1
|
El-Housiny S, Fouad AG, El-Bakry R, Zaki RM, Afzal O, El-Ela FIA, Ghalwash MM. In Vitro and in vivo characterization of nasal pH-Responsive in-situ hydrogel of Candesartan-loaded invasomes as a potential stroke treatment. Drug Deliv Transl Res 2025; 15:1626-1645. [PMID: 39259459 DOI: 10.1007/s13346-024-01700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Candesartan (CDN) is a useful anti-stroke medication because it lowers blood pressure, inflammation, oxidative stress, angiogenesis and apoptosis. However, CDN has limited efficacy due to its low solubility and poor bioavailability. This study set out to develop nasal pH-responsive in situ hydrogel of CDN-loaded invasomes a (PRHCLI) for enhancing CDN's release, penetration, bioavailability, and effectiveness as a possible treatment for stroke. Based on the results of the pre-formulation investigation, the optimum CLI formulation for intravasomal delivery of CDN was determined to be 3% of phospholipid, 0.16% of cholesterol, 3% of ethanol, and 1% of cineole. The optimum formulation significantly enhanced CDN permeation and release by 2.06-fold and 59.06%, respectively. The CLI formulation was added to a mixture of chitosan (0.67%w/v) and glyceryl monooleate (0.27%v/v) to develop PRHCLI. The PRHCLI formulation enhanced the release and permeation of CDN relative to free CDN by 2.15 and 2.76 folds, respectively. An experimental rat stroke model was utilized for in vivo studies to evaluate the bioavailability, effectiveness, and toxicity of the PRHCLI formulation. The nasal PRHCLI drops increased the CDN's bioavailability by 3.20-fold compared to oral free CDN. Increased grip strength and decreased flexion, spontaneous motor activity, and Morris Water Maze scores in comparison to oral free CDN showed that nasal PRHCLI drops have better anti-stroke activity. The toxicity evaluation revealed the safety of nasal PRHCLI. Hence, nasal PRHCLI drops may represent a promising avenue as a stroke therapy.
Collapse
Affiliation(s)
- Shaimaa El-Housiny
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
- Faculty of Pharmacy, Beni-Suef University, El-Shahid/Shehata Ahmed Hijaz St, Beni-Suef, Egypt.
| | - Rana El-Bakry
- Department of Pharmacology and Toxicology, EL Saleheya EL Gadida University, EL Saleheya El Gadida, Sharkia, Egypt
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, Saudi Arabia
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Maha M Ghalwash
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
2
|
Dwivedi R, Bala R, Madaan R, Singh S, Sindhu RK. Terpene-based novel invasomes: pioneering cancer treatment strategies in traditional medicine. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025; 22:1-14. [PMID: 38996385 DOI: 10.1515/jcim-2024-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Health care workers have faced a significant challenge because of the rise in cancer incidence around the world during the past 10 years. Among various forms of malignancy skin cancer is most common, so there is need for the creation of an efficient and safe skin cancer treatment that may offer targeted and site-specific tumor penetration, and reduce unintended systemic toxicity. Nanocarriers have thus been employed to get around the issues with traditional anti-cancer drug delivery methods. Invasomes are lipid-based nanovesicles having small amounts of terpenes and ethanol or a mixture of terpenes and penetrate the skin more effectively. Compared to other lipid nanocarriers, invasomes penetrate the skin at a substantially faster rate. Invasomes possess a number of advantages, including improved drug effectiveness, higher compliance, patient convenience, advanced design, multifunctionality, enhanced targeting capabilities, non-invasive delivery methods, potential for combination therapies, and ability to overcome biological barriers,. These attributes position invasomes as a promising and innovative platform for the future of cancer treatment. The current review provides insights into invasomes, with a fresh organizational scheme and incorporates the most recent cancer research, including their composition, historical development and methods of preparation, the penetration mechanism involving effect of various formulation variables and analysis of anticancer mechanism and the application of invasomes.
Collapse
Affiliation(s)
- Renu Dwivedi
- School of Pharmaceutical Sciences, Bahra University, Solan, Himachal Pradesh, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rakesh K Sindhu
- School of Pharmacy, 193167 Sharda University , Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Liu X, Falconer RA. Liposomal Nanocarriers to Enhance Skin Delivery of Chemotherapeutics in Cancer Therapy. Bioengineering (Basel) 2025; 12:133. [PMID: 40001653 PMCID: PMC11851846 DOI: 10.3390/bioengineering12020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer chemotherapeutics administered to cancer patients via traditional oral or parenteral routes often encounter poor bioavailability and severe systemic side effects. Skin delivery is a promising alternative route with reduced side effects and improved therapeutic efficacy and has gained significant attention in recent years. With conventional or deformable liposomal nanocarriers as a skin permeation strategy, cancer chemotherapeutics can be delivered via skin route, offering an option for more efficient therapy. This review summarizes the recent advances in liposome nanocarrier efficacy to enhance the skin delivery of chemotherapeutics with a wide range of physicochemical properties (log Poct from -0.89 to 5.93, MW from 130 to 1415) in targeting local skin cancer, breast cancer, and tumor metastasis and delivering the drug to systemic circulation to treat distal cancers. The potential mechanisms of skin permeation enhancement by different type of liposomes are also discussed in this review.
Collapse
Affiliation(s)
- Xiangli Liu
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | | |
Collapse
|
4
|
Kumar L. INVASOMES: New Carriers for Transdermal Delivery of Anticancer Drugs. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:159. [PMID: 40326252 DOI: 10.2174/0118722105254232230920053519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 05/07/2025]
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University , Phagwara, Punjab 144401, India
| |
Collapse
|
5
|
Ghalwash MM, Fouad AG, Mohammed NH, Nagib MM, Khalil SFA, Belal A, Miski SF, Albezrah NKA, Elsayed A, Hassan AHE, Roh EJ, El-Housiny S. Fabrication and In Vivo Evaluation of In Situ pH-Sensitive Hydrogel of Sonidegib-Invasomes via Intratumoral Delivery for Basal Cell Skin Cancer Management. Pharmaceuticals (Basel) 2024; 18:31. [PMID: 39861094 PMCID: PMC11769384 DOI: 10.3390/ph18010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Basal cell skin cancer (BCSC) develops when skin cells proliferate uncontrollably. Sonidegib (SDB) is a therapeutic option for the treatment of BCSC by inhibiting hedgehog signaling. The problems with SDB's low solubility, poor bioavailability, resistance, poor targeting, and first-pass action make it less effective when taken orally. This investigation set out to design an intratumoral in situ pH-sensitive hydrogel of SDB-invasomes (IPHS-INV) that can effectively treat BCSC by improving SDB's bioavailability, sustainability, targeting, and efficacy while also reducing its resistance and undesirable side effects. METHODS Numerous S-INV formulations were developed using Box-Behnken Design Expert and tested before settling on the optimum S-INV formulation. An experimental 7, 12-dimethylbenzanthracene (DMBA) carcinoma rat model was used for in vivo studies of the IPHS-INV formulation after it was combined with chitosan. RESULTS Phospholipids (1.72% w/w), cholesterol (0.15% w/w), ethanol (1% v/v), and cineole (1.5% v/v) were shown to be the optimal components in the SDB-invasome formulation. The IPHS-INV formulation outperformed the permeation and bioavailability of free SDB by 7.14 and 6 times, respectively, and sustained its release by 57.41%. The IPHS-INV formulation showed a decrease in tumor volume of 99.05% and a reduction of hypercellular tumors, indicating its anti-cancer activity. The intratumoral IPHS-INV formulation maintained a higher concentration of SDB in tumors, indicating its targeting activity. CONCLUSIONS These findings support the use of the intratumoral IPHS-INV formulation as an effective strategy for the treatment of BCSC.
Collapse
Affiliation(s)
- Maha M. Ghalwash
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11435, Egypt
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nada H. Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya 61768, Egypt
| | - Marwa M. Nagib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo 11435, Egypt
| | | | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Samar F. Miski
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Madina 42278, Saudi Arabia
| | | | - Amani Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Shaimaa El-Housiny
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11435, Egypt
| |
Collapse
|
6
|
El-Bakry R, Mahmoud DM, Eskander Attia M, Gamal Fouad A, H Mohammed N, Belal A, Miski SF, Khalid Aref Albezrah N, Abduljabbar MH, Mahmoud TM. Improving the targeting and therapeutic efficacy of anastrazole for the control of breast cancer: In vitro and in vivo characterization. Int J Pharm 2024; 665:124684. [PMID: 39270763 DOI: 10.1016/j.ijpharm.2024.124684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Anastrazole (ASZ) is an effective aromatase inhibitor that is used for breast cancer treatment. Nevertheless, ASZ's effectiveness is diminished due to its low water solubility, unregulated release, absence of targeting, and inadequate patient compliance. The goal of the research was to create a hydrogel formulation of ASZ-loaded invasomes (ALI) to enhance the solubility, permeability, targeting, and efficacy of ASZ while also sustaining its release for treatment of breast cancer. The optimized ALI formulation was determined to be 3%w/v phospholipid, 0.15%w/v cholesterol, 3%v/v ethanol, and 1 %v/v cineole based on the results of the pre-formulation study. After conducting in vitro characterization of the optimum formulation, it was combined with carbopol for in vivo examination of its anti-tumor efficacy in a rat model of 7, 12-dimethylbenzanthracene. Compared to free ASZ, ALI hydrogel increased its penetration by 10.67 times and prolonged its release by 64.02%. Compared to the control positive group, ALI hydrogel reduced tumor volume by 99.19% and mortality by 10.93%. The anti-tumor effect of the ALI hydrogel was demonstrated by its ability to accumulate more ASZ in tumors and reduce hypercellular tumors. Overall, transdermal ALI hydrogel shows potential as a promising approach for treating breast cancer.
Collapse
Affiliation(s)
- Rana El-Bakry
- Department of Pharmacology and Toxicology, EL Saleheya EL Gadida University, EL Saleheya El Gadida, Sharkia, Egypt.
| | - Dina M Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Mary Eskander Attia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Nada H Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya, 61768, Egypt.
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia.
| | - Samar F Miski
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia.
| | | | - Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Tamer M Mahmoud
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
7
|
Farouk HO, Nagib MM, Fouad AG, Naguib DM, Khalil SFA, Belal A, Miski SF, Albezrah NKA, Al-Ziyadi SH, Kim GH, Hassan AHE, Lee KT, Hamad DS. Fabrication of an In Situ pH-Responsive Raloxifene-Loaded Invasome Hydrogel for Breast Cancer Management: In Vitro and In Vivo Evaluation. Pharmaceuticals (Basel) 2024; 17:1518. [PMID: 39598429 PMCID: PMC11597612 DOI: 10.3390/ph17111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Raloxifene (RLF) is a therapeutic option for invasive breast cancer because it blocks estrogen receptors selectively. Low solubility, limited targeting, first-pass action, and poor absorption are some of the challenges that make RLF in oral form less effective. This study aimed to create an intra-tumoral in situ pH-responsive formulation of RLF-invasome (IPHRLI) for breast cancer treatment, with the goals of sustaining RLF release, minimizing adverse effects, and enhancing solubility, bioavailability, targeting, and effectiveness. METHODS Numerous RLF-invasome formulations were optimized using design expert software (version 12.0.6.0, StatEase Inc., Minneapolis, MN, USA). Integrating an optimal formulation with an amalgam of chitosan and glyceryl monooleate resulted in the IPHRLI formulation. In vivo testing of the IPHRLI formulation was conducted utilizing the Ehrlich cancer model. RESULTS Requirements for an optimum RLF-invasome formulation were met by a mixture of phospholipids (2.46%), ethanol (2.84%), and cineole (0.5%). The IPHRLI formulation substantially sustained its release by 75.41% after 8 h relative to free RLF. The bioavailability of intra-tumoral IPHRLI was substantially raised by 4.07-fold compared to oral free RLF. Histopathological and tumor volume analyses of intra-tumoral IPHRLI confirmed its efficacy and targeting effect. CONCLUSIONS the intra-tumoral administration of the IPHRLI formulation may provide a potential strategy for breast cancer management.
Collapse
Affiliation(s)
- Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt; (H.O.F.); (D.M.N.)
| | - Marwa M. Nagib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo 11435, Egypt;
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Demiana M. Naguib
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt; (H.O.F.); (D.M.N.)
| | | | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Samar F. Miski
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Medina 42278, Saudi Arabia;
| | - Nisreen Khalid Aref Albezrah
- Department of Obstetric & Gynecology, College of Medicine, Taif University, Taif 21944, Saudi Arabia; (N.K.A.A.); (S.H.A.-Z.)
| | - Shatha Hallal Al-Ziyadi
- Department of Obstetric & Gynecology, College of Medicine, Taif University, Taif 21944, Saudi Arabia; (N.K.A.A.); (S.H.A.-Z.)
| | - Gi-Hui Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Doaa S. Hamad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Nile Valley University, Fayoum 63518, Egypt;
| |
Collapse
|
8
|
Mahmoud DM, El-Ela FIA, Fouad AG, Belal A, Ali MAM, Ghoneim MM, Almeheyawi RN, Attia ME, Mahmoud TM. Improving the bioavailability and therapeutic efficacy of felodipine for the control of diabetes-associated atherosclerosis: In vitro and in vivo characterization. Int J Pharm 2024; 661:124395. [PMID: 38945465 DOI: 10.1016/j.ijpharm.2024.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Felodipine has proven to be effective as an atherosclerosis therapy because it increases blood flow to the vessel wall. However, the poor solubility, low bioavailability, and hepatic first-pass metabolism of oral felodipine compromise its therapeutic effectiveness. The study's goal is to create a nasal pH-sensitive hydrogel of felodipine-loaded invasomes (IPHFI) that will improve felodipine's release, permeation, bioavailability, and efficacy as a potential diabetes-associated atherosclerosis therapy. According to the pre-formulation study, the felodipine-loaded invasomes formulation composed of phospholipid (3%w/v), cholesterol (0.16%w/v), ethanol (3%v/v) and cineole (1%v/v) was chosen as the optimum formulation. The optimum formulation was characterized in vitro and then mixed with a mixture of chitosan and glyceryl monooleate to make the IPHFI formulation. The IPHFI formulation enhanced the release and permeation of felodipine by 2.99 and 3-fold, respectively. To assess the efficacy and bioavailability of the IPHFI formulation, it was studied in vivo using an experimental atherosclerosis rat model. Compared to oral free felodipine, the nasal administration of the IPHFI formulation increased the bioavailability by 3.37-fold and decreased the serum cholesterol, triglycerides, LDL, and calcification score by 1.56, 1.53, 1.80, and 1.18 ratios, respectively. Thus, nasal IPHFI formulation may represent a promising diabetes-associated atherosclerosis therapy.
Collapse
Affiliation(s)
- Dina M Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia; Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia.
| | - Rania N Almeheyawi
- Department of Physical therapy, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
| | - Mary Eskander Attia
- Pharmacology department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Tamer M Mahmoud
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
9
|
Duo L, Yang J, Wang X, Zhang G, Zhao J, Zou H, Wang Z, Li Y. Krill oil: nutraceutical potential in skin health and disease. Front Nutr 2024; 11:1388155. [PMID: 39070257 PMCID: PMC11272659 DOI: 10.3389/fnut.2024.1388155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Krill oil (KO), extracted from the Antarctic marine crustacean Euphausia superba, is a nutrient-dense substance that includes rich profiles of n-3 polyunsaturated fatty acids (n-3 PUFAs), phospholipids (PLs), astaxanthin (ASX), as well as vitamins A and E, minerals, and flavonoids. As a high-quality lipid resource, KO has been widely used as a dietary supplement for its health-protective properties in recent years. KO has various benefits, including antioxidative, anti-inflammatory, metabolic regulatory, neuroprotective, and gut microbiome modulatory effects. Especially, the antioxidant and anti-inflammatory effects make KO have potential in skin care applications. With increasing demands for natural skin anti-aging solutions, KO has emerged as a valuable nutraceutical in dermatology, showing potential for mitigating the effects of skin aging and enhancing overall skin health and vitality. This review provides an overview of existing studies on the beneficial impact of KO on the skin, exploring its functional roles and underlying mechanisms through which it contributes to dermatological health and disease management.
Collapse
Affiliation(s)
- Lan Duo
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhong Yang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Xue Wang
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Wang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Yu Li
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Mahmoud DM, Ali MR, Aldosari BN, Zaki RM, Afzal O, Tulbah AS, Naguib DM, Zanaty MI, Attia ME, Abo El-Ela FI, Fouad AG. Functional candesartan loaded lipid nanoparticles for the control of diabetes-associated stroke: In vitro and in vivo studies. Int J Pharm X 2024; 7:100227. [PMID: 38260917 PMCID: PMC10801309 DOI: 10.1016/j.ijpx.2023.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Diabetes mellitus is a metabolic disease that raises the odds of developing stroke. Candesartan has been used to prevent stroke due to its inhibitory effects on blood pressure, angiogenesis, oxidative damage, and apoptosis. However, oral candesartan has very limited bioavailability and efficacy due to its weak solubility and slow release. The study aimed to develop a nasal formulation of candesartan-loaded liposomes containing ethanol and propylene glycol (CLEP) to improve candesartan's delivery, release, permeation, and efficacy as a potential diabetes-associated stroke treatment. Using design expert software, different CLEP formulations were prepared and evaluated in vitro to identify the optimum formulation, which. The selected optimum formulation composed of 3.3% phospholipid, 10% ethanol, and 15% propylene glycol significantly increased the release and permeation of candesartan relative to free candesartan by a factor of 1.52 and 1.47, respectively. The optimum formulation significantly reduced the infarction after stroke in rats; decreased flexion, spontaneous motor activity, and time spent in the target quadrant by 70%, 64.71%, and 92.31%, respectively, and enhanced grip strength by a ratio of 2.3. Therefore, nasal administration of the CLEP formulation could be a potential diabetes-associated stroke treatment.
Collapse
Affiliation(s)
- Dina M. Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Mohammed R.A. Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Demiana M. Naguib
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Mohamed I. Zanaty
- Biotechnology and Life Science Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - Mary Eskander Attia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Golestani P. Lipid-based nanoparticles as a promising treatment for the skin cancer. Heliyon 2024; 10:e29898. [PMID: 38698969 PMCID: PMC11064151 DOI: 10.1016/j.heliyon.2024.e29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The prevalence of skin disorders, especially cancer, is increasing worldwide. Several factors are involved in causing skin cancer, but ultraviolet (UV) light, including sunlight and tanning beds, are considered the leading cause. Different methods such as chemotherapy, radiotherapy, cryotherapy, and photodynamic therapy are mostly used for the skin cancer treatment. However, drug resistance and toxicity against cancer cells are related to these treatments. Lipid-nanoparticles have attracted significant interest as delivery systems due to non-invasive and targeted delivery based on the type of active drug. However, the stratum corneum, the outer layer of the skin, is inherently impervious to drugs. Due to their ability to penetrate the deep layers of the skin, skin delivery systems are capable of delivering drugs to target cells in a protected manner. The aim of this review was to examine the properties and applications of nanoliposomes used in the treatment and prevention of numerous types of skin cancer.
Collapse
Affiliation(s)
- Parisa Golestani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
12
|
Fouad AG, Ali MRA, Naguib DM, Farouk HO, Zanaty MI, El-Ela FIA. Design, optimization, and in vivo evaluation of invasome-mediated candesartan for the control of diabetes-associated atherosclerosis. Drug Deliv Transl Res 2024; 14:474-490. [PMID: 37605039 PMCID: PMC10761454 DOI: 10.1007/s13346-023-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Atherosclerosis is an inflammatory disease characterized by the accumulation of arterial plaque. Diabetes mellitus stands out as a major risk factor for atherosclerosis. Candesartan is a potent angiotensin II receptor antagonist that enhances arterial blood flow and reduces insulin resistance. However, oral candesartan has limited activity because of its low bioavailability, water solubility, hepatic first-pass degradation, and efficacy. The current study aims to develop nasal candesartan-loaded invasome (CLI) drops to improve candesartan's permeation, release, and bioavailability as a potential treatment for diabetes-associated atherosclerosis. Design expert software was used to prepare various CLI formulations to determine the impact of the concentrations of ethanol, cineole, and phospholipid. The desirability index was used to estimate the optimized formulation composition to maximize entrapment efficiency and minimize vesicle size. The optimized formulation had a 1% ethanol concentration, a 1.5% cineole concentration, and a 2.32% phospholipid concentration. The selected optimized formulation was then tested in a rat model of diabetes and atherosclerosis to evaluate its activity. The results showed that nasal CLI drops significantly raised serum HDL levels by a ratio of 1.42 and lowered serum glucose, cholesterol, triglycerides, LDL, and VLDL levels by 69.70%, 72.22%, 36.52%, 58.0%, and 65.31%, respectively, compared with diabetic atherosclerotic rats, throwing an insight on the potential for promising anti-diabetic and anti-atherosclerotic activities. Additionally, atherosclerotic lesions were improved in rats treated with CLI, as shown in histopathology. In conclusion, the results of this investigation showed that treatment with nasal CSN-loaded invasome formulation drops prevented the initiation and progression of diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, El-Shahid/Shehata Ahmed Hijaz St., Beni-Suef, Egypt.
| | - Mohammed R A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Demiana M Naguib
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Hanan O Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, 62521, Egypt
| | - Mohamed I Zanaty
- Biotechnology and Life Science Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
13
|
Babaie S, Charkhpour M, Kouhsoltani M, Hamishehkar H, Paiva-Santos AC. Nano-invasomes for simultaneous topical delivery of buprenorphine and bupivacaine for dermal analgesia. Exp Dermatol 2023; 32:1459-1467. [PMID: 37283479 DOI: 10.1111/exd.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/08/2023]
Abstract
Opioid and local anaesthetic receptors are abundantly concentrated in different layers of the skin. Therefore, simultaneous targeting of these receptors can produce more potent dermal anaesthesia. Herein, we developed lipid-based nanovesicles for the co-delivery of buprenorphine and bupivacaine to efficiently target skin-concentrated pain receptors. Invasomes incorporating two drugs were prepared by ethanol injection method. Subsequently, the size, zeta potential, encapsulation efficiency, morphology, and in-vitro drug release of vesicles were characterized. Ex-vivo penetration features of vesicles were then investigated by the franz diffusion cell on the full-thickness human skin. Wherein, it was demonstrated that invasomes penetrated the skin deeper and delivered bupivacaine more effectively than buprenorphine to the target site. The superiority of invasome penetration was further evidenced by the results of ex-vivo fluorescent dye tracking. Estimation of in-vivo pain responses by the tail-flick test revealed that compared with the liposomal group, the group receiving invasomal formulation and drug-free invasomal formulation (only containing menthol) displayed increased analgesia in the initial times of 5 and 10 min. Also, no signs of oedema or erythema were observed in the Daze test in any of the rats receiving the invasome formulation. Finally, ex-vivo and in-vivo assays demonstrated efficiency in delivering both drugs into deeper layers of skin and exposing them to the located pain receptors, which improves the time of onset and the analgesic effects. Hence, this formulation appears to be a promising candidate for tremendous development in the clinical setting.
Collapse
Affiliation(s)
- Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Charkhpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Abou-Taleb HA, Aldosari BN, Zaki RM, Afzal O, Tulbah AS, Shahataa MG, Abo El-Ela FI, Salem HF, Fouad AG. Formulation and Therapeutic Evaluation of Isoxsuprine-Loaded Nanoparticles against Diabetes-Associated Stroke. Pharmaceutics 2023; 15:2242. [PMID: 37765211 PMCID: PMC10536800 DOI: 10.3390/pharmaceutics15092242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke is the second-leading cause of death. Hyperglycemia, which is characteristic of diabetes mellitus, contributes to the development of endothelial dysfunction and increases the risk of stroke. Isoxsuprine is an efficient beta-adrenergic agonist that improves blood flow to the ischemic aria and stops the infarct core from growing. However, low bioavailability, a short biological half-life, and first-pass hepatic metabolism reduce the therapeutic efficacy of oral isoxsuprine. Therefore, the authors focused on developing isoxsuprine-loaded liposomes containing ethanol and propylene glycol (ILEP) formulation as nasal drops for the treatment of ischemic stroke in diabetic patients. Different ILEP formulations were optimized using Design Expert software, and the selected formulation was examined in vivo for its anti-stroke effect using a rat model of diabetes and stroke. The optimized ILEP, composed of 15% propylene glycol, 0.16% cholesterol, 10% ethanol, and 3.29% phospholipid, improved the sustainability, permeation, and targeting of isoxsuprine. Furthermore, the in vivo studies verified the improved neurological behavior and decreased dead shrunken neurons and vascular congestion of the rats treated with the optimized ILEP formulation, demonstrating its anti-stroke activity. In conclusion, our study found that treatment with an optimized ILEP formulation prevented the initiation and severity of stroke, especially in diabetic patients.
Collapse
Affiliation(s)
- Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag 1646080, Egypt;
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21421, Saudi Arabia;
| | - Mary Girgis Shahataa
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Heba F. Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| |
Collapse
|
15
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
16
|
Qin W, Chandra J, Abourehab MAS, Gupta N, Chen ZS, Kesharwani P, Cao HL. New opportunities for RGD-engineered metal nanoparticles in cancer. Mol Cancer 2023; 22:87. [PMID: 37226188 DOI: 10.1186/s12943-023-01784-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
The advent of nanotechnology has opened new possibilities for bioimaging. Metal nanoparticles (such as gold, silver, iron, copper, etc.) hold tremendous potential and offer enormous opportunities for imaging and diagnostics due to their broad optical characteristics, ease of manufacturing technique, and simple surface modification. The arginine-glycine-aspartate (RGD) peptide is a three-amino acid sequence that seems to have a considerably greater ability to adhere to integrin adhesion molecules that exclusively express on tumour cells. RGD peptides act as the efficient tailoring ligand with a variety of benefits including non-toxicity, greater precision, rapid clearance, etc. This review focuses on the possibility of non-invasive cancer imaging using metal nanoparticles with RGD assistance.
Collapse
Affiliation(s)
- Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
17
|
Self-nanoemulsifying drug delivery system for pancreatic cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
18
|
Salem HF, Abd El-Maboud MM, Said ASA, Salem MN, Sabry D, Hussain N, El-Ghafar OAMA, Hussein RRS. Nano Methotrexate versus Methotrexate in Targeting Rheumatoid Arthritis. Pharmaceuticals (Basel) 2022; 16:60. [PMID: 36678557 PMCID: PMC9866098 DOI: 10.3390/ph16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Nanomedicine has emerged as an important approach for targeting RA medication. Rheumatoid arthritis (RA) is a widespread autoimmune disorder marked by multiple inflamed joints. Gold nanoparticles (GNPs) have been demonstrated as efficacious nanocarriers due to their unique characteristics and the relative simplicity of their synthesis in varied sizes; moreover, they have the capability to alleviate several inflammatory markers. The current objective was to combine methotrexate (MTX) with GNPs to overcome MTX restrictions. GNPs were fabricated by a chemical reduction technique, utilizing sodium citrate and tween 20. The MTX-GNPs formulations were characterized in vitro by % entrapment efficiency (%EE), particle size, polydispersity index (PDI) zeta potential, and % release. The MTX-GNPs formulation was administrated as an intra-articular solution, and additionally, incorporated into a Carbopol gel to investigate its anti-arthritic effectiveness and bioavailability in vivo. The results indicated that a %EE of 87.53 ± 1.10%, and a particle size of 60.62 ± 2.41 nm with a PDI of 0.31 ± 0.03, and a zeta potential of −27.80 ± 0.36 mV were optimal. The in vitro release of MTX from the MTX-GNPs formulation demonstrated that the MTX-GNPs formulation’s release was 34.91 ± 1.96% and considerably (p < 0.05) lower than that of free MTX, showing a significant difference in dissolution patterns (p < 0.05). In vivo, MTX-GNPs formulations inhibited IL-6 by 36.52%, ACCP (63.25 %), COMP (28.16%), and RANKL (63.67%), as well as elevated IL-10 by 190.18%. Transdermal MTX-GNPs decreased IL-6 by 22.52%, ACCP (56.63%), COMP (52.64%), and RANKL (79.5%), as well as increased IL-10 by 168.37%. Histological investigation supported these recent findings. Conclusions: Marked improvements in MTX anti-arthritic effects are seen when it is conjugated to GNPs.
Collapse
Affiliation(s)
- Heba F. Salem
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | | | - Amira S. A. Said
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University, Al Ain P.O. Box 112612, United Arab Emirates
| | - Mohamed Nabil Salem
- Department of Internal Medicine, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Cairo 11562, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain P.O. Box 112612, United Arab Emirates
| | - Omnia A. M. Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef 62511, Egypt
| | - Raghda R. S. Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Clinical Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| |
Collapse
|
19
|
Tulbah AS, Bader A, Ong HX, Traini D. In vitro evaluation of nebulized eucalyptol nano-emulsion formulation as a potential COVID-19 treatment. Saudi Pharm J 2022; 30:1691-1699. [PMID: 36164456 PMCID: PMC9494862 DOI: 10.1016/j.jsps.2022.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus is a type of acute atypical respiratory disease representing the leading cause of death worldwide. Eucalyptol (EUC) known also as 1,8-cineole is a potential inhibitor candidate for COVID-19 (main protease-Mpro) with effective antiviral properties but undergoes physico-chemical instability and poor water solubility. Nano-emulsion (NE) is a promising drug delivery system to improve the stability and efficacy of drugs. This work focuses on studying the anti- COVID-19 activity of EUC by developing nebulized eucalyptol nano-emulsion (EUC-NE) as a potentially effective treatment for COVID-19. The EUC -NE formulation was prepared using Tween 80 as a surfactant. In vitro evaluation of the EUC-NE formulation displayed an entrapment efficiency of 77.49 %, a droplet size of 122.37 nm, and an EUC % release of 84.7 %. The aerodynamic characterization and cytotoxicity of EUC-NE formulation were assessed, and results showed high lung deposition and low inhibitory concentration. The antiviral mechanism of the EUC-NE formulation was performed, and it was found that it exerts its action by virucidal, viral replication, and viral adsorption. Our results confirmed the antiviral activity of the EUC-NE formulation against COVID-19 and the efficacy of nano-emulsion as a delivery system, which can improve the cytotoxicity and inhibitory activity of EUC.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Corresponding author
| | - Ammar Bader
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, NSW, Australia,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, NSW, Australia,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| |
Collapse
|