1
|
Feng K, Liu C, Zhang S, Wu J, Eleuteri AM, Bai Y. Insights into the formation of pullulan nanofilm and its feasibility as probiotic-resided oral fast dissolving carrier. Int J Biol Macromol 2025; 299:140091. [PMID: 39842598 DOI: 10.1016/j.ijbiomac.2025.140091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and fluorescence assays confirmed that probiotics could be effectively encapsulated in the nanofilm, with 92.6 % of viable cells retained after electrospinning. Results of thermogravimetric analysis and thermal test indicated that the heat resistance of the encapsulated bacteria was significantly improved (P < 0.05). After 28 days of storage, the loss of viable bacteria was higher at 25 °C (2.9 log) than at 4 °C (0.5 log). This observation is consistent with the results of accelerated storage test, which showed that probiotic nanofilms stored at 4 °C had a longer shelf life with an inactivation rate constant of 1.74 × 10-5. Furthermore, the dissolution study revealed that the nanofilms could disintegrate in simulated saliva within 15 s, highlighting their potential as oral fast dissolving formulation.
Collapse
Affiliation(s)
- Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China
| | - Chuanduo Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shanshuo Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Junwei Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Jannini EA, Vignesh SO, Hassan T. Next-generation pharmaceuticals: the rise of sildenafil citrate ODF for the treatment of men with erectile dysfunction. Ther Deliv 2025; 16:365-378. [PMID: 39801170 PMCID: PMC11970765 DOI: 10.1080/20415990.2024.2445501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 04/02/2025] Open
Abstract
Orodispersible film (ODF) is one of the novel formulations that disintegrate rapidly in the mouth without the requisite for water compared to other conventional oral solid dosage formulations. This delivery system serves as a convenient mode of administration, especially in patients who have dysphagia and fluid restriction, being beneficial to pediatric, geriatric, and bedridden patients. A novel sildenafil ODF containing sildenafil citrate is formulated to be used in patients with erectile dysfunction (ED). This review discusses the advantages of ODF in improving compliance and satisfaction in these patients and describes the manufacturing techniques, evaluation tests, bioequivalence, and stability studies of sildenafil ODF. This formulation offers unique benefit to patients with ED by improving their acceptance and compliance and respecting their privacy and the need for a discreet treatment. Moreover, the comparison of pharmacokinetic parameters between the sildenafil ODF administered with and without water and the conventional film-coated tablet were similar. It also demonstrated reliable performance that yielded a consistent product, meeting all specifications at release and after three weeks of storage under stressed conditions (60°C). Sildenafil ODF warrants improved ease of intake, taste, portability, storage, and compliance among ED patients, making it the potential most preferred formulation and drug of choice.
Collapse
Affiliation(s)
- Emmanuele A. Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Tarek Hassan
- Global Specialty Excellence, Viatris Inc, New York, USA
| |
Collapse
|
3
|
Rebelo MB, Oliveira CS, Tavaria FK. Development of a Postbiotic-Based Orodispersible Film to Prevent Dysbiosis in the Oral Cavity. Front Biosci (Elite Ed) 2025; 17:26987. [PMID: 40150984 DOI: 10.31083/fbe26987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Oral diseases affect over three billion peopleand are among the most commonly observed infections worldwide. Recent studies have shown that controlling the ecology of the oralome is more effective in reducing the risk of caries than the complete removal of both harmful and beneficial microorganisms. This work aimed to develop a strategy for preventing dysbiosis in the oral cavity by applying a postbiotic-based orodispersible film. METHODS Lactiplantibacillus plantarum 226V and Lacticaseibacillus paracasei L26 were cultured in De Man-Rogosa-Sharpe (MRS) broth for 48 hours, followed by centrifugation and filtration. Then, the resultant postbiotics were then subjected to various dilutions (10% (v/v), 20% (v/v), 40% (v/v), 60% (v/v) and 100% (v/v)) and co-incubated with Streptococcus mutans. Antimicrobial efficacy, minimal inhibitory concentration, the time required to inhibit S. mutans growth, and antibiofilm properties of the postbiotics were assessed. Subsequently, an orodispersible film comprising polymers and plasticizers, namely Xanthan gum, maltodextrin, and glycerol, was developed as a vehicle for postbiotic delivery. Formulation optimization, physical property evaluation, and cytotoxicity against the TR146 human oral cell line (TR146 cell line) were conducted. RESULTS Postbiotics demonstrated antimicrobial and antibiofilm activity against S. mutans following 24-hour co-incubation. The minimal inhibitory concentration for combined postbiotics administration was 20% (v/v). Remarkably, 79.6 ± 8.15% inhibition of biofilm formation was achieved using 100% (v/v) of the postbiotic derived from L. plantarum 226V. Incorporating postbiotics did not compromise the dissolution time of orodispersible films, all exceeding 20 minutes. Furthermore, solubility improved following postbiotic addition, facilitating ease of handling. Importantly, postbiotic-impregnated orodispersible films were non-cytotoxic when exposed to the TR146 cell line. CONCLUSIONS These findings underscore the potential of orodispersible films loaded with postbiotics as a promising potential intervention for oral dysbiosis.
Collapse
Affiliation(s)
- Mariana B Rebelo
- CBQF-Centre for Biotechnology and Fine Chemistry-Associated Laboratory, Portuguese Catholic University, 4169-005 Porto, Portugal
| | - Cláudia S Oliveira
- CBQF-Centre for Biotechnology and Fine Chemistry-Associated Laboratory, Portuguese Catholic University, 4169-005 Porto, Portugal
| | - Freni K Tavaria
- CBQF-Centre for Biotechnology and Fine Chemistry-Associated Laboratory, Portuguese Catholic University, 4169-005 Porto, Portugal
| |
Collapse
|
4
|
Meloni V, Halstenberg L, Mareczek L, Lu J, Liang B, Gottschalk N, Mueller LK. Exploring Orodispersible Films Containing the Proteolysis Targeting Chimera ARV-110 in Hot Melt Extrusion and Solvent Casting Using Polyvinyl Alcohol. Pharmaceutics 2024; 16:1499. [PMID: 39771478 PMCID: PMC11678735 DOI: 10.3390/pharmaceutics16121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES This project aims to provide valuable insights into the formulation of orodispersible films (ODFs) for the delivery of PROTAC ARV-110. The primary objective of this drug delivery formulation is to enhance the solubility of PROTAC ARV-110, which faces significant challenges due to the low solubility of this active pharmaceutical ingredient, as it belongs to a molecular class that is considered to exceed the "Rule of Five". METHODS We employed the concept of developing a rapidly disintegrating ODF to enhance the solubility of PROTAC ARV-110, utilizing polyvinyl alcohol as the polymer of choice. Given the high thermal stability of ARV-110, the PROTAC was subjected to two primary ODF manufacturing techniques: Hot melt extrusion (HME) and solvent casting. To establish the HME method, pre-screening through vacuum compression molding was performed. The films were characterized based on their disintegration in artificial saliva, drug release in a physiological environment, and mechanical strength. RESULTS All formulations demonstrated enhanced solubility of ARV-110, achieving exceptional results in terms of disintegration times and resistance to applied stress. CONCLUSIONS The findings from the experiments outlined herein establish a solid foundation for the successful production of orodispersible films for the delivery of PROTACs.
Collapse
Affiliation(s)
- Valentina Meloni
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| | | | - Lena Mareczek
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| | - Jankin Lu
- Merck Chemicals (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Bonnie Liang
- Merck Chemicals (Shanghai) Co., Ltd., Shanghai 201203, China
| | | | - Lena K. Mueller
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| |
Collapse
|
5
|
Ruchika, Khan N, Dogra SS, Saneja A. The dawning era of oral thin films for nutraceutical delivery: From laboratory to clinic. Biotechnol Adv 2024; 73:108362. [PMID: 38615985 DOI: 10.1016/j.biotechadv.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Oral thin films (OTFs) are innovative dosage forms that have gained tremendous attention for the delivery of nutraceuticals. They are ultra-thin, flexible sheets that can be easily placed on the tongue, sublingual or buccal mucosa (inner lining of the cheek). These thin films possess several advantages for nutraceutical delivery including ease of administration, rapid disintegration, fast absorption, rapid onset of action, bypass first-pass hepatic metabolism, accurate dosing, enhanced stability, portability, discreetness, dose flexibility and most importantly consumer acceptance. This review highlights the utilization OTFs for nutraceutical delivery, their composition, criteria for excipient selection, methods of development and quality-based design (QbD) approach to achieve quality product. We have also provided recent case studies representing OTFs as promising platform in delivery of nutraceuticals (plant extracts, bioactive molecules, vitamins, minerals and protein/peptides) and probiotics. Finally, we provided advancement in technologies, recent patents, market analysis, challenges and future perspectives associated with this unique dosage form.
Collapse
Affiliation(s)
- Ruchika
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nabab Khan
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shagun Sanjivv Dogra
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Ankit Saneja
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Turkovic E, Vasiljevic I, Parojcic J. A comprehensive assessment of machine learning algorithms for enhanced characterization and prediction in orodispersible film development. Int J Pharm 2024; 658:124188. [PMID: 38705248 DOI: 10.1016/j.ijpharm.2024.124188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Orodispersible films (ODFs) have emerged as innovative pharmaceutical dosage forms, offering patient-specific treatment through adjustable dosing and the combination of diverse active ingredients. This expanding field generates vast datasets, requiring advanced analytical techniques for deeper understanding of data itself. Machine learning is becoming an important tool in the rapidly changing field of pharmaceutical research, particularly in drug preformulation studies. This work aims to explore into the application of machine learning methods for the analysis of experimental data obtained by ODF characterization in order to obtain an insight into the factors governing ODF performance and use it as guidance in pharmaceutical development. Using a dataset derived from extensive experimental studies, various machine learning algorithms were employed to cluster and predict critical properties of ODFs. Our results demonstrate that machine learning models, including Support vector machine, Random forest and Deep learning, exhibit high accuracy in predicting the mechanical properties of ODFs, such as flexibility and rigidity. The predictive models offered insights into the complex interaction of formulation variables. This research is a pilot study that highlights the potential of machine learning as a transformative approach in the pharmaceutical field, paving the way for more efficient and informed drug development processes.
Collapse
Affiliation(s)
- Erna Turkovic
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Ivana Vasiljevic
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Parojcic
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
7
|
Yardy A, Entz K, Bennett D, Macphail B, Adronov A. Incorporation of Loratadine-Cyclodextrin Complexes in Oral Thin Films for Rapid Drug Delivery. J Pharm Sci 2024; 113:1220-1227. [PMID: 37984698 DOI: 10.1016/j.xphs.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Rapidly dissolving polymer thin films, or oral thin films (OTFs), have recently emerged as an improved oral drug delivery vehicle with its ability to bypass liver first pass metabolism, longer shelf-life, and simpler transport and distribution requirements, compared to traditional tablets and liquid formulations. Loratadine (LOR), an antihistamine commonly used to treat allergic rhinitis, undergoes liver first pass metabolism and is a prime candidate for incorporation within an OTF. However, loratadine is a BCS II drug with low aqueous solubility. Herein, the solubility of loratadine was improved by complexation with methyl β-cyclodextrin (MBCD) by co-evaporation of 2:1, 1:1, and 1:2 LOR:MBCD ratios and incorporation into a pullulan-based OTF at 4 wt% by solvent casting at 50 °C for 30 - 35 min. A therapeutically relevant 10 mg LOR dose could be prepared in a 3 cm by 3 cm OTF. The feasibility of complexation was observed with a Bs-type phase solubility diagram, and complexation itself was confirmed via differential scanning calorimetry (DSC) by disappearance of the LOR melting peak, Fourier-transform infrared spectroscopy (FTIR) by shifting of the C=O peak, via 1H NMR spectroscopy by downfield shifting and change in peak multiplicity of the LOR aromatic protons, and via diffusion-ordered spectroscopy by a decrease in the diffusion coefficient of LOR:MBCD complex. LOR:MBCD could be incorporated homogeneously throughout an OTF, and LOR:MBCD OTFs exhibited reasonable mechanical strength and endured 12 ± 3 folds before breaking. LOR:MBCD OTFs disintegrated within 38 ± 10 s. The cumulative in vitro release of LOR:MBCD OTFs peaked at 80 % within 3-4 min of dissolution, and LOR in LOR:MBCD OTFs exhibited permeability across a 0.22 μm nitrocellulose membrane, demonstrating its applicability as a rapid drug delivery vehicle.
Collapse
Affiliation(s)
- Annika Yardy
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Kirsten Entz
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Dayna Bennett
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Alex Adronov
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
8
|
Rahić O, Behrem S, Tucak-Smajić A, Hadžiabdić J, Imamović B, Hindija L, Šahinović M, Vranić E. Sweeteners in Orodispersible Films: How Much is too Much? Drug Res (Stuttg) 2024; 74:180-186. [PMID: 38508227 DOI: 10.1055/a-2266-2522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Four natural sweeteners (sucrose, xylitol, fructose, and isomalt) were selected to examine the influence of their qualities and amounts on the characteristics of orodispersible films. Sodium carboxymethylcellulose (2% w/w) was utilized as the film-forming polymer and 1% w/w glycerol as a plasticizer. Films were produced through the solvent casting method, rendering them suitable for convenient application in community or hospital pharmacy settings. The physicochemical and optical properties of the films were analyzed, and Fourier-transform infrared analysis was carried out. All films exhibited acceptable disintegration time, uniformity of mass, thickness, and optical characteristics, with significant dependence (p<0.05) on both sweetener type and quantity. Disintegration time varied based on the employed method, as well as the characteristics and amount of sweetener. Additionally, all films maintained pH values within the oral cavity range, suggesting no potential irritancy upon administration. Fourier-transform infrared analysis confirmed the formation of the film and demonstrated compatibility between its components.
Collapse
Affiliation(s)
- Ognjenka Rahić
- University of Sarajevo - Faculty of Pharmacy, Department of Pharmaceutical Technology, Sarajevo, Bosnia and Herzegovina
| | - Sabina Behrem
- University of Sarajevo - Faculty of Pharmacy, Department of Pharmaceutical Technology, Sarajevo, Bosnia and Herzegovina
| | - Amina Tucak-Smajić
- University of Sarajevo - Faculty of Pharmacy, Department of Pharmaceutical Technology, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Hadžiabdić
- University of Sarajevo - Faculty of Pharmacy, Department of Pharmaceutical Technology, Sarajevo, Bosnia and Herzegovina
| | - Belma Imamović
- University of Sarajevo - Faculty of Pharmacy, Department of Drug Analysis, Sarajevo, Bosnia and Herzegovina
| | - Lamija Hindija
- University of Sarajevo - Faculty of Pharmacy, Department of Pharmaceutical Technology, Sarajevo, Bosnia and Herzegovina
| | - Merima Šahinović
- University of Sarajevo - Faculty of Pharmacy, Department of Pharmaceutical Technology, Sarajevo, Bosnia and Herzegovina
| | - Edina Vranić
- University of Sarajevo - Faculty of Pharmacy, Department of Pharmaceutical Technology, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
9
|
Saurav S, Sharma P, Kumar A, Tabassum Z, Girdhar M, Mamidi N, Mohan A. Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment. Curr Issues Mol Biol 2024; 46:585-611. [PMID: 38248340 PMCID: PMC10814241 DOI: 10.3390/cimb46010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.
Collapse
Affiliation(s)
- Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, Delhi, India;
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University, Phagwara 144401, Punjab, India;
| | - Narsimha Mamidi
- Wisconsin Centre for Nano Biosystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| |
Collapse
|
10
|
Sahu A, Rathee S, Saraf S, Jain SK. A Review on the Recent Advancements and Artificial Intelligence in Tablet Technology. Curr Drug Targets 2024; 25:416-430. [PMID: 38213164 DOI: 10.2174/0113894501281290231221053939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Tablet formulation could be revolutionized by the integration of modern technology and established pharmaceutical sciences. The pharmaceutical sector can develop tablet formulations that are not only more efficient and stable but also patient-friendly by utilizing artificial intelligence (AI), machine learning (ML), and materials science. OBJECTIVES The primary objective of this review is to explore the advancements in tablet technology, focusing on the integration of modern technologies like artificial intelligence (AI), machine learning (ML), and materials science to enhance the efficiency, cost-effectiveness, and quality of tablet formulation processes. METHODS This review delves into the utilization of AI and ML techniques within pharmaceutical research and development. The review also discusses various ML methodologies employed, including artificial neural networks, an ensemble of regression trees, support vector machines, and multivariate data analysis techniques. RESULTS Recent studies showcased in this review demonstrate the feasibility and effectiveness of ML approaches in pharmaceutical research. The application of AI and ML in pharmaceutical research has shown promising results, offering a potential avenue for significant improvements in the product development process. CONCLUSION The integration of nanotechnology, AI, ML, and materials science with traditional pharmaceutical sciences presents a remarkable opportunity for enhancing tablet formulation processes. This review collectively underscores the transformative role that AI and ML can play in advancing pharmaceutical research and development, ultimately leading to more efficient, reliable and patient-centric tablet formulations.
Collapse
Affiliation(s)
- Amit Sahu
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunny Rathee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Shivani Saraf
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
11
|
Safhi AY, Siddique W, Zaman M, Sarfraz RM, Shafeeq Ur Rahman M, Mahmood A, Salawi A, Sabei FY, Alsalhi A, Zoghebi K. Statistically Optimized Polymeric Buccal Films of Eletriptan Hydrobromide and Itopride Hydrochloride: An In Vivo Pharmacokinetic Study. Pharmaceuticals (Basel) 2023; 16:1551. [PMID: 38004417 PMCID: PMC10674159 DOI: 10.3390/ph16111551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
A migraine is a condition of severe headaches, causing a disturbance in the daily life of the patient. The current studies were designed to develop immediate-release polymeric buccal films of Eletriptan Hydrobromide (EHBR) and Itopride Hydrochloride (ITHC) to improve their bioavailability and, hence, improve compliance with the patients of migraines and its associated symptoms. The prepared films were evaluated for various in vitro parameters, including surface morphology, mechanical strength, disintegration test (DT), total dissolving time (TDT), drug release and drug permeation, etc., and in vivo pharmacokinetic parameters, such as area under curve (AUC), mean residence time (MRT), half-life (t1/2), time to reach maximum concentration (Tmax), and time to reach maximum concentration (Cmax). The outcomes have indicated the successful preparation of the films, as SEM has confirmed the smooth surface and uniform distribution of drugs throughout the polymer matrix. The films were found to be mechanically stable as indicated by folding endurance studies. Furthermore, the optimized formulations showed a DT of 13 ± 1 s and TDT of 42.6 ± 0.75 s, indicating prompt disintegration as well as the dissolution of the films. Albino rabbits were used for in vivo pharmacokinetics, and the outcomes were evident of improved pharmacokinetics. The drug was found to rapidly permeate across the buccal mucosa, leading to increased bioavailability of the drug: Cmax of 130 and 119 ng/mL of ITHC and EHBR, respectively, as compared to 96 (ITHC) and 90 ng/mL (EHBR) of oral solution. The conclusion can be drawn that possible reasons for the enhanced bioavailability could be the increased surface area in the form of buccal films, its rapid disintegration, and faster dissolution, which led toward the rapid absorption of the drug into the blood stream.
Collapse
Affiliation(s)
- Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.Y.S.); (F.Y.S.); (A.A.)
| | - Waqar Siddique
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | | | | | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.Y.S.); (F.Y.S.); (A.A.)
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.Y.S.); (F.Y.S.); (A.A.)
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.Y.S.); (F.Y.S.); (A.A.)
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
12
|
Visan AI, Cristescu R. Polysaccharide-Based Coatings as Drug Delivery Systems. Pharmaceutics 2023; 15:2227. [PMID: 37765196 PMCID: PMC10537422 DOI: 10.3390/pharmaceutics15092227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic polysaccharide-based coatings have recently emerged as versatile strategies to transform a conventional medical implant into a drug delivery system. However, the translation of these polysaccharide-based coatings into the clinic as drug delivery systems still requires a deeper understanding of their drug degradation/release profiles. This claim is supported by little or no data. In this review paper, a comprehensive description of the benefits and challenges generated by the polysaccharide-based coatings is provided. Moreover, the latest advances made towards the application of the most important representative coatings based on polysaccharide types for drug delivery are debated. Furthermore, suggestions/recommendations for future research to speed up the transition of polysaccharide-based drug delivery systems from the laboratory testing to clinical applications are given.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
13
|
Jadach B, Misek M, Ferlak J. Comparison of Hydroxypropyl Methylcellulose and Alginate Gel Films with Meloxicam as Fast Orodispersible Drug Delivery. Gels 2023; 9:687. [PMID: 37754368 PMCID: PMC10528118 DOI: 10.3390/gels9090687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of the study was the preparation and comparison of two types of orodispersible gel films (ODF) by the solvent casting method. Natural polymers: sodium alginate (ALG) or hydroxypropyl methylcellulose (HPMC) were used as the gel film formers, and Kollidon or microcrystalline cellulose was used as the disintegrant. Meloxicam (MLX), the drug used to treat rheumatic diseases for children and adults, was proposed as the active pharmaceutical ingredient (API). The influence of the polymer and disintegrant on the properties of ODF was investigated. The evaluation of prepared gel films was based on appearance description, mass uniformity measurement, disintegration time, API content, film wettability, and water content. Also, the dissolution test was prepared in a basket apparatus using artificial salvia (pH = 6.8) as the medium. The obtained API release profiles were analyzed for the similarity factors (f2) with the DDSolver software. The results showed that independently of the polymer or disintegrant, using the solvent casting method, gel films have a similar appearance and active substance content close to the theoretical value and water content of less than 10%. Only the type of polymer influences the release profiles of MLX. However, the disintegration time was longer than 30 s, which makes the films non-fast-dissolving drug delivery systems. This means that for the ODF system, further evaluation is required, and some changes in the composition of the film have to be done.
Collapse
Affiliation(s)
- Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (M.M.); (J.F.)
| | | | | |
Collapse
|
14
|
Wang CC, Chen YL, Lu TC, Lee C, Chang YC, Chan YF, Mathew P, Lin XR, Hsieh WR, Huang TY, Huang HL, Hwang TL. Design and evaluation of oral formulation for apixaban. Heliyon 2023; 9:e18422. [PMID: 37534003 PMCID: PMC10391955 DOI: 10.1016/j.heliyon.2023.e18422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Non-valvular atrial fibrillation (NVAF) is a common form of cardiac arrhythmia that affects 1-1.5% of adults and roughly 10% of elderly adults with dysphagia. Apixaban is an anticoagulant referred to as a factor Xa inhibitor, which has been shown to reduce the risk of stroke and systemic embolism in cases of NVAF. Our objective in the current study was to formulate an orally disintegrating film to facilitate the administration of apixaban to elderly patients who have difficulty swallowing. Researchers have used a wide variety of cellulose-based or non-cellulose-based polymers in a variety of combinations to achieve specific characteristics related to film formation, disintegration performance, drug content, in vitro drug release, and stability. One of the two formulations in this study was specify that bioequivalence criteria met with respect to Cmax of the reference drug (ELIQUIS®) in terms of pharmacokinetic profile. Further research will be required to assess the applicability of orodispersible films created using colloidal polymers of high and low molecular weights to other drugs with poor solubility in water.
Collapse
Affiliation(s)
- Chien-Chiao Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
| | - Ta-Chien Lu
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Catherine Lee
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Yu-Chia Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
| | - Yen-Fan Chan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
| | - Philip Mathew
- Novum Pharmaceutical Research Inc. Toronto, ON, M1L 4S4, Canada
| | - Xing-Rong Lin
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Wen-Rung Hsieh
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Ting-Yun Huang
- TAHO Pharmaceuticals Ltd. Neihu Dist., Taipei City, 114, Taiwan
| | - Hsin-Lan Huang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 333, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| |
Collapse
|
15
|
Borbolla-Jiménez FV, Peña-Corona SI, Farah SJ, Jiménez-Valdés MT, Pineda-Pérez E, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chávez SA, Magaña JJ, Leyva-Gómez G. Films for Wound Healing Fabricated Using a Solvent Casting Technique. Pharmaceutics 2023; 15:1914. [PMID: 37514100 PMCID: PMC10384592 DOI: 10.3390/pharmaceutics15071914] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Wound healing is a complex process that involves restoring the structure of damaged tissues through four phases: hemostasis, inflammation, proliferation, and remodeling. Wound dressings are the most common treatment used to cover wounds, reduce infection risk and the loss of physiological fluids, and enhance wound healing. Despite there being several types of wound dressings based on different materials and fabricated through various techniques, polymeric films have been widely employed due to their biocompatibility and low immunogenicity. Furthermore, they are non-invasive, easy to apply, allow gas exchange, and can be transparent. Among different methods for designing polymeric films, solvent casting represents a reliable, preferable, and highly used technique due to its easygoing and relatively low-cost procedure compared to sophisticated methods such as spin coating, microfluidic spinning, or 3D printing. Therefore, this review focuses on the polymeric dressings obtained using this technique, emphasizing the critical manufacturing factors related to pharmaceuticals, specifically discussing the formulation variables necessary to create wound dressings that demonstrate effective performance.
Collapse
Affiliation(s)
- Fabiola V Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sonia J Farah
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - María Teresa Jiménez-Valdés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Emiliano Pineda-Pérez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Sergio Alberto Bernal-Chávez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex-Hda. de Sta. Catarina Mártir, Cholula 72820, Puebla, Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
16
|
Vlad RA, Pintea A, Coaicea M, Antonoaea P, Rédai EM, Todoran N, Ciurba A. Preparation and Evaluation of Caffeine Orodispersible Films: The Influence of Hydrotropic Substances and Film-Forming Agent Concentration on Film Properties. Polymers (Basel) 2023; 15:polym15092034. [PMID: 37177181 PMCID: PMC10181256 DOI: 10.3390/polym15092034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to develop caffeine (CAF) orodispersible films (ODFs) and verify the effects of different percentages of film-forming agent and hydrotropic substances (citric acid-CA or sodium benzoate-SB) on various film properties. Hydroxypropyl methylcellulose E 5 (HPMC E 5) orodispersible films were prepared using the solvent casting method. Four CAF-ODF formulations were prepared and coded as CAF1 (8% HPMC E 5, CAF), CAF2 (8% HPMC E 5 and CAF:CA-1:1), CAF3 (9% HPMC E 5 and CAF:CA-1:1), and CAF4 (9% HPMC E 5 and CAF:SB-1:1). The CAF-ODFs were evaluated in terms of disintegration time, folding endurance, thickness, uniformity of mass, CAF content, thickness-normalized tensile strength, adhesiveness, dissolution, and pH. Thin, opaque, and slightly white CAF-ODFs were obtained. All the formulations developed exhibited disintegration times less than 3 min. The dissolution test revealed that CAF1, CAF2, and CAF3 exhibited concentrations of active pharmaceutical ingredients (APIs) released at 30 min that were close to 100%, whilst CAF4 showed a faster dissolution behaviour (100% of the CAF was released at 5 min). Thin polymeric films containing 10 mg of CAF/surface area (3.14 cm2) were prepared.
Collapse
Affiliation(s)
- Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Andrada Pintea
- Targu Mures Clinical County Hospital, 6th Bernady Gyorgy Street, 540072 Targu Mures, Romania
| | - Mădălina Coaicea
- Catena Hygeia Darmanesti, 1st Muncii Street, 605300 Bacau, Romania
| | - Paula Antonoaea
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Emőke Margit Rédai
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Nicoleta Todoran
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Adriana Ciurba
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| |
Collapse
|
17
|
Kean EA, Adeleke OA. Orally disintegrating drug carriers for paediatric pharmacotherapy. Eur J Pharm Sci 2023; 182:106377. [PMID: 36634740 DOI: 10.1016/j.ejps.2023.106377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Non-compliance, dosing inaccuracy, choking risk, flavour, and instability, are some of the issues associated with paediatric, oral dosage forms - tablets, capsules, solutions, and suspensions. Orally disintegrating drug carriers, a dosage form with growing interest, are thought to overcome several of the challenges associated with these conventional formulations by rapidly disintegrating within the buccal cavity without the need for water. This review serves as an up-to-date report on the various types of orodispersible delivery systems, currently being developed or commercialized, by detailing their characteristics, manufacturing processes, and applications in the paediatric population. Mentioned are orodispersible tablets, films, wafers and lyophilisates, mini-tablets, capsules, granules, electrospun fibers and webs. Also highlighted are the choice of excipients, quality control requirements, and expected pharmacokinetics of orally disintegrating drug carriers concerning the paediatric population. Overall, orodispersible formulations, particularly tablets, films, and lyophilisates/wafers, have shown to be a valuable addition to medication administration in minors, thus the execution of more targeted research and development activities is expected to lead to enhanced paediatric care and outcomes.
Collapse
Affiliation(s)
- Emma A Kean
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
18
|
Remiro PDFR, Nagahara MHT, Azoubel RA, Franz-Montan M, d’Ávila MA, Moraes ÂM. Polymeric Biomaterials for Topical Drug Delivery in the Oral Cavity: Advances on Devices and Manufacturing Technologies. Pharmaceutics 2022; 15:12. [PMID: 36678640 PMCID: PMC9864928 DOI: 10.3390/pharmaceutics15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
There are several routes of drug administration, and each one has advantages and limitations. In the case of the topical application in the oral cavity, comprising the buccal, sublingual, palatal, and gingival regions, the advantage is that it is painless, non-invasive, allows easy application of the formulation, and it is capable of avoiding the need of drug swallowing by the patient, a matter of relevance for children and the elderly. Another advantage is the high permeability of the oral mucosa, which may deliver very high amounts of medication rapidly to the bloodstream without significant damage to the stomach. This route also allows the local treatment of lesions that affect the oral cavity, as an alternative to systemic approaches involving injection-based methods and oral medications that require drug swallowing. Thus, this drug delivery route has been arousing great interest in the pharmaceutical industry. This review aims to condense information on the types of biomaterials and polymers used for this functionality, as well as on production methods and market perspectives of this topical drug delivery route.
Collapse
Affiliation(s)
- Paula de Freitas Rosa Remiro
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Mariana Harue Taniguchi Nagahara
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Rafael Abboud Azoubel
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| |
Collapse
|
19
|
Cupone IE, Sansone A, Marra F, Giori AM, Jannini EA. Orodispersible Film (ODF) Platform Based on Maltodextrin for Therapeutical Applications. Pharmaceutics 2022; 14:2011. [PMID: 36297447 PMCID: PMC9607423 DOI: 10.3390/pharmaceutics14102011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 07/30/2023] Open
Abstract
Orodispersible film (ODF) is a new dosage form that disperses rapidly in the mouth without water or swallowing. The main ingredient of an ODF is a polymer that can be both of natural or synthetic origin. Maltodextrin is a natural polymer, mainly used in pharmaceutical and nutraceutical fields. This review aims to examine the literature regarding ODFs based on maltodextrin as the platform for developing new products for therapeutical application. ODFs based on maltodextrin contain plasticizers that enhance their flexibility and reduce their brittleness. Surfactants; fillers, such as homopolymer and copolymer of vinylacetate; flavour and sweetener were introduced to improve ODF characteristics. Both water-soluble and insoluble APIs were introduced up to 100 mg per dosage unit. The solvent casting method and hot-melt extrusion are the most useful techniques for preparing ODFs. In particular, the solvent casting method allows manufacturing processes to be developed from a lab scale to an industrial scale. ODFs based on maltodextrin are characterized in terms of mechanical properties, dissolution rate, taste and stability. ODFs made of maltodextrin, developed by IBSA, were tested in vivo to evaluate their bioequivalence and efficacy and were demonstrated to be a valid alternative to the marketed oral dosage forms.
Collapse
Affiliation(s)
- Irma E. Cupone
- Ibsa Farmaceutici Italia, Cassina de’ Pecchi, 20051 Milan, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Fabio Marra
- Ibsa Farmaceutici Italia, Cassina de’ Pecchi, 20051 Milan, Italy
| | | | - Emmanuele A. Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|