efforts have contributed to the recognition of the 3rd generation of anticancer immunotherapy as the mainstream of cancer treatment. However, the limitations of cancer immunotherapy are also being recognized through the conceptual establishment of cold tumors recently, and colorectal cancer (CRC) has become a major issue from this therapeutic point of view. Here, it is emphasized that non-clinical strategies to overcome the immunosuppressive environment and clinical trials based on these basic investigations are being made on the journey to achieve better treatment outcomes for the treatment of cold CRC.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development Center, PearlsinMires, Seoul 03690, South Korea
| |
Collapse
|
10
|
Kumar S, Singh SK, Srivastava P, Suresh S, Rana B, Rana A. Interplay between MAP kinases and tumor microenvironment: Opportunity for immunotherapy in pancreatic cancer. Adv Cancer Res 2023. [PMID: 37268394 DOI: 10.1016/bs.acr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC), commonly called pancreatic cancer, is aggressive cancer usually detected at a late stage, limiting treatment options with modest clinical responses. It is projected that by 2030, PDAC will be the second most common cause of cancer-related mortality in the United States. Drug resistance in PDAC is common and significantly affects patients' overall survival (OS). Oncogenic KRAS mutations are nearly uniform in PDAC, affecting over 90% of patients. However, effective drugs directed to target prevalent KRAS mutants in pancreatic cancer are not in clinical practice. Accordingly, efforts are continued on identifying alternative druggable target(s) or approaches to improve patient outcomes with PDAC. In most PDAC cases, the KRAS mutations turn-on the RAF-MEK-MAPK pathways, leading to pancreatic tumorigenesis. The MAPK signaling cascade (MAP4K→MAP3K→MAP2K→MAPK) plays a central role in the pancreatic cancer tumor microenvironment (TME) and chemotherapy resistance. The immunosuppressive pancreatic cancer TME is another unfavorable factor affecting the therapeutic efficacy of chemotherapy and immunotherapy. The immune checkpoint proteins (ICPs), including CTLA-4, PD-1, PD-L1, and PD-L2, are critical players in T cell dysfunction and pancreatic tumor cell growth. Here, we review the activation of MAPKs, a molecular trait of KRAS mutations and their impact on pancreatic cancer TME, chemoresistance, and expression of ICPs that could influence the clinical outcomes in PDAC patients. Therefore, understanding the interplay between MAPK pathways and TME could help to design rational therapy combining immunotherapy and MAPK inhibitors for pancreatic cancer treatment.
Collapse
|
11
|
Tossetta G. Metformin Improves Ovarian Cancer Sensitivity to Paclitaxel and Platinum-Based Drugs: A Review of In Vitro Findings. Int J Mol Sci 2022; 23:12893. [PMID: 36361682 PMCID: PMC9654053 DOI: 10.3390/ijms232112893] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic cancers worldwide, showing a high fatality rate and recurrence due to diagnosis at an advanced stage of the disease and the occurrence of chemoresistance, which weakens the therapeutic effects of the chemotherapeutic treatments. In fact, although paclitaxel and platinum-based drugs (carboplatin or cisplatin) are widely used alone or in combination to treat ovarian cancer, the occurrence of chemoresistance significantly reduces the effects of these drugs. Metformin is a hypoglycemic agent that is commonly used for the treatment of type 2 diabetes mellitus and non-alcoholic fatty liver disease. However, this drug also shows anti-tumor activity, reducing cancer risk and chemoresistance. This review analyzes the current literature regarding the role of metformin in ovarian cancer and investigates what is currently known about its effects in reducing paclitaxel and platinum resistance to restore sensitivity to these drugs.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; ; Tel.: +39-0712206270
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy
| |
Collapse
|
12
|
Ding Y, Wang F, Guo Y, Yang M, Zhang H. Integrated Analysis and Validation of Autophagy-Related Genes and Immune Infiltration in Acute Myocardial Infarction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3851551. [PMID: 36238493 PMCID: PMC9553342 DOI: 10.1155/2022/3851551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022]
Abstract
Background Acute myocardial infarction (AMI) is one of the most critical conditions of coronary heart disease with many uncertainties regarding reduction of ischemia/reperfusion injury, medical treatment strategies, and other aspects. The inflammatory immune response has a bidirectional regulatory role in AMI and plays an essential role in myocardial remodeling after AMI. The purpose of our research was tantamount to explore possible mechanisms of AMI and to analyze the relationship with the immune microenvironment. Methods We firstly analyzed the expression profile of GSE61144 and HADb to identify differentially expressed autophagy-related genes (DEARGs). Then, we performed GO, functional enrichment analysis, and constructed PPI network by Metascape. A lncRNA-miRNA-mRNA ceRNA network was built, and hub genes were extracted by Cytoscape. After that, we used CIBERSORT algorithm to estimate the proportion of immunocytes, followed by correlation analysis to find relationships between hub DEARGs and immunocyte subsets. Finally, we verified those hub genes in another dataset and cellular experiments qPCR. Results Compared with controls, we identified 44 DEARGs and then filtered the genes of MCODE by constructing PPI network for further analysis. A total of 45 lncRNAs, 24 miRNAs, 19 mRNAs, 162 lncRNA-miRNA pairs, and 37 mRNA-miRNA pairs were used to construct a ceRNA network, and 4 hub DEARGs (BCL2, MAPK1, RAF1, and PRKAR1A) were extracted. We then estimated 5 classes of immunocytes that differed between AMI and controls. According to the results of correlation analysis, these 4 hub DEARGs may play modulatory effects in immune infiltrating cells, notably in CD8+ T cells and neutrophils. Finally, the same results were verified in GSE60993 and qPCR experiments. Conclusion Our findings suggest that those hub DEARGs (BCL2, MAPK1, RAF1, and PRKAR1A) and immunocytes probably play functions in the progression of AMI, providing potential diagnostic markers and new perspectives for treatment of AMI.
Collapse
Affiliation(s)
- Yan Ding
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Feng Wang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Yousheng Guo
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Mingwei Yang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Huanji Zhang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen 518033, China
| |
Collapse
|
13
|
Liu X, Si F, Bagley D, Ma F, Zhang Y, Tao Y, Shaw E, Peng G. Blockades of effector T cell senescence and exhaustion synergistically enhance antitumor immunity and immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005020. [PMID: 36192086 PMCID: PMC9535198 DOI: 10.1136/jitc-2022-005020] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Current immunotherapies still have limited successful rates among cancers. It is now recognized that T cell functional state in the tumor microenvironment (TME) is a key determinant for effective antitumor immunity and immunotherapy. In addition to exhaustion, cellular senescence in tumor-infiltrating T cells (TILs) has recently been identified as an important T cell dysfunctional state induced by various malignant tumors. Therefore, a better understanding of the molecular mechanism responsible for T cell senescence in the TME and development of novel strategies to prevent effector T cell senescence are urgently needed for cancer immunotherapy. METHODS Senescent T cell populations in the TMEs in mouse lung cancer, breast cancer, and melanoma tumor models were evaluated. Furthermore, T cell senescence induced by mouse tumor and regulatory T (Treg) cells in vitro was determined with multiple markers and assays, including real-time PCR, flow cytometry, and histochemistry staining. Loss-of-function strategies with pharmacological inhibitors and the knockout mouse model were used to identify the potential molecules and pathways involved in T cell senescence. In addition, melanoma mouse tumor immunotherapy models were performed to explore the synergistical efficacy of antitumor immunity via prevention of tumor-specific T cell senescence combined with anti-programmed death-ligand 1 (anti-PD-L1) checkpoint blockade therapy. RESULTS We report that both mouse malignant tumor cells and Treg cells can induce responder T cell senescence, similar as shown in human Treg and tumor cells. Accumulated senescent T cells also exist in the TME in tumor models of lung cancer, breast cancer and melanoma. Induction of ataxia-telangiectasia mutated protein (ATM)-associated DNA damage is the cause for T cell senescence induced by both mouse tumor cells and Treg cells, which is also regulated by mitogen-activated protein kinase (MAPK) signaling. Furthermore, blockages of ATM-associated DNA damage and/or MAPK signaling pathways in T cells can prevent T cell senescence mediated by tumor cells and Treg cells in vitro and enhance antitumor immunity and immunotherapy in vivo in adoptive transfer T cell therapy melanoma models. Importantly, prevention of tumor-specific T cell senescence via ATM and/or MAPK signaling inhibition combined with anti-PD-L1 checkpoint blockade can synergistically enhance antitumor immunity and immunotherapy in vivo. CONCLUSIONS These studies prove the novel concept that targeting both effector T cell senescence and exhaustion is an effective strategy and can synergistically enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Xia Liu
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Fusheng Si
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - David Bagley
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Feiya Ma
- Department of Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Yuanqin Zhang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Yan Tao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Emily Shaw
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA,Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
14
|
Anjum J, Mitra S, Das R, Alam R, Mojumder A, Emran TB, Islam F, Rauf A, Hossain MJ, Aljohani ASM, Abdulmonem WA, Alsharif KF, Alzahrani KJ, Khan H. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol Res 2022; 184:106398. [PMID: 35988867 DOI: 10.1016/j.phrs.2022.106398] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 01/15/2023]
Abstract
Abnormalities in the mitogen-activated protein kinase (MAPK) signaling pathway are a key contributor to the carcinogenesis process and have therefore been implicated in several aspects of tumorigenesis, including cell differentiation, proliferation, invasion, angiogenesis, apoptosis, and metastasis. This pathway offers multiple molecular targets that may be modulated for anticancer activity and is of great interest for several malignancies. Polyphenols from various dietary sources have been observed to interfere with certain aspects of this pathway and consequently play a substantial role in the development and progression of cancer by suppressing cell growth, inactivating carcinogens, blocking angiogenesis, causing cell death, and changing immunity. A good number of polyphenolic compounds have shown promising outcomes in numerous pieces of research and are currently being investigated clinically to treat cancer patients. The current study concentrates on the role of the MAPK pathway in the development and metastasis of cancer, with particular emphasis on dietary polyphenolic compounds that influence the different MAPK sub-pathways to obtain an anticancer effect. This study aims to convey an overview of the various aspects of the MAPK pathway in cancer development and invasion, as well as a review of the advances achieved in the development of polyphenols to modulate the MAPK signaling pathway for better treatment of cancer.
Collapse
Affiliation(s)
- Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Roksana Alam
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, KPK, Pakistan
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
15
|
Epshtein Y, Blau R, Pisarevsky E, Koshrovski-Michael S, Ben-Shushan D, Pozzi S, Shenbach-Koltin G, Fridrich L, Buzhor M, Krivitsky A, Dey P, Satchi-Fainaro R. Polyglutamate-based nanoconjugates for image-guided surgery and post-operative melanoma metastases prevention. Theranostics 2022; 12:6339-6362. [PMID: 36168618 PMCID: PMC9475454 DOI: 10.7150/thno.72941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/21/2022] [Indexed: 01/01/2023] Open
Abstract
Rationale: Cutaneous melanoma is the most aggressive and deadliest of all skin malignancies. Complete primary tumor removal augmented by advanced imaging tools and effective post-operative treatment is critical in the prevention of tumor recurrence and future metastases formation. Methods: To meet this challenge, we designed novel polymeric imaging and therapeutic systems, implemented in a two-step theranostic approach. Both are composed of the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The first system is a novel, fluorescent, Turn-ON diagnostic probe evaluated for the precise excision of the primary tumor during image-guided surgery (IGS). The fluorescence activation of the probe occurs via PGA degradation by tumor-overexpressed cathepsins that leads to the separation of closely-packed, quenched FRET pair. This results in the emission of a strong fluorescence signal enabling the delineation of the tumor boundaries. Second, therapeutic step is aimed to prevent metastases formation with minimal side effects and maximal efficacy. To that end, a targeted treatment containing a BRAF (Dabrafenib - mDBF)/MEK (Selumetinib - SLM) inhibitors combined on one polymeric platform (PGA-SLM-mDBF) was evaluated for its anti-metastatic, preventive activity in combination with immune checkpoint inhibitors (ICPi) αPD1 and αCTLA4. Results: IGS in melanoma-bearing mice led to a high tumor-to-background ratio and reduced tumor recurrence in comparison with mice that underwent surgery under white light (23% versus 33%, respectively). Adjuvant therapy with PGA-SLM-mDBF combined with ICPi, was well-tolerated and resulted in prolonged survival and prevention of peritoneal and brain metastases formation in BRAF-mutated melanoma-bearing mice. Conclusions: The results reveal the great clinical potential of our PGA-based nanosystems as a tool for holistic melanoma treatment management.
Collapse
Affiliation(s)
- Yana Epshtein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Evgeni Pisarevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Shenbach-Koltin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidar Fridrich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Marina Buzhor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pradip Dey
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
16
|
Liu Z, Zhang Y, Xiang Y, Kang X. Small-Molecule PROTACs for Cancer Immunotherapy. Molecules 2022; 27:5439. [PMID: 36080223 PMCID: PMC9458232 DOI: 10.3390/molecules27175439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Unsatisfactory physicochemical properties of macromolecular drugs seriously hinder their application in tumor immunotherapy. However, these problems can be effectively solved by small-molecule compounds. In the promising field of small-molecule drug development, proteolysis targeting chimera (PROTAC) offers a novel mode of action in the interactions between small molecules and therapeutic targets (mainly proteins). This revolutionary technology has shown considerable impact on several proteins related to tumor survival but is rarely exploited in proteins associated with immuno-oncology up until now. This review attempts to comprehensively summarize the well-studied and less-developed immunological targets available for PROTAC technology, as well as some targets to be explored, aiming to provide more options and opportunities for the development of small-molecule-based tumor immunotherapy. In addition, some novel directions that can magnify and broaden the protein degradation efficiency are mentioned to improve PROTAC design in the future.
Collapse
Affiliation(s)
| | | | | | - Xin Kang
- West China (Airport) Hospital, Sichuan University, Chengdu 610047, China
| |
Collapse
|
17
|
Zeze N, Kido-Nakahara M, Tsuji G, Maehara E, Sato Y, Sakai S, Fujishima K, Hashimoto-Hachiya A, Furue M, Nakahara T. Role of ERK Pathway in the Pathogenesis of Atopic Dermatitis and Its Potential as a Therapeutic Target. Int J Mol Sci 2022; 23:ijms23073467. [PMID: 35408826 PMCID: PMC8999015 DOI: 10.3390/ijms23073467] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is an eczematous skin disorder characterized by type 2 inflammation, barrier disruption, and intense itch. In addition to type 2 cytokines, many other cytokines, such as interferon gamma (IFN-γ), interleukin 17 (IL-17), and interleukin 22 (IL-22), play roles in the pathogenesis of AD. It has been reported that the extracellular signal-regulated kinase (ERK) is downstream of such cytokines. However, the involvement of the ERK pathway in the pathogenesis of AD has not yet been investigated. We examined the expression of p-ERK in mouse and human AD skin. We also investigated the effects of the topical application of an ERK inhibitor on the dermatitis score, transepidermal water loss (TEWL), histological change, and expression of filaggrin, using an AD-like NC/Nga murine model. The effects of an ERK inhibitor on filaggrin expression in normal human epidermal keratinocytes (NHEKs) and on chemokine production from bone marrow-derived dendritic cells (BMDCs) were also evaluated. p-ERK was highly expressed in mouse and human AD skin. Topical application of an ERK inhibitor alleviated the clinical symptoms, histological changes, TEWL, and decrease in expression of filaggrin in the AD-like NC/Nga murine model. The ERK inhibitor also restored the IL-4 induced reduction in the expression of filaggrin in NHEK, and inhibited chemokine production from BMDC induced by IL-4. These results indicate that the ERK pathway is involved in the pathogenesis of AD, and suggest that the ERK pathway has potential as a therapeutic target for AD in the future.
Collapse
Affiliation(s)
- Nahoko Zeze
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | - Eriko Maehara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Yuki Sato
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Sawako Sakai
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Kei Fujishima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
- Correspondence: ; Tel.: +81-92-642-5585; Fax: +81-92-642-5600
| |
Collapse
|
18
|
Creixell M, Meyer AS. Dual data and motif clustering improves the modeling and interpretation of phosphoproteomic data. CELL REPORTS METHODS 2022; 2:100167. [PMID: 35360705 PMCID: PMC8967184 DOI: 10.1016/j.crmeth.2022.100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/28/2021] [Accepted: 01/24/2022] [Indexed: 01/07/2023]
Abstract
Cell signaling is orchestrated in part through a network of protein kinases and phosphatases. Dysregulation of kinase signaling is widespread in diseases such as cancer and is readily targetable through inhibitors. Mass spectrometry-based analysis can provide a global view of kinase regulation, but mining these data is complicated by its stochastic coverage of the proteome, measurement of substrates rather than kinases, and the scale of the data. Here, we implement a dual data and motif clustering (DDMC) strategy that simultaneously clusters peptides into similarly regulated groups based on their variation and their sequence profile. We show that this can help to identify putative upstream kinases and supply more robust clustering. We apply this clustering to clinical proteomic profiling of lung cancer and identify conserved proteomic signatures of tumorigenicity, genetic mutations, and immune infiltration. We propose that DDMC provides a general and flexible clustering strategy for the analysis of phosphoproteomic data.
Collapse
Affiliation(s)
- Marc Creixell
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Aaron S. Meyer
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
19
|
Wu X, Li W, Luo Z, Chen Y. The molecular mechanism of Ligusticum wallichii for improving idiopathic pulmonary fibrosis: A network pharmacology and molecular docking study. Medicine (Baltimore) 2022; 101:e28787. [PMID: 35147109 PMCID: PMC8830865 DOI: 10.1097/md.0000000000028787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND At present, there was no evidence that any drugs other than lung transplantation can effectively treat Idiopathic Pulmonary Fibrosis (IPF). Ligusticum wallichii, or Chinese name Chuan xiong has been widely used in different fibrosis fields. Our aim is to use network pharmacology and molecular docking to explore the pharmacological mechanism of the Traditional Chinese medicine (TCM) Ligusticum wallichii to improve IPF. MATERIALS AND METHODS The main chemical components and targets of Ligusticum wallichii were obtained from TCMSP, Swiss Target Prediction and Phammapper databases, and the targets were uniformly regulated in the Uniprot protein database after the combination. The main targets of IPF were obtained through Gencards, OMIM, TTD and DRUGBANK databases, and protein interaction analysis was carried out by using String to build PPI network. Metascape platform was used to analyze its involved biological processes and pathways, and Cytoscape3.8.2 software was used to construct "component-IPF target-pathway" network. And molecular docking verification was conducted through Auto Dock software. RESULTS The active ingredients of Ligusticum wallichii were Myricanone, Wallichilide, Perlolyrine, Senkyunone, Mandenol, Sitosterol and FA. The core targets for it to improve IPF were MAPK1, MAPK14, SRC, BCL2L1, MDM2, PTGS2, TGFB2, F2, MMP2, MMP9, and so on. The molecular docking verification showed that the molecular docking affinity of the core active compounds in Ligusticum wallichii (Myricanone, wallichilide, Perlolyrine) was <0 with MAPK1, MAPK14, and SRC. Perlolyrine has the strongest molecular docking ability, and its docking ability with SRC (-6.59 kJ/mol) is particularly prominent. Its biological pathway to improve IPF was mainly acted on the pathways in cancer, proteoglycans in cancer, and endocrine resistance, etc. CONCLUSIONS This study preliminarily identified the various molecular targets and multiple pathways of Ligusticum wallichii to improve IPF.
Collapse
|
20
|
Baraibar I, Mirallas O, Saoudi N, Ros J, Salvà F, Tabernero J, Élez E. Combined Treatment with Immunotherapy-Based Strategies for MSS Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:6311. [PMID: 34944931 PMCID: PMC8699573 DOI: 10.3390/cancers13246311] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, deepening knowledge of the complex interactions between the immune system and cancer cells has led to the advent of effective immunotherapies that have revolutionized the therapeutic paradigm of several cancer types. However, colorectal cancer (CRC) is one of the tumor types in which immunotherapy has proven less effective. While there is solid clinical evidence for the therapeutic role of immune checkpoint inhibitors in mismatch repair-deficient (dMMR) and in highly microsatellite instable (MSI-H) metastatic CRC (mCRC), blockade of CTLA-4 or PD-L1/PD-1 as monotherapy has not conferred any major clinical benefit to patients with MMR-proficient (pMMR) or microsatellite stable (MSS) mCRC, reflecting 95% of the CRC population. There thus remains a high unmet medical need for the development of novel immunotherapy approaches for the vast majority of patients with pMMR or MSS/MSI-low (MSI-L) mCRC. Defining the molecular mechanisms for immunogenicity in mCRC and mediating immune resistance in MSS mCRC is needed to develop predictive biomarkers and effective therapeutic combination strategies. Here we review available clinical data from combinatorial therapeutic approaches using immunotherapy-based strategies for MSS mCRC.
Collapse
Affiliation(s)
- Iosune Baraibar
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Oriol Mirallas
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
| | - Nadia Saoudi
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Javier Ros
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Francesc Salvà
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Josep Tabernero
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Elena Élez
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| |
Collapse
|
21
|
Kumar AR, Devan AR, Nair B, Vinod BS, Nath LR. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets. Mol Biol Rep 2021; 48:8075-8095. [PMID: 34671902 PMCID: PMC8605995 DOI: 10.1007/s11033-021-06752-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy is a rapidly evolving concept that has been given the tag "fifth pillar" of cancer therapy while radiation therapy, chemotherapy, surgery and targeted therapy remain the other four pillars. This involves the stimulation of the immune system to control tumor growth and it specifically targets the neoplastic cells rather than the normal cells. Conventional chemotherapy has many limitations which include drug resistance, recurrence of cancer and severe adverse effects. Immunology has made major treatment breakthroughs for several cancers such as colorectal cancer, prostate cancer, breast cancer, lung cancer, liver cancer, kidney cancer, stomach cancer, acute lymphoblastic leukaemia etc. Currently, therapeutic strategies harnessing the immune system involve Checkpoint inhibitors, Chimeric antigen receptor T cells (CAR T cells), Monoclonal antibodies, Cancer vaccines, Cytokines, Radio-immunotherapy and Oncolytic virus therapy. The molecular characterization of several tumor antigens (TA) indicates that these TA can be utilized as promising candidates in cancer immunotherapy strategies. Here in this review, we highlight and summarize the different categories of emerging cancer immunotherapies along with the immunologically recognized tumor antigens involved in the tumor microenvironment.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Balachandran S Vinod
- Department of Biochemistry, Sree Narayana College, Kollam, Kerala, 691001, India.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
22
|
Li S, Mai Z, Gu W, Ogbuehi AC, Acharya A, Pelekos G, Ning W, Liu X, Deng Y, Li H, Lethaus B, Savkovic V, Zimmerer R, Ziebolz D, Schmalz G, Wang H, Xiao H, Zhao J. Molecular Subtypes of Oral Squamous Cell Carcinoma Based on Immunosuppression Genes Using a Deep Learning Approach. Front Cell Dev Biol 2021; 9:687245. [PMID: 34422810 PMCID: PMC8375681 DOI: 10.3389/fcell.2021.687245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The mechanisms through which immunosuppressed patients bear increased risk and worse survival in oral squamous cell carcinoma (OSCC) are unclear. Here, we used deep learning to investigate the genetic mechanisms underlying immunosuppression in the survival of OSCC patients, especially from the aspect of various survival-related subtypes. Materials and methods: OSCC samples data were obtained from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and OSCC-related genetic datasets with survival data in the National Center for Biotechnology Information (NCBI). Immunosuppression genes (ISGs) were obtained from the HisgAtlas and DisGeNET databases. Survival analyses were performed to identify the ISGs with significant prognostic values in OSCC. A deep learning (DL)-based model was established for robustly differentiating the survival subpopulations of OSCC samples. In order to understand the characteristics of the different survival-risk subtypes of OSCC samples, differential expression analysis and functional enrichment analysis were performed. Results: A total of 317 OSCC samples were divided into one inferring cohort (TCGA) and four confirmation cohorts (ICGC set, GSE41613, GSE42743, and GSE75538). Eleven ISGs (i.e., BGLAP, CALCA, CTLA4, CXCL8, FGFR3, HPRT1, IL22, ORMDL3, TLR3, SPHK1, and INHBB) showed prognostic value in OSCC. The DL-based model provided two optimal subgroups of TCGA-OSCC samples with significant differences (p = 4.91E-22) and good model fitness [concordance index (C-index) = 0.77]. The DL model was validated by using four external confirmation cohorts: ICGC cohort (n = 40, C-index = 0.39), GSE41613 dataset (n = 97, C-index = 0.86), GSE42743 dataset (n = 71, C-index = 0.87), and GSE75538 dataset (n = 14, C-index = 0.48). Importantly, subtype Sub1 demonstrated a lower probability of survival and thus a more aggressive nature compared with subtype Sub2. ISGs in subtype Sub1 were enriched in the tumor-infiltrating immune cells-related pathways and cancer progression-related pathways, while those in subtype Sub2 were enriched in the metabolism-related pathways. Conclusion: The two survival subtypes of OSCC identified by deep learning can benefit clinical practitioners to divide immunocompromised patients with oral cancer into two subpopulations and give them target drugs and thus might be helpful for improving the survival of these patients and providing novel therapeutic strategies in the precision medicine area.
Collapse
Affiliation(s)
- Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoyi Mai
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wenli Gu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | | | - Aneesha Acharya
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - George Pelekos
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Wanchen Ning
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Bernd Lethaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Rüdiger Zimmerer
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Hao Wang
- Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Hui Xiao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
23
|
Galvin R, Watson AL, Largaespada DA, Ratner N, Osum S, Moertel CL. Neurofibromatosis in the Era of Precision Medicine: Development of MEK Inhibitors and Recent Successes with Selumetinib. Curr Oncol Rep 2021; 23:45. [PMID: 33721151 DOI: 10.1007/s11912-021-01032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Patients with neurofibromatosis type 1 (NF1) are at increased risk for benign and malignant neoplasms. Recently, targeted therapy with the MEK inhibitor class has helped address these needs. We highlight recent successes with selumetinib while acknowledging ongoing challenges for NF1 patients and future directions. RECENT FINDINGS MEK inhibitors have demonstrated efficacy for NF1-related conditions, including plexiform neurofibromas and low-grade gliomas, two common causes of NF1-related morbidity. Active investigations for NF1-related neoplasms have benefited from advanced understanding of the genomic and cell signaling alterations in these conditions and development of sound preclinical animal models. Selumetinib has become the first FDA-approved targeted therapy for NF1 following its demonstrated efficacy for inoperable plexiform neurofibroma. Investigations of combination therapy and the development of a representative NF1 swine model hold promise for translating therapies for other NF1-associated pathology.
Collapse
Affiliation(s)
- Robert Galvin
- Divisions of Pediatric Hematology & Oncology and Bone Marrow Transplant, University of Minnesota, Minneapolis, MN, USA
| | | | - David A Largaespada
- Division of Pediatric Hematology & Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nancy Ratner
- Cincinnati Children's Hospital Division of Exp. Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Sara Osum
- Division of Pediatric Hematology & Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Christopher L Moertel
- Division of Pediatric Hematology & Oncology, University of Minnesota, Minneapolis, MN, USA.
- Pediatric Hematology MMC 484 Mayo, 8484B (Campus Delivery Code), 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
24
|
Wang Y, Zhang K, Georgiev P, Wells S, Xu H, Lacey BM, Xu Z, Laskey J, Mcleod R, Methot JL, Bittinger M, Pasternak A, Ranganath S. Pharmacological inhibition of hematopoietic progenitor kinase 1 positively regulates T-cell function. PLoS One 2020; 15:e0243145. [PMID: 33270695 PMCID: PMC7714195 DOI: 10.1371/journal.pone.0243145] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-specific Ste20-related serine/threonine kinase, is a negative regulator of signal transduction in immune cells, including T cells, B cells, and dendritic cells (DCs). In mice, HPK1 deficiency subverts inhibition of the anti-tumor immune response and is associated with functional augmentation of anti-tumor T cells. We have used a potent, small molecule HPK1 inhibitor, Compound 1, to investigate the effects of pharmacological intervention of HPK1 kinase activity in immune cells. Compound 1 enhanced Th1 cytokine production in T cells and fully reverted immune suppression imposed by the prostaglandin E2 (PGE2) and adenosine pathways in human T cells. Moreover, the combination of Compound 1 with pembrolizumab, a humanized monoclonal antibody against the programmed cell death protein 1 (PD-1), demonstrated a synergistic effect, resulting in enhanced interferon (IFN)-γ production. Collectively, our results suggest that blocking HPK1 kinase activity with small molecule inhibitors alone or in combination with checkpoint blockade may be an attractive approach for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Yun Wang
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Kelvin Zhang
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Peter Georgiev
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Steven Wells
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Haiyan Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Brian M. Lacey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Zangwei Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Jason Laskey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Robbie Mcleod
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Joey L. Methot
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Mark Bittinger
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Alexander Pasternak
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, United States of America
- * E-mail: (AP); (SR)
| | - Sheila Ranganath
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
- * E-mail: (AP); (SR)
| |
Collapse
|
25
|
Zhu S, Song W, Sun Y, Zhou Y, Kong F. MiR-342 attenuates lipopolysaccharide-induced acute lung injury via inhibiting MAPK1 expression. Clin Exp Pharmacol Physiol 2020; 47:1448-1454. [PMID: 32248545 DOI: 10.1111/1440-1681.13315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Micro RNA (miRNA) and mitogen-activated protein kinase (MAPK) are reported as the crucial regulators of inflammatory responses in acute lung injury (ALI). This study will explore the role of the miR-342/MAPK1 axis in regulation of lipopolysaccharide (LPS)-induced ALI. We found that miR-342 was down-regulated in LPS-induced A549 cells compared with the control group with DMSO, accompanied by elevated inflammatory cytokines and apoptosis. Over-expression of miR-342 reduced LPS-induced inflammatory responses and apoptosis in LPS-stimulated A549 cells, and had a protective role in LPS-treated mice with ALI by decreasing levels of inflammatory cytokines, improving survival of mice with ALI, and ameliorating the lung permeability. Dual-luciferase reporter gene assay demonstrated that miR-342 regulated the expression of MAPK1 by directly targeting its 3' untranslated region (3'-UTR). Mechanistically, MAPK1 silencing abrogated LPS-induced inflammatory injury in A549 cells, and partially enhanced the protective effect of miR-342. Therefore, miR-342 attenuates LPS-induced ALI by targeting MAPK1 expression, thereby protecting against A549 cell injury induced by LPS and lung injury of mice with ALI.
Collapse
Affiliation(s)
- Siliang Zhu
- Department of Intensive Care Unit, Tengzhou Central People's Hospital, Tengzhou, China
| | - Wenke Song
- Department of Intensive Care Unit, Tengzhou Central People's Hospital, Tengzhou, China
| | - Yanqi Sun
- Department of Intensive Care Unit, Tengzhou Central People's Hospital, Tengzhou, China
| | - Yongqin Zhou
- Department of Intensive Care Unit, Tengzhou Central People's Hospital, Tengzhou, China
| | - Fanpo Kong
- Department of Intensive Care Unit, Tengzhou Central People's Hospital, Tengzhou, China
| |
Collapse
|
26
|
Gan LL, Hii LW, Wong SF, Leong CO, Mai CW. Molecular Mechanisms and Potential Therapeutic Reversal of Pancreatic Cancer-Induced Immune Evasion. Cancers (Basel) 2020; 12:1872. [PMID: 32664564 PMCID: PMC7408947 DOI: 10.3390/cancers12071872] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer ranks high among the causes of cancer-related mortality. The prognosis of this grim condition has not improved significantly over the past 50 years, despite advancement in imaging techniques, cancer genetics and treatment modalities. Due to the relative difficulty in the early detection of pancreatic tumors, as low as 20% of patients are eligible for potentially curative surgery; moreover, chemotherapy and radiotherapy (RT) do not confer a great benefit in the overall survival of the patients. Currently, emerging developments in immunotherapy have yet to bring a significant clinical advantage among pancreatic cancer patients. In fact, pancreatic tumor-driven immune evasion possesses one of the greatest challenges leading to immunotherapeutic resistance. Most of the immune escape pathways are innate, while poor priming of hosts' immune response and immunoediting constitute the adaptive immunosuppressive machinery. In this review, we extensively discuss the pathway perturbations undermining the anti-tumor immunity specific to pancreatic cancer. We also explore feasible up-and-coming therapeutic strategies that may restore immunity and address therapeutic resistance, bringing hope to eliminate the status quo in pancreatic cancer prognosis.
Collapse
Affiliation(s)
- Li-Lian Gan
- School of Postgraduate Study, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-L.G.); (L.-W.H.)
| | - Ling-Wei Hii
- School of Postgraduate Study, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-L.G.); (L.-W.H.)
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Shew-Fung Wong
- School of Medicine, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
27
|
In Search of Outliers. Mining for Protein Kinase Inhibitors Based on Their Anti-Proliferative NCI-60 Cell Lines Profile. Molecules 2020; 25:molecules25081766. [PMID: 32290461 PMCID: PMC7221881 DOI: 10.3390/molecules25081766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 01/10/2023] Open
Abstract
Protein kinases play a pivotal role in signal transduction, protein synthesis, cell growth and proliferation. Their deregulation represents the basis of pathogenesis for numerous diseases such as cancer and pathologies with cardiovascular, nervous and inflammatory components. Protein kinases are an important target in the pharmaceutical industry, with 48 protein kinase inhibitors (PKI) already approved on the market as treatments for different afflictions including several types of cancer. The present work focuses on facilitating the identification of new PKIs with antitumoral potential through the use of data-mining and basic statistics. The National Cancer Institute (NCI) granted access to the results of numerous previously tested compounds on 60 tumoral cell lines (NCI-60 panel). Our approach involved analyzing the NCI database to identify compounds that presented similar growth inhibition (GI) profiles to that of existing PKIs, but different from approved oncologic drugs with other mechanisms of action, using descriptive statistics and statistical outliers. Starting from 34,000 compounds present in the database, we filtered 400 which displayed selective inhibition on certain cancer cell lines similar to that of several already-approved PKIs.
Collapse
|