1
|
Li H, Wang M, Hua Z, Guo H, Qiu Y, Zhang Z, Zou Y, Lu L. Piperlongumine alleviates viral myocarditis by inhibiting pyroptosis through NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156606. [PMID: 40056632 DOI: 10.1016/j.phymed.2025.156606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Viral myocarditis (VMC) is a cardiac condition characterized by inflammation of the myocardium due to viral infection. It is a significant cause of sudden cardiac death in young adults, and effective treatments remain limited. Inflammatory caspase-mediated pyroptosis serves as a host defense mechanism against pathogens and is crucial in the pathogenesis of VMC. Piperlongumine (PL), an amide alkaloid derived from Piper longum l., exhibits notable anti-inflammatory properties. However, there has been no reported research on the use of PL for the treatment of VMC. PURPOSE To explore the role of PL in inhibiting VMC by regulating cardiomyocyte pyroptosis and the potential molecular mechanism. METHODS To evaluate the effect of PL on VMC, we established the VMC mouse model through intraperitoneal injection of coxsackie virus B3 (CVB3) for in vivo experiments. Subsequently, we assessed body weight, cardiac histopathological changes, cardiac function, and cardiomyocyte pyroptosis in VMC mice following PL treatment using hematoxylin and eosin (HE) staining, echocardiography, real-time quantitative PCR (RT-qPCR), and western blot analysis. The impact of PL on mouse cardiac muscle cell line (HL-1) pyroptosis was evaluated through the cell counting kit-8 assay kit (CCK8), RT-qPCR, immunofluorescence, and western blot. Additionally, network pharmacology was employed to preliminarily analyze the cellular pathways by which PL reduces VMC via the inhibition of pyroptosis, and the results of this analysis were validated through western blot. RESULTS In vivo experimental results demonstrated that following PL treatment, symptoms in VMC mice were significantly alleviated, cardiac function was restored, inflammation in cardiac tissue was reduced, and both myocardial cell pyroptosis and levels of inflammatory factors were notably decreased. Similar findings were observed in vitro. Network pharmacology analysis indicated that the NF-κB pathway may serve as a critical target for PL treatment of VMC. Furthermore, in vitro experiments revealed that the specific NF-κB pathway inhibitor MG132 can significantly inhibit CVB3-induced pyroptosis. Additionally, PL could reduce the phosphorylation levels of key molecules in the NF-κB signal pathway in a dose dependent manner. CONCLUSION In summary, this study presents evidence that PL ameliorates cardiomyocyte injury and enhances cardiac function in VMC mice, by reducing pyroptosis through the inhibition of the NF-κB pathway. These findings offer new insights for the potential of PL in VMC treatment.
Collapse
Affiliation(s)
- Hui Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Min Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | | | - Hengzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yuting Qiu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Zhengyang Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yu Zou
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Lili Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China; Department of Clinical Medicine, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| |
Collapse
|
2
|
Gong R, Long G, Wang Q, Hu X, Luo H, Zhang D, Shang J, Han Y, Huang C, Shang Y. Piplartine alleviates sepsis-induced acute kidney injury by inhibiting TSPO-mediated macrophage pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167687. [PMID: 39862996 DOI: 10.1016/j.bbadis.2025.167687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Sepsis-induced acute kidney injury (SI-AKI) is the most common organ dysfunction of sepsis, characterized with prolonged hospitalization periods and significantly elevated mortality rates. Piplartine (PLG), an alkaloid extracted from Piper longum within the Piperaceae family, has exhibited diverse pharmacological activities, including anti-inflammatory, anti-atherosclerotic, and anti-tumor effects. Herein, we investigated whether the PLG could reverse SI-AKI and explore its possible anti-inflammatory mechanisms. We constructed an SI-AKI model using cecal ligation and puncture (CLP) and systematically evaluated the protective effect of PLG administered by gavage in the SI-AKI mice. Subsequently, we performed proteomic sequencing of the kidney and integrated data from the GeneCards and SwissTargetPrediction databases to identify potential targets and mechanisms. Immunofluorescence and western blotting were used to examine the expression of relevant targets and pathways in vivo and in vitro. The influence of PLG on the predicted target and pathway was verified using an agonist of the target protein and a series of biochemical experiments. PLG exhibited significant efficacy against pathological damage, neutrophil and macrophage infiltration, and macrophage pyroptosis in kidneys at 30 mg/kg. An integrated analysis of proteomic data identified the translocator protein (TSPO) as a potential target for the renoprotective effects of PLG. Moreover, a TSPO agonist (RO5-4864) prominently reversed the protective effect of PLG in SI-AKI mice, as manifested by a deterioration in renal function, histopathological lesions and macrophage pyroptosis in the kidneys. Our results suggest that PLG may ameliorate SI-AKI, potentially through partial inhibition of the TSPO-macrophage pyroptosis pathway.
Collapse
Affiliation(s)
- Rui Gong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Gangyu Long
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China
| | - Qian Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China
| | - Hong Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dingyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jun Shang
- SpecAlly Life Technology Co., Ltd, Wuhan 430073, Hubei, China
| | - Yang Han
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China.
| | - Chaolin Huang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
3
|
Liu Z, Lv L, Wei J, Xie Y, Jili M, Huang Y, Yang R, Luo Y. Cordycepin attenuates NLRP3/Caspase-1/GSDMD-mediated LPS-induced macrophage pyroptosis. Front Pharmacol 2025; 16:1526616. [PMID: 40028157 PMCID: PMC11868043 DOI: 10.3389/fphar.2025.1526616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Pyroptosis, a form of programmed cell death driven by the NLRP3 inflammasome, is a key contributor to inflammation in various diseases. This study aimed to investigate the anti-inflammatory mechanisms of cordycepin, focusing on its role in macrophage pyroptosis. Molecular docking analysis was performed to evaluate the binding affinity of cordycepin to key pyroptosis-related proteins, including NLRP3, Caspase-1, and GSDMD. RAW264.7 cells were pre-treated with cordycepin to assess its effects on pyroptosis. Key measurements included reactive oxygen species (ROS) levels, xanthine oxidase (XO) activity, and the expression of NLRP3, Caspase-1, and GSDMD. Additionally, lactate dehydrogenase (LDH) release, interleukin (IL)-1β and IL-18 levels in the culture supernatant, and macrophage cell death rates were evaluated using Hoechst 33342/PI dual staining. The results demonstrated that cordycepin exhibits strong binding affinity for NLRP3, Caspase-1, and GSDMD. Cordycepin pre-treatment significantly reduced ROS levels and XO activity, inhibited the expression of NLRP3, cleaved-Caspase-1, and cleaved-GSDMD, and decreased pyroptosis-associated inflammatory cytokines IL-1β and IL-18, along with Caspase-1 activity. Furthermore, cordycepin reduced the macrophage pyroptosis rate. In conclusion, cordycepin inhibits macrophage pyroptosis by reducing XO activity, suppressing ROS production, and regulating the expression of key molecules in the NLRP3/Caspase-1/GSDMD pathway. These findings provide a strong experimental basis for the potential development of cordycepin as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Zige Liu
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Lv
- Department of Physiology, School of Basic Medical Sciences, Nanning, Guangxi, China
| | - Jiao Wei
- Department of Physiology, School of Basic Medical Sciences, Nanning, Guangxi, China
| | - Yuli Xie
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
| | - Mujia Jili
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
| | - Yian Huang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Luo
- Department of Clinical Laboratory, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
4
|
Chen PR, Li CY, Yazal T, Chen IC, Liu PL, Chen YT, Liu CC, Lo J, Lin TC, Chang CT, Wu HE, Chen YR, Cheng WC, Chiu CC, Chen CS, Wang SC. Protective effects of nordalbergin against LPS-induced endotoxemia through inhibiting MAPK/NF-κB signaling pathway, NLRP3 inflammasome activation, and ROS production. Inflamm Res 2024; 73:1657-1670. [PMID: 39052062 DOI: 10.1007/s00011-024-01922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE Nordalbergin is a coumarin extracted from Dalbergia sissoo DC. To date, the biological effects of nordalbergin have not been well investigated. To investigate the anti-inflammatory responses and the anti-oxidant abilities of nordalbergin using lipopolysaccharide (LPS)-activated macrophages and LPS-induced sepsis mouse model. MATERIALS AND METHODS Production of nitrite oxide (NO), prostaglandin E2 (PGE2), pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β), reactive oxygen species (ROS), tissue damage and serum inflammatory markers, and the activation of the NLRP3 inflammasome were examined. RESULTS Our results indicated that nordalbergin reduced the production of NO and pro-inflammatory cytokines in vitro and ex vivo. Nordalbergin also suppressed iNOS and cyclooxygenase-2 expressions, decreased NF-κB activity, and attenuated MAPKs signaling pathway activation by decreasing JNK and p38 phosphorylation by LPS-activated J774A.1 macrophages. Notably, nordalbergin diminished NLRP3 inflammasome activation via repressing the maturation of IL-1β and caspase-1 and suppressing ROS production by LPS/ATP- and LPS/nigericin-activated J774A.1 macrophages. Furthermore, nordalbergin exhibited protective effects against the infiltration of inflammatory cells and also inhibited the levels of organ damage markers (AST, ALT, BUN) by LPS-challenged mice. CONCLUSION Nordalbergin possesses anti-inflammatory effects in macrophage-mediated innate immune responses, alleviates ROS production, decreases NLRP3 activation, and exhibits protective effects against LPS-induced tissue damage in mice.
Collapse
Grants
- NSTC 111-2218-E-037-001, NSTC 111-2314-B-037-071-MY3, NSTC 112-2314-B-037-127, NSTC 112-2314-B-037-128, NSTC 112-2926-I-037-501-G, NSTC 112-2314-B-037-089, NSTC 112-2311-B-039 -001, NSTC 112-2622-E-039-001, NSTC 111-2622-E-039-004 and NSTC 112-2218-E-037-001 National Science and Technology Council, Taiwan, R.O.C.
- KT113P010 NTHU-KMU Joint Research Project
- CMU111-IP-04 and CMU112-MF-25 China Medical University, Taiwan
- DMR-112-056, DMR-113-190, and DMR-113-191 China Medical University Hospital
Collapse
Affiliation(s)
- Pin-Rong Chen
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Taha Yazal
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - I-Chen Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yi-Ting Chen
- Department of Pathology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427213, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tzu-Chieh Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Tang Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yuan-Ru Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40403, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Academia Sinica, Taipei, 40403, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shu-Chi Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
5
|
Zhang C, Singla RK, Tang M, Shen B. Natural products act as game-changer potentially in treatment and management of sepsis-mediated inflammation: A clinical perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155710. [PMID: 38759311 DOI: 10.1016/j.phymed.2024.155710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Sepsis, a life-threatening condition resulting from uncontrolled host responses to infection, poses a global health challenge with limited therapeutic options. Due to high heterogeneity, sepsis lacks specific therapeutic drugs. Additionally, there remains a significant gap in the clinical management of sepsis regarding personalized and precise medicine. PURPOSE This review critically examines the scientific landscape surrounding natural products in sepsis and sepsis-mediated inflammation, highlighting their clinical potential. METHODS Following the PRISMA guidelines, we retrieved articles from PubMed to explore potential natural products with therapeutic effects in sepsis-mediated inflammation. RESULTS 434 relevant in vitro and in vivo studies were identified and screened. Ultimately, 55 studies were obtained as the supporting resources for the present review. We divided the 55 natural products into three categories: those influencing the synthesis of inflammatory factors, those affecting surface receptors and modulatory factors, and those influencing signaling pathways and the inflammatory cascade. CONCLUSION Natural products' potential as game-changers in sepsis-mediated inflammation management lies in their ability to modulate hallmarks in sepsis, including inflammation, immunity, and coagulopathy, which provides new therapeutic avenues that are readily accessible and capable of undergoing rapid clinical validation and deployment, offering a gift from nature to humanity. Innovative techniques like bioinformatics, metabolomics, and systems biology offer promising solutions to overcome these obstacles and facilitate the development of natural product-based therapeutics, holding promise for personalized and precise sepsis management and improving patient outcomes. However, standardization, bioavailability, and safety challenges arise during experimental validation and clinical trials of natural products.
Collapse
Affiliation(s)
- Chi Zhang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Min Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; West China School of Nursing, Sichuan University, Chengdu, PR China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China.
| |
Collapse
|
6
|
Li J, Xiao C, Zheng H. Prognostic value of inflammatory cytokine detection for sepsis patients in ICU: a meta-analysis. Am J Transl Res 2024; 16:2612-2621. [PMID: 39006300 PMCID: PMC11236661 DOI: 10.62347/nylm7723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/20/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE To explore the prognostic effect of cytokine levels such as IL-6 (interleukin), IL-8 and TNF (tumor necrosis factor)-α on patients with sepsis in intensive care units (ICUs) by Meta-analysis. METHODS We systematically searched PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, and other databases up to May 2023 to retrieve clinical research articles on cytokine testing for predicting sepsis prognosis in ICU settings. Relevant indicators were extracted and recorded in Excel. Meta-analyses were performed using RevMan 5.3. RESULTS A total of 25 studies were finally included in this Meta-analysis: 21 investigated IL-6, 6 examined IL-8, 11 addressed IL-10, 12 reviewed TNF-α, and 6 focused on IL-1β. Meta-analysis results demonstrated that cytokine levels (IL-6, IL-8, IL-10, TNF-α and IL-1β) in survival groups were substantially lower than those in non-survival groups (ALL P < 0.00001). Specific findings include significant differences in IL-6 [SMD = -25.32, 95% CI (-27.14, -23.49), P < 0.00001], IL-8 [SMD = -140.48, 95% CI (-154.32, -126.64), P < 0.00001], IL-10 [SMD = -54.10, 95% CI (-56.74, -51.47), P < 0.00001], TNF-α [SMD = -8.67, 95% CI (-9.82, -7.52), P < 0.00001], and IL-1β [SMD = -3.71, 95% CI (-4.11, -3.30), P < 0.00001]. The funnel plots for IL-6, IL-8, IL-10, TNF-α, and IL-1β displayed roughly symmetrical distributions, suggesting minimal bias and high reliability of the findings. CONCLUSION Cytokine levels such as IL-6, IL-8, and TNF-α are valuable prognostic indicators for patients with sepsis in the ICUs. Early testing of these cytokines can guide clinical interventions and enable targeted treatments for high-risk patients to reduce the likelihood of adverse outcomes.
Collapse
Affiliation(s)
- Jianying Li
- Intensive Care Unit, The Seventh People’s Hospital of ChongqingChongqing 400054, China
| | - Changchun Xiao
- Pulmonary and Critical Care Medicine, Chongqing Jianshe HospitalChongqing 400050, China
| | - Huifeng Zheng
- Intensive Care Unit, Chongqing General Hospital, Chongqing UniversityChongqing 400010, China
| |
Collapse
|
7
|
Mannino F, Urzì Brancati V, Lauro R, Pirrotta I, Rottura M, Irrera N, Cavallini GM, Pallio G, Gitto E, Manti S. Levosimendan and Dobutamin Attenuate LPS-Induced Inflammation in Microglia by Inhibiting the NF-κB Pathway and NLRP3 Inflammasome Activation via Nrf2/HO-1 Signalling. Biomedicines 2024; 12:1009. [PMID: 38790971 PMCID: PMC11117907 DOI: 10.3390/biomedicines12051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Hypovolemic shock is a circulatory failure, due to a loss in the effective circulating blood volume, that causes tissue hypoperfusion and hypoxia. This condition stimulates reactive oxygen species (ROS) and pro-inflammatory cytokine production in different organs and also in the central nervous system (CNS). Levosimendan, a cardioprotective inodilator, and dobutamine, a β1-adrenergic agonist, are commonly used for the treatment of hypovolemic shock, thanks to their anti-inflammatory and antioxidant effects. For this reason, we aimed at investigating levosimendan and dobutamine's neuroprotective effects in an "in vitro" model of lipopolysaccharide (LPS)-induced neuroinflammation. Human microglial cells (HMC3) were challenged with LPS (0.1 µg/mL) to induce an inflammatory phenotype and then treated with levosimendan (10 µM) or dobutamine (50 µM) for 24 h. Levosimendan and dobutamine significantly reduced the ROS levels and markedly increased Nrf2 and HO-1 protein expression in LPS-challenged cells. Levosimendan and dobutamine also decreased p-NF-κB expression and turned off the NLRP3 inflammasome together with its downstream signals, caspase-1 and IL-1β. Moreover, a reduction in TNF-α and IL-6 expression and an increase in IL-10 levels in LPS-stimulated HMC3 cells was observed following treatment. In conclusion, levosimendan and dobutamine attenuated LPS-induced neuroinflammation through NF-κB pathway inhibition and NLRP3 inflammasome activation via Nrf2/HO-1 signalling, suggesting that these drugs could represent a promising therapeutic approach for the treatment of neuroinflammation consequent to hypovolemic shock.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Valentina Urzì Brancati
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Igor Pirrotta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Gian Maria Cavallini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, with Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Eloisa Gitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (V.U.B.); (R.L.); (I.P.); (M.R.); (N.I.); (E.G.)
| | - Sara Manti
- Department of Human Pathology of Adult and Childhood Gaetano Barresi, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
8
|
Heimfarth L, Dos Santos KS, Monteiro BS, de Souza Oliveira AK, Coutinho HDM, Menezes IRA, Dos Santos MRV, de Souza Araújo AA, Picot L, de Oliveira Júnior RG, Grougnet R, de Souza Siqueira Quintans J, Quintans-Júnior LJ. The protective effects of naringenin, a citrus flavonoid, non-complexed or complexed with hydroxypropyl-β-cyclodextrin against multiorgan damage caused by neonatal endotoxemia. Int J Biol Macromol 2024; 264:130500. [PMID: 38428770 DOI: 10.1016/j.ijbiomac.2024.130500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-β-cyclodextrin (HPβCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPβCD was able to increase the animal survival rate. CONCLUSION NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.
Collapse
Affiliation(s)
- Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Katielen Silvana Dos Santos
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Anne Karoline de Souza Oliveira
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | | | - Irwin R A Menezes
- Universidade Regional do Cariri - URCA, Departmento de Química Biológica, Crato, CE, Brazil
| | | | | | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France
| | - Raimundo Gonçalves de Oliveira Júnior
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France; CiTCoM UMR 8038 CNRS, Faculté Pharmacie, Université Paris Cité, 75006, Paris, France
| | - Raphaël Grougnet
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Jullyana de Souza Siqueira Quintans
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| | - Lucindo José Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| |
Collapse
|
9
|
Pei M, Deng K, Chen Y. Role and mechanism of endoplasmic reticulum stress and NLRP3 inflammasome in acute kidney injury. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:367-376. [PMID: 38970510 PMCID: PMC11208395 DOI: 10.11817/j.issn.1672-7347.2024.230301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 07/08/2024]
Abstract
Acute kidney injury (AKI) is a common critical condition in clinical practice, characterized by a rapid decline in renal function within a short period. The pathogenesis of AKI is complex and has not been fully elucidated. In recent years, studies have found that the activation of endoplasmic reticulum stress (ERS) and the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome are closely related to the occurrence of AKI. When the kidneys is damaged, the internal environment of the kidney cells is disrupted, leading to the activation of ERS. Excessive ERS can induce apoptosis of renal cells, leading to the occurrence of AKI. Additionally, the NLRP3 inflammasome can mediate the recognition of endogenous and exogenous danger signal molecules by the host, subsequently activating caspase-1, pro-inflammatory cytokines such as IL-1β and IL-18, inducing inflammatory responses, and promoting apoptosis of renal cells. In animal models of AKI, the upregulation of ERS markers is often accompanied by increased expression levels of NLRP3 inflammasome-related proteins, indicating that ERS can regulate the activation process of the NLRP3 inflammasome. Clarifying the role and mechanism of ERS and NLRP3 inflammasome in AKI is expected to provide new insights for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Mingxin Pei
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai Guangdong 519041, China.
| | - Ke Deng
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai Guangdong 519041, China.
| | - Yanling Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai Guangdong 519041, China. ,
| |
Collapse
|
10
|
Zang WB, Wei HL, Zhang WW, Ma W, Li J, Yao Y. Curcumin hybrid molecules for the treatment of Alzheimer's disease: Structure and pharmacological activities. Eur J Med Chem 2024; 265:116070. [PMID: 38134747 DOI: 10.1016/j.ejmech.2023.116070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly. Contemporary treatments can only relieve symptoms but fail to delay disease progression. Curcumin is a naturally derived compound that has demonstrated significant therapeutic effects in AD treatment. Recently, molecular hybridization has been utilized to combine the pharmacophoric groups present in curcumin with those of other AD drugs, resulting in a series of novel compounds that enhance the therapeutic efficacy through multiple mechanisms. In this review, we firstly provide a concise summary of various pathogenetic hypotheses of AD and the mechanism of action of curcumin in AD, as well as the concept of molecular hybridization. Subsequently, we focus on the recent development of hybrid molecules derived from curcumin, summarizing their structures and pharmacological activities, including cholinesterase inhibitory activity, Aβ aggregation inhibitory activity, antioxidant activity, and other activities. The structure-activity relationships were further discussed.
Collapse
Affiliation(s)
- Wei-Biao Zang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Hui-Ling Wei
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei-Wei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
11
|
Moosazadeh Moghaddam M, Fazel P, Fallah A, Sedighian H, Kachuei R, Behzadi E, Imani Fooladi AA. Host and Pathogen-Directed Therapies against Microbial Infections Using Exosome- and Antimicrobial Peptide-derived Stem Cells with a Special look at Pulmonary Infections and Sepsis. Stem Cell Rev Rep 2023; 19:2166-2191. [PMID: 37495772 DOI: 10.1007/s12015-023-10594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Zhai J, Cui J, Zhang J, Hu J, Yu Z. Kinetic simulation study of femtosecond laser processing of graphene oxide: first-principles. J Mol Model 2023; 29:265. [PMID: 37498391 DOI: 10.1007/s00894-023-05671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
CONTEXT Organic-inorganic nanoparticles have received extensive attention in various fields due to their unique physicochemical properties and biological activities. Among these nanoparticles, graphene oxide (GO) has emerged as a promising material, and thus, its application in biomedical fields is of great interest. Coating graphene oxide on the surface of implants can enhance its properties such as antibacterial and cell proliferation promotion, but the osteogenic properties of graphene oxide coating need further improvement, and the chance of acute inflammation triggered by local reactive oxygen species accumulation needs to be reduced. High-precision modulation of graphene oxide surface micro/nanomorphology and chemical composition can be achieved using femtosecond laser processing technology to improve its performance while also reducing the oxygen content of the graphene oxide surface to some extent. In this paper, the properties of graphene oxide were investigated by kinetic simulations based on the first-principle. The results show that the band gap of graphene oxide changes from 0.386 to 0.021 eV; the work function changes from 4.882 to 4.64 eV; the size and number of peaks in the radial distribution function decreases; and the intensity of the scatter X-ray peak becomes smaller under the action of femtosecond laser, indicating that the oxygen-containing functional groups on the surface of graphene oxide are disrupted, which provides a basis for its potential application in the medical field. METHODS To investigate the properties of graphene oxide, SEM, XPS, Raman, and FTIR characterizations were first used to determine the oxygen-containing functional group species on the surface of graphene oxide. The structural model of graphene oxide was then modeled for density flooding theory (DFT) simulations using Biovia Materials Studio software, which was implemented in the CASTEP code. Our DFT calculations were performed using the generalized gradient approximation (GGA) as parameterized by the Perdew-Burke Ernzerhof (PBE) exchange-correlation functional. Additionally, we employed the norm-conserving pseudopotential to treat core electrons.
Collapse
Affiliation(s)
- Jianwei Zhai
- College of Mechanical Engineering, Donghua University, Shanghai, 201620, China
| | - Jinye Cui
- College of Mechanical Engineering, Donghua University, Shanghai, 201620, China
| | - Jinhua Zhang
- College of Mechanical Engineering, Donghua University, Shanghai, 201620, China
| | - Jun Hu
- Institute of Artificial Intelligence, Donghua University, Shanghai, 201620, China.
| | - Zhou Yu
- Institute of Artificial Intelligence, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
13
|
Shen J, Cao F, Huang Z, Ma X, Yang N, Zhang H, Zhang Y, Zhang Z. Chukrasia tabularis limonoid plays anti-inflammatory role by regulating NF- κB signaling pathway in lipopolysaccharide-induced macrophages. Food Nutr Res 2023; 67:9383. [PMID: 37533446 PMCID: PMC10392864 DOI: 10.29219/fnr.v67.9383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 08/04/2023] Open
Abstract
Background Chukrasia tabularisis, a well-known tropical tree native to southeastern China, has anti-inflammatory and antioxidant activities, and contains large amounts of limonoids and triterpenoids. Objective The aim of this study was to investigate the potential anti-inflammatory activity of limonoids from C. tabularis on lipopolysaccharide (LPS)-mediated RAW264.7 cells. Methods and results Using a bioassay-guided approach, the chemical fraction with high anti-inflammatory activity was found and its chemical constituents were investigated. Phytochemical studies on active extracts resulted in the separation of three novel phragmalin limonoids (1-3), together with two known limonoids (4-5) and 11 tirucallane triterpenes (6-16). The activity of these isolated compounds in the production of nitric oxide (NO) on LPS-reated macrophages was evaluated. Limonoid 2 indicated significant anti-inflammatory activities with IC50 value of 4.58 μM. Limonoid 2 notably inhibited the production of NO, interleukin- 6 and tumor necrosis factor-α on macrophage. Signal transduction and activation of STAT and NF-κB activators were effectively blocked by limonoid 2. Conclusions These results indicate that limonoid 2 has an anti-inflammatory effect by the inhibiting JAK2/STAT3, iNOS/eNOS, and NF-κB signaling pathways and regulating inflammatory mediators.
Collapse
Affiliation(s)
- Jinhuang Shen
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Fan Cao
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhiyong Huang
- Department of Plastic Surgery, Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Xinhua Ma
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Nana Yang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Haitao Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yonghong Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhiqiang Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Gao N, Chen J, Li Y, Ding Y, Han Z, Xu H, Qiao H. The CYP2E1 inhibitor Q11 ameliorates LPS-induced sepsis in mice by suppressing oxidative stress and NLRP3 activation. Biochem Pharmacol 2023:115638. [PMID: 37290597 DOI: 10.1016/j.bcp.2023.115638] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Sepsis is an infection-induced, multi-organ system failure with a pathophysiology related to inflammation and oxidative stress. Increasing evidence indicates that cytochrome P450 2E1 (CYP2E1) is involved in the incidence and development of inflammatory diseases. However, a role for CYP2E1 in lipopolysaccharide (LPS)-induced sepsis has not been completely explored. Here we use Cyp2e1 knockout (cyp2e1-/-) mice to determine if CYP2E1 could be a therapeutic target for sepsis. We also evaluated the ability of Q11, a new specific CYP2E1 inhibitor, to prevent and ameliorate LPS-induced sepsis in mice and in LPS-treated J774A.1 and RAW264.7 cells. Cyp2e1 deletion significantly reduced hypothermia, multi-organ dysfunction and histological abnormalities in LPS-treated mice; consistent with this finding, the CYP2E1 inhibitor Q11 significantly prolonged the survival time of septic mice and ameliorated multi-organ injury induced by LPS. CYP2E1 activity in liver correlated with indicators of multi-organ injury, such as the level of lactate dehydrogenase (LDH) and blood urea nitrogen (BUN) (P<0.05). Q11 significantly suppressed the expression of NLRP3 in tissues after LPS injection; in vitro studies revealed that activation of NLRP3 signaling and increase of ROS was attenuated by Q11 in LPS-stimulated macrophages, which was reflected by reduced expression of caspase-1 and formation of ASC specks. Overall, our results indicate that Q11 improves the survival of mice with LPS-induced sepsis and attenuates sepsis-induced multiple-organ injury, suggesting that CYP2E1 could be a therapeutic target for sepsis.
Collapse
Affiliation(s)
- Na Gao
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jingjing Chen
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunchao Li
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Ding
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Zixinying Han
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Lipopolysaccharide-induced endotoxaemia during adolescence promotes stress vulnerability in adult mice via deregulation of nuclear factor erythroid 2-related factor 2 in the medial prefrontal cortex. Psychopharmacology (Berl) 2023; 240:713-724. [PMID: 36847832 DOI: 10.1007/s00213-022-06285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 03/01/2023]
Abstract
RATIONALE Sepsis is a severe inflammatory response to infection that leads to long-lasting cognitive impairment and depression after resolution. The lipopolysaccharide (LPS)-induced endotoxaemia model is a well-established model of gram-negative bacterial infection and recapitulates the clinical characteristics of sepsis. However, whether LPS-induced endotoxaemia during adolescence can modulate depressive and anxiety-like behaviours in adulthood remains unclear. OBJECTIVES To determine whether LPS-induced endotoxaemia in adolescence can modulate the stress vulnerability to depressive and anxiety-like behaviours in adulthood and explore the underlying molecular mechanisms. METHODS Quantitative real-time PCR was used to measure inflammatory cytokine expression in the brain. A stress vulnerability model was established by exposure to subthreshold social defeat stress (SSDS), and depressive- and anxiety-like behaviours were evaluated by the social interaction test (SIT), sucrose preference test (SPT), tail suspension test (TST), force swimming test (FST), elevated plus-maze (EPM) test, and open field test (OFT). Western blotting was used to measure Nrf2 and BDNF expression levels in the brain. RESULTS Our results showed that inflammation occurred in the brain 24 h after the induction of LPS-induced endotoxaemia at P21 but resolved in adulthood. Furthermore, LPS-induced endotoxaemia during adolescence promoted the inflammatory response and the stress vulnerability after SSDS during adulthood. Notably, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and BDNF in the mPFC were decreased after SSDS exposure in mice treated with LPS during adolescence. Activation of the Nrf2-BDNF signalling pathway by sulforaphane (SFN), an Nrf2 activator, ameliorated the effect of LPS-induced endotoxaemia during adolescence on stress vulnerability after SSDS during adulthood. CONCLUSIONS Our study identified adolescence as a critical period during which LPS-induced endotoxaemia can promote stress vulnerability during adulthood and showed that this effect is mediated by impairment of Nrf2-BDNF signalling in the mPFC.
Collapse
|
16
|
Hu Q, Tao R, Hu X, Wu H, Xu J. Effects of piperlonguminine on lung injury in severe acute pancreatitis <em>via</em> the TLR4/NF-κB pathway. Eur J Histochem 2023; 67. [PMID: 36951266 PMCID: PMC10080291 DOI: 10.4081/ejh.2023.3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
Acute pancreatitis is an inflammatory response in the pancreas, involving activation of pancreatic enzymes. Severe acute pancreatitis (SAP) often causes systemic complications that affect distant organs, including the lungs. The aim of this study was to explore the therapeutic potential of piperlonguminine on SAP-induced lung injury in rat models. Acute pancreatitis was induced in rats by repetitive injections with 4% sodium taurocholate. Histological examination and biochemical assays were used to assess the severity of lung injury, including tissue damage, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), reactive oxygen species (ROS), and inflammatory cytokines. We found that piperlonguminine significantly ameliorated pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening in rats with SAP. In addition, NOX2, NOX4, ROS, and inflammatory cytokine levels in pulmonary tissues were notably decreased in piperlonguminine-treated rats. Piperlonguminine also attenuated the expression levels of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB). Together, our findings demonstrate for the first time that piperlonguminine can ameliorate acute pancreatitis-induced lung injury via inhibitory modulation of inflammatory responses by suppression of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qian Hu
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Ran Tao
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Xiaoyun Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Haibo Wu
- Department of Emergency Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| | - Jianjun Xu
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi.
| |
Collapse
|
17
|
Zhou J, Li Y, He J, Liu L, Hu S, Guo M, Liu T, Liu J, Wang J, Guo B, Wang W. ROS Scavenging Graphene-Based Hydrogel Enhances Type H Vessel Formation and Vascularized Bone Regeneration via ZEB1/Notch1 Mediation. Macromol Biosci 2023; 23:e2200502. [PMID: 36637816 DOI: 10.1002/mabi.202200502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Indexed: 01/14/2023]
Abstract
The regeneration strategy for bone defects is greatly limited by the bone microenvironment, and excessive reactive oxygen species (ROS) seriously hinder the formation of new bone. Reduced graphene oxide (rGO) is expected to meet the requirements because of its ability to scavenge free radicals through electron transfer. Antioxidant hydrogels based on gelatine methacrylate (GM), acrylyl-β-cyclodextrin (Ac-CD), and rGO functionalized with β-cyclodextrin (β-CD) are developed for skull defect regeneration, but the mechanism of how rGO-based hydrogels enhance bone repair remains unclear. In this work, it is confirmed that the GM/Ac-CD/rGO hydrogel has good antioxidant capacity, and promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and angiogenesis of human umbilical vein endothelial cells (HUVECs). The rGO-based hydrogel affects ZEB1/Notch1 to promote tube formation. Furthermore, two-photon laser scanning microscopy is used to observe the ROS in a skull defect. The rGO-based hydrogel promotes type H vessel formation in a skull defect. In conclusion, the hydrogel neutralizes ROS in the vicinity of a skull defect and stimulates ZEB1/Notch1 to promote the coupling of osteogenesis and angiogenesis, which may be a possible approach for bone regeneration.
Collapse
Affiliation(s)
- Junpeng Zhou
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Yongwei Li
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Jiahui He
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liying Liu
- Biomedical Experimental Center of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710116, China
| | - Shugang Hu
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Meng Guo
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Tun Liu
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Junzheng Liu
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| | - Jiaxin Wang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an, Shaanxi, 710004, P. R. China
| |
Collapse
|
18
|
Shen J, Ma X, He Y, Wang Y, Zhong T, Zhang Y. Anti-inflammatory and anti-oxidant properties of Melianodiol on DSS-induced ulcerative colitis in mice. PeerJ 2022; 10:e14209. [PMID: 36312760 PMCID: PMC9615967 DOI: 10.7717/peerj.14209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Background Ulcerative colitis is a unique inflammatory bowel disease with ulcerative lesions of the colonic mucosa. Melianodiol (MN), a triterpenoid, isolated from the fruits of the Chinese medicinal plant Melia azedarach, possesses significant anti-inflammatory properties. Objective The present study investigated the protective effects of MN on lipopolysaccharide (LPS)-induced macrophages and DSS-mediated ulcerative colitis in mice. Methods In the study, mice were given MN (50, 100, and 200 mg/kg) and 5-ASA (500 mg/kg) daily for 9 days after induction by DSS for 1 week. The progress of the disease was monitored daily by observation of changes in clinical signs and body weight. Results The results showed that MN effectively improved the overproduction of inflammatory factors (IL-6, NO, and TNF-α) and suppressed the activation of the NF-κB signalling cascade in LPS-mediated RAW264.7 cells. For DSS-mediated colitis in mice, MN can reduce weight loss and the disease activity index (DAI) score in UC mice, suppress colon shortening, and alleviate pathological colon injury. Moreover, MN treatment notably up regulated the levels of IL-10 and down regulated those of IL-1β and TNF-α, and inhibited the protein expression of p-JAK2, p-STAT3, iNOS, NF-κB P65, p-P65, p-IKKα/β, and p-IκBα in the colon. After MN treatment, the levels of MDA and NO in colonic tissue were remarkably decreased, whereas the levels of GSH, SOD, Nrf-2, Keap-1, HO-1, IκBα, and eNOS protein expression levels were significantly increased. Conclusion These results indicate that MN can activate the Nrf-2 signalling pathway and inhibit the JAK/STAT, iNOS/eNOS, and NF-κB signalling cascades, enhance intestinal barrier function, and effectively reduce the LPS-mediated inflammatory response in mouse macrophages and DSS-induced intestinal injury in UC.
Collapse
Affiliation(s)
| | - Xinhua Ma
- Fujian Medical University, Fuzhou, China
| | - Yubin He
- Fujian Medical University, Fuzhou, China
| | | | - Tianhua Zhong
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | | |
Collapse
|
19
|
Lo J, Liu CC, Li YS, Lee PY, Liu PL, Wu PC, Lin TC, Chen CS, Chiu CC, Lai YH, Chang YC, Wu HE, Chen YR, Huang YK, Huang SP, Wang SC, Li CY. Punicalagin Attenuates LPS-Induced Inflammation and ROS Production in Microglia by Inhibiting the MAPK/NF-κB Signaling Pathway and NLRP3 Inflammasome Activation. J Inflamm Res 2022; 15:5347-5359. [PMID: 36131784 PMCID: PMC9484772 DOI: 10.2147/jir.s372773] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Neurodegenerative diseases are associated with neuroinflammation along with activation of microglia and oxidative stress, but currently lack effective treatments. Punicalagin is a natural bio-sourced product that exhibits anti-inflammatory effects on several chronic diseases; however, the anti-inflammatory and anti-oxidative effects on microglia have not been well examined. This study aimed to investigate the effects of punicalagin on LPS-induced inflammatory responses, NLRP3 inflammasome activation, and the production of ROS using murine microglia BV2 cells. Methods BV2 cells were pre-treated with punicalagin following LPS treatment to induce inflammation. The secretion of NO and PGE2 was analyzed by Griess reagent and ELISA respectively, while the expressions of iNOS, COX-2, STAT3, ERK, JNK, and p38 were analyzed using Western blotting, the production of IL-6 was measured by ELISA, and the activity of NF-κB was detected using promoter reporter assay. To examine whether punicalagin affects NLRP3 inflammasome activation, BV2 cells were stimulated with LPS and then treated with ATP or nigericin. The secretion of IL-1β was measured by ELISA. The expressions of NLRP3 inflammasome-related proteins and phospho IκBα/IκBα were analyzed using Western blotting. The production of intracellular and mitochondrial ROS was analyzed by flow cytometry. Results Our results showed that punicalagin attenuated inflammation with reduction of pro-inflammatory mediators and cytokines including iNOS, COX-2, IL-1β, and reduction of IL-6 led to inhibition of STAT3 phosphorylation by LPS-induced BV2 cells. Punicalagin also suppressed the ERK, JNK, and p38 phosphorylation, attenuated NF-κB activity, inhibited the activation of the NLRP3 inflammasome, and reduced the production of intracellular and mitochondrial ROS by LPS-induced BV2 cells. Conclusion Our results demonstrated that punicalagin attenuated LPS-induced inflammation through suppressing the expression of iNOS and COX-2, inhibited the activation of MAPK/NF-κB signaling pathway and NLRP3 inflammasome, and reduced the production of ROS in microglia, suggesting that punicalagin might have the potential in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Yueh-Shan Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Chang Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tzu-Chieh Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yuan-Ru Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.,Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| |
Collapse
|
20
|
Li J, Yu J, Zhang T, Pu X, Li Y, Wu Z. Genomic analysis quantifies pyroptosis in the immune microenvironment of HBV-related hepatocellular carcinoma. Front Immunol 2022; 13:932303. [PMID: 35967354 PMCID: PMC9365940 DOI: 10.3389/fimmu.2022.932303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Pyroptosis, a way of pro-inflammatory death, plays a significant part in the tumor microenvironment (TME). A recent study has shown that the hepatitis C virus changes the TME by inducing pyroptosis against hepatocellular carcinoma (HCC). However, compared to TME in hepatitis C virus-infected HCC, the exploration of immune characteristics and response to immunotherapy associated with the pyroptosis phenotype is still insufficient in hepatitis B virus-related HCC (HBV-HCC). Our study constructed pyroptosis-score (PYS) via principal-component analysis (PCA) to unveil the link between pyroptosis and tumor immunity in 369 HBV-HCC patients. Compared with the low-PYS group, subjects with higher PYS were associated with poor prognosis but were more susceptible to anti-PD-L1 treatment. In addition, we found that PYS can serve independently as a prognostic factor for HBV-HCC, making it possible for us to identify specific small molecule drugs with a potential value in inhibiting tumors via targeting pyroptosis. Also, the target genes predicted by the Weighted gene co-expression network analysis (WGCNA) and pharmacophore model were enriched in the HIF-1 signaling pathway and NF-kB transcription factor activity, which were related to the mechanism of inflammation-driven cancer. The PYS is extremely important in predicting prognosis and responses to immunotherapy. New treatment strategies for inflammation-driven cancers may be found by targeting pyroptosis.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinghui Yu
- Department of International Business, College of economics, Fudan University, Shanghai, China
| | - Ting Zhang
- Department of Phase I Clinical Trial Ward, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Pu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yilan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhongjun Wu,
| |
Collapse
|
21
|
Wei Q, Zhao J, Wang H, Liu C, Hu C, Zhao C, Dai Q, Hui Z, Wang R. Correlation Analysis of Blood Glucose Level with Inflammatory Response and Immune Indicators in Patients with Sepsis. DISEASE MARKERS 2022; 2022:8779061. [PMID: 35664433 PMCID: PMC9162806 DOI: 10.1155/2022/8779061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022]
Abstract
Objective To analyze the correlation of blood glucose level with inflammatory response and immune indicators in patients with sepsis. Methods Between February 2019 and February 2021, 30 sepsis patients and 30 sepsis patients complicated with diabetes mellitus admitted to our hospital were recruited and assigned to either the experimental group (sepsis patients) or the observation group (sepsis patients with diabetes mellitus). Another 30 healthy subjects in the same period were included as the control group. The levels of IL-6, TNF-α, IL-1β, CD4+, and CD8+ in the three groups of patients were compared to analyze the correlation of blood glucose levels with inflammatory response and immune indicators in patients with sepsis. The difference of counting data was analyzed using the chi-square test, and the difference of measurement data was analyzed using the t-test. Results The control group showed the lowest levels of IL-6 at 14.32 ± 4.98 pg/ml, followed by 18.33 ± 3.27 pg/ml in the experimental group and then 22.64 ± 5.16 pg/ml in the observation group (P < 0.05). The levels of other inflammatory factors including TNF-α and IL-1β were the lowest in the control group, followed by the experimental group, and then the observation group (P < 0.05). The lowest immune function indicator CD4+ and CD8+ levels were found in the observation group, followed by the experimental group, and then the control group (P < 0.05). The blood glucose level of patients with sepsis was positively correlated with the levels of IL-6, TNF-α, and IL-1β and was negatively correlated with the levels of CD4+/CD8+. The higher the blood glucose, the lower the number of immune cells. Conclusion The blood glucose level of patients with sepsis is positively correlated with inflammatory response and negatively with immune indicators. An increased blood sugar level is associated with aggravated inflammatory responses and a decreased number of immune cells, which provides a reference for the disease severity assessment and treatment of patients with sepsis.
Collapse
Affiliation(s)
- Qi Wei
- Department of Critical-Care Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Jinglin Zhao
- Department of Critical-Care Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Hao Wang
- Department of Critical-Care Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Cuicui Liu
- Department of Pharmacology, Cangzhou Medical College, Cangzhou, China
| | - Caihong Hu
- Department of Imaging, Cangzhou Medical College, Cangzhou, China
| | - Chao Zhao
- Department of Pharmacology, Cangzhou Medical College, Cangzhou, China
| | - Qingchun Dai
- Department of Critical-Care Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Zhi Hui
- Department of Critical-Care Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Rui Wang
- Department of Critical-Care Medicine, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
22
|
Shi J, Xia Y, Wang H, Yi Z, Zhang R, Zhang X. Piperlongumine Is an NLRP3 Inhibitor With Anti-inflammatory Activity. Front Pharmacol 2022; 12:818326. [PMID: 35095532 PMCID: PMC8790537 DOI: 10.3389/fphar.2021.818326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
Piperlongumine (PL) is an alkaloid from Piper longum L. with anti-inflammatory and antitumor properties. Numerous studies have focused on its antitumor effect. However, the underlying mechanisms of its anti-inflammation remain elusive. In this study, we have found that PL is a natural inhibitor of Nod-like receptor family pyrin domain-containing protein-3 (NLRP3) inflammasome, an intracellular multi-protein complex that orchestrates host immune responses to infections or sterile inflammations. PL blocks NLRP3 activity by disrupting the assembly of NLRP3 inflammasome including the association between NLRP3 and NEK7 and subsequent NLRP3 oligomerization. Furthermore, PL suppressed lipopolysaccharide-induced endotoxemia and MSU-induced peritonitis in vivo, which are NLRP3-dependent inflammation. Thus, our study identified PL as an inhibitor of NLRP3 inflammasome and indicated the potential application of PL in NLRP3-relevant diseases.
Collapse
Affiliation(s)
- Jie Shi
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China.,Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xia
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huihong Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhongjie Yi
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruoruo Zhang
- Institute of Transplantation Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
23
|
Xie Z, Wei L, Chen J, Chen Z. Calcium dobesilate alleviates renal dysfunction and inflammation by targeting nuclear factor kappa B (NF-κB) signaling in sepsis-associated acute kidney injury. Bioengineered 2022; 13:2816-2826. [PMID: 35038964 PMCID: PMC8974157 DOI: 10.1080/21655979.2021.2024394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis that increases mortality and the risk of progression to chronic kidney disease. Oxidative stress and apoptosis are reported to exert critical function in the pathogenesis of sepsis-associated AKI. Calcium dobesilate (CaD) was reported to play a protective role in renal diseases. Therefore, we explored the antioxidant effect and potential mechanism of CaD in lipopolysaccharide (LPS)-induced AKI in mice. We evaluated renal function (blood urea nitrogen (BUN) and serum creatinine (SCr)), histopathology, oxidative stress (superoxide dismutase (SOD) and malondialdehyde (MDA)), inflammation cytokines, and apoptosis in kidneys of mice. The effect of CaD on NF-κB signaling was evaluated by Western blot. Our findings showed that CaD alleviated renal dysfunction and kidney injury, and also reversed upregulated MDA concentration and reduced SOD enzyme activity in AKI mice. Moreover, LPS-induced inflammatory response was attenuated by CaD. CaD treatment also reduced the apoptosis evoked by LPS. Additionally, CaD downregulated phosphorylation of nuclear factor kappa B (NF-κB) signaling components in LPS mice. Conclusively, CaD alleviates renal dysfunction and inflammation by targeting NF-κB signaling in sepsis-associated AKI.
Collapse
Affiliation(s)
- Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Lanji Wei
- Department of Health Management Center, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
24
|
[Antibacterial mechanism of Brevinin-2GHk, an antimicrobial peptide from Fejervarya limnocharis skin]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1657-1663. [PMID: 34916191 PMCID: PMC8685708 DOI: 10.12122/j.issn.1673-4254.2021.11.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the secondary structure, physicochemical properties and antibacterial activity of Brevinin- 2GHk (BR2GK), an antimicrobial peptide from frog skin, and explore its antibacterial mechanism. METHODS BR2GK was synthesized, purified with high performance liquid chromatography (HPLC) and identified using mass spectrometry. Circular dichroism was used to determine the secondary structure and physicochemical properties of BR2GK. Two-fold dilution method was used to determine the antibacterial activity of BR2GK, and its antibacterial mechanism was explored using laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM). The hemolytic activity of BR2GK was analyzed in red blood cells. Isothermal titration calorimetry (ITC) and surface plasmon resonance imaging (SPRi) were employed to detect the binding of BR2GK to lipopolysaccharide (LPS), and the antioxidant activity of BR2GK was evaluated using biochemical kits. RESULTS The synthesized BR2GK, with a purity exceeding 95% after purification, had the basic characteristics of cationic antimicrobial peptides. BR2GK consisted mainly of α-helical structure in SDS solution and exhibited a broad-spectrum antibacterial activity. Antibacterial activity assay showed that BR2GK had inhibitory and killing activity against a variety of strains with a minimum inhibitory concentration (MIC) of 2.76 μmol/L against Staphylococcus aureus. Observation with LSCM and SEM showed that BR2GK at an active concentration caused bacterial cell membrane damage, cell swelling, contraction, deformation, and massive exudation of intracellular contents without causing hemolysis. ITC showed that the binding affinity KD of BR2GK to LPS was 18.2±0.8 μmol/L. The antioxidant test showed that BR2GK was capable of effectively scavenging NO, ABTS and DPPH. CONCLUSION BR2GK, as a broad-spectrum antibacterial peptide with also a strong antioxidant capacity, does not cause hemolysis and is capable of binding to LPS. BR2GK has an important value for future design and synthesis of antimicrobial peptides with stronger antibacterial activity and lower cytotoxicity.
Collapse
|
25
|
Tsai PK, Chen SP, Huang-Liu R, Chen CJ, Chen WY, Ng YY, Kuan YH. Proinflammatory Responses of 1-Nitropyrene against RAW264.7 Macrophages through Akt Phosphorylation and NF-κB Pathways. TOXICS 2021; 9:276. [PMID: 34822668 PMCID: PMC8620634 DOI: 10.3390/toxics9110276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023]
Abstract
Air pollution is a major environmental and public health problem worldwide. A nitro-polycyclic aromatic hydrocarbon and the most abundant air pollutant in diesel engine exhaust, 1-nitropyrene (1-NP), is caused by the incomplete combustion of carbonaceous organic substances. Macrophages are effector cells of the innate immune cells that provide resistance in the peripheral tissue. The overactivation of macrophages results in inflammation. The generation of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumour necrosis factor alpha, is induced by 1-NP in a concentration-dependent manner in macrophages. In this study, the production of proinflammatory mediators, such as nitrogen oxide and prostaglandin E2, was induced by 1-NP in a concentration-dependent manner through the expression of iNOS and COX2. The generation of proinflammatory cytokines, iNOS, and COX2 was induced by 1-NP through nuclear factor (NF)-κB p65 phosphorylation and the degradation of its upstream factor, IκB. Finally, Akt phosphorylation was induced by 1-NP in a concentration-dependent manner. These findings suggest that 1-NP exhibits a proinflammatory response through the NF-κB pathway activation due to Akt phosphorylation.
Collapse
Affiliation(s)
- Ping-Kun Tsai
- Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan;
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shih-Pin Chen
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Rosa Huang-Liu
- School of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Yan-Yan Ng
- Department of Pediatric, Chung Kang Branch, Cheng Ching Hospital, Taichung 40764, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|