1
|
Liu JY, Ma LJ, Yang RJ, Liu Y, Shu Z, Cai YQ, Zhang QW, Yang FQ, Wan JB. Preparation of Rare Dehydrated Protopanaxadiol Ginsenosides from Panax notoginseng Leaves by Confined Microwave-Driven Transformation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:678-692. [PMID: 39689256 DOI: 10.1021/acs.jafc.4c08400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Rare dehydrated ginsenosides barely exist in natural ginseng plants. Herein, the confined microwave technique was utilized to transform the main ginsenosides of Panax notoginseng leaves (PNL) into dehydrated ginsenosides. The main microwave-treated products of dried PNL are dehydrated ginsenoside Rk1, Rg5, notoginsenoside SFt3, and SFt4. Comparatively, the main microwave-treated products of water preimmersed PNL are dehydrated ginsenoside Rk2, Rh3, notoginsenoside SFt3, and SFt4. The impacts of solvent, solid-liquid ratio, microwave temperature and duration on the yield of dehydrated ginsenosides were explored. Based on theoretical calculation, primary ginsenosides in water preimmersed PNL are more prone to deglycosylation at the C-20 site and dehydration elimination reactions at the side chain during microwave treatment. Moreover, reference compounds were used to verify ginsenoside transformation pathway, and the dehydrated ginsenosides were individually purified and identified. In short, this study elucidates novel approach for preparing rare Δ20(21)- and Δ20(22)-dehydrated protopanoxadiol ginsenosides.
Collapse
Affiliation(s)
- Jia-Yue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Li-Juan Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Ru-Jie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Yu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Zheng Shu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao 999078, P.R. China
| | - Yong-Qing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao 999078, P.R. China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| |
Collapse
|
2
|
Yang Y, Nan Y, Du Y, Liu W, Ning N, Chen G, Gu Q, Yuan L. Ginsenosides in cancer: Proliferation, metastasis, and drug resistance. Biomed Pharmacother 2024; 177:117049. [PMID: 38945081 DOI: 10.1016/j.biopha.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Ginseng, the dried root of Panax ginseng C.A. Mey., is widely used in Chinese herbal medicine. Ginsenosides, the primary active components of ginseng, exhibit diverse anticancer functions through various mechanisms, such as inhibiting tumor cell proliferation, promoting apoptosis, and suppressing cell invasion and migration. In this article, the mechanism of action of 20 ginsenoside subtypes in tumor therapy and the research progress of multifunctional nanosystems are reviewed, in order to provide reference for clinical prevention and treatment of cancer.
Collapse
Affiliation(s)
- Yi Yang
- School of Basic Medical, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Yuhua Du
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Na Ning
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Guoqing Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Qian Gu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ling Yuan
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
3
|
Jiang T, Zhang Y, Zuo G, Luo T, Wang H, Zhang R, Luo Z. Transcription factor PgNAC72 activates DAMMARENEDIOL SYNTHASE expression to promote ginseng saponin biosynthesis. PLANT PHYSIOLOGY 2024; 195:2952-2969. [PMID: 38606940 DOI: 10.1093/plphys/kiae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Ginsenosides, the primary bioactive constituents in ginseng (Panax ginseng), possess substantial pharmacological potential and are in high demand in the market. The plant hormone methyl jasmonate (MeJA) effectively elicits ginsenoside biosynthesis in P. ginseng, though the regulatory mechanism remains largely unexplored. NAC transcription factors are critical in intricate plant regulatory networks and participate in numerous plant physiological activities. In this study, we identified a MeJA-responsive NAC transcription factor gene, PgNAC72, from a transcriptome library produced from MeJA-treated P. ginseng callus. Predominantly expressed in P. ginseng flowers, PgNAC72 localizes to the nucleus. Overexpressing PgNAC72 (OE-PgNAC72) in P. ginseng callus notably elevated total saponin levels, particularly dammarane-type ginsenosides, by upregulating dammarenediol synthase (PgDDS), encoding a key enzyme in the ginsenoside biosynthesis pathway. Electrophoretic mobility shift assays and dual-luciferase assays confirmed that PgNAC72 binds to the NAC-binding elements in the PgDDS promoter, thereby activating its transcription. Further RNA-seq and terpenoid metabolomic data in the OE-PgNAC72 line confirmed that PgNAC72 enhances ginsenoside biosynthesis. These findings uncover a regulatory role of PgNAC72 in MeJA-mediated ginsenoside biosynthesis, providing insights into the ginsenoside regulatory network and presenting a valuable target gene for metabolic engineering.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Gege Zuo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Hui Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| | - Ru Zhang
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Ahmad SS, Ahmad K, Hwang YC, Lee EJ, Choi I. Therapeutic Applications of Ginseng Natural Compounds for Health Management. Int J Mol Sci 2023; 24:17290. [PMID: 38139116 PMCID: PMC10744087 DOI: 10.3390/ijms242417290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Ginseng is usually consumed as a daily food supplement to improve health and has been shown to benefit skeletal muscle, improve glucose metabolism, and ameliorate muscle-wasting conditions, cardiovascular diseases, stroke, and the effects of aging and cancers. Ginseng has also been reported to help maintain bone strength and liver (digestion, metabolism, detoxification, and protein synthesis) and kidney functions. In addition, ginseng is often used to treat age-associated neurodegenerative disorders, and ginseng and ginseng-derived natural products are popular natural remedies for diseases such as diabetes, obesity, oxidative stress, and inflammation, as well as fungal, bacterial, and viral infections. Ginseng is a well-known herbal medication, known to alleviate the actions of several cytokines. The article concludes with future directions and significant application of ginseng compounds for researchers in understanding the promising role of ginseng in the treatment of several diseases. Overall, this study was undertaken to highlight the broad-spectrum therapeutic applications of ginseng compounds for health management.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Wang L, Zhang Y, Song Z, Liu Q, Fan D, Song X. Ginsenosides: a potential natural medicine to protect the lungs from lung cancer and inflammatory lung disease. Food Funct 2023; 14:9137-9166. [PMID: 37801293 DOI: 10.1039/d3fo02482b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Lung cancer is the malignancy with the highest morbidity and mortality. Additionally, pulmonary inflammatory diseases, such as pneumonia, acute lung injury, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF), also have high mortality rates and can promote the development and progression of lung cancer. Unfortunately, available treatments for them are limited, so it is critical to search for effective drugs and treatment strategies to protect the lungs. Ginsenosides, the main active components of ginseng, have been shown to have anti-cancer and anti-inflammatory activities. In this paper, we focus on the beneficial effects of ginsenosides on lung diseases and their molecular mechanisms. Firstly, the molecular mechanism of ginsenosides against lung cancer was summarized in detail, mainly from the points of view of proliferation, apoptosis, autophagy, angiogenesis, metastasis, drug resistance and immunity. In in vivo and in vitro lung cancer models, ginsenosides Rg3, Rh2 and CK were reported to have strong anti-lung cancer effects. Then, in the models of pneumonia and acute lung injury, the protective effect of Rb1 was particularly remarkable, followed by Rg3 and Rg1, and its molecular mechanism was mainly associated with targeting NF-κB, Nrf2, MAPK and PI3K/Akt pathways to alleviate inflammation, oxidative stress and apoptosis. Additionally, ginsenosides may also have a potential health-promoting effect in the improvement of COPD, asthma and PF. Furthermore, to overcome the low bioavailability of CK and Rh2, the development of nanoparticles, micelles, liposomes and other nanomedicine delivery systems can significantly improve the efficacy of targeted lung cancer treatment. To conclude, ginsenosides can be used as both anti-lung cancer and lung protective agents or adjuvants and have great potential for future clinical applications.
Collapse
Affiliation(s)
- Lina Wang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yanxin Zhang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Zhimin Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Biotechnology & Biomedicine Research Institute, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoping Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
6
|
Chen J, Huang L, Liao X. Protective effects of ginseng and ginsenosides in the development of osteoarthritis (Review). Exp Ther Med 2023; 26:465. [PMID: 37664679 PMCID: PMC10468808 DOI: 10.3892/etm.2023.12164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory joint disease. Traditional chinese medicine provides a resource for drug screening for OA treatment. Ginseng and the associated bioactive compound, ginsenosides, may reduce inflammation, which is considered a risk factor for the development of OA. Specifically, ginsenosides may exhibit anti-inflammatory and anti-oxidative stress activities, and inhibit extracellular matrix degradation by suppressing the NF-κB and MAPK signaling pathways. Notably, specific ginsenosides, such as compound K and Rk1, may physically interact with IκB kinase and inhibit the associated phosphorylation. Thus, ginsenosides exhibit potential as therapeutic candidates in the management of OA. However, the low water solubility limits the clinical applications of ginsenosides. Numerous effective strategies have been explored to improve bioavailability; however, further investigations are still required.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lin Huang
- Department of Internal Medicine, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
7
|
Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T, Wang G. Advances in the biosynthesis and metabolic engineering of rare ginsenosides. Appl Microbiol Biotechnol 2023; 107:3391-3404. [PMID: 37126085 DOI: 10.1007/s00253-023-12549-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.
Collapse
Affiliation(s)
- Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
8
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Systemic pharmacological verification of Salvia miltiorrhiza-Ginseng Chinese herb pair in inhibiting spontaneous breast cancer metastasis. Biomed Pharmacother 2022; 156:113897. [DOI: 10.1016/j.biopha.2022.113897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
|