1
|
Misnikova I, Kovaleva Y, Shokur S, LeBaron TW, Povarova O, Medvedev O. Hydrogen and Methane Detection in Breath in Response to Two Different Types of Dietary Fiber and Its Relationship to Postprandial Glucose Concentration in Obese Patients with Type 2 Diabetes and Normoglycemic Subjects. Nutrients 2025; 17:917. [PMID: 40077785 PMCID: PMC11902166 DOI: 10.3390/nu17050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Background: The aim of this study was to investigate the relationship between postprandial glycemic levels based on flashmonitoring and the production of intestinal hydrogen (H2) and methane (CH4) gases based on the measurement of the amount of these gases in exhaled air. Materials and Methods: We studied 14 subjects with type 2 diabetes mellitus (T2DM) and 14 individuals without diabetes (control) with two food load tests, including two types of dietary fiber (inulin and guar gum), with the simultaneous determination of gases in exhaled air and the assessment of glucose levels. Results: All subjects in the control group had a significant increase in exhaled H2. OR for increased hydrogen production in patients with T2DM was 0.17 (95% CI 0.031-0.93, p = 0.043). The level of H2 in exhaled breath after food load in patients with T2DM was lower than in normoglycemic subjects. There was an inverse correlation between maximum glucose rise and maximum H2 in exhaled air after food load in normoglycemic subjects (r = -0.569, p = 0.034). Patients with T2DM had direct correlations between the level of CH4 in exhaled air and the parameters of postprandial glycemia in the lactulose test (p < 0.05). Conclusions: The confirmation of a causal relationship between decreased H2 production, increased intestinal CH4 production, and more severe postprandial glycemia may identify new therapeutic targets in the correction of postprandial glycemia in patients with T2DM.
Collapse
Affiliation(s)
- Inna Misnikova
- M.F. Vladimirski Moscow Regional Research and Clinical Institute, Schepkina 61/2, 129110 Moscow, Russia; (I.M.); (Y.K.)
| | - Yulia Kovaleva
- M.F. Vladimirski Moscow Regional Research and Clinical Institute, Schepkina 61/2, 129110 Moscow, Russia; (I.M.); (Y.K.)
| | - Svetlana Shokur
- M.F. Vladimirski Moscow Regional Research and Clinical Institute, Schepkina 61/2, 129110 Moscow, Russia; (I.M.); (Y.K.)
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA;
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
| | - Oxana Povarova
- Department of Pharmacology, M. V Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia;
| | - Oleg Medvedev
- Department of Pharmacology, M. V Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia;
- National Medical Research Center of Cardiology, Laboratory of Experimental Pharmacology, Academician Chazov Str., 15a, 121552 Moscow, Russia
| |
Collapse
|
2
|
Mokrani M, Saad N, Nardy L, Sifré E, Despres J, Brochot A, Varon C, Urdaci MC. Biombalance™, an Oligomeric Procyanidins-Enriched Grape Seed Extract, Prevents Inflammation and Microbiota Dysbiosis in a Mice Colitis Model. Antioxidants (Basel) 2025; 14:305. [PMID: 40227242 PMCID: PMC11939601 DOI: 10.3390/antiox14030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Inflammatory bowel disease (IBD) results from genetic factors, environmental factors, and intestinal microbiota interactions. This study investigated the effects of Biombalance™ (BB) in dextran sulphate sodium (DSS)-induced colitis in mice. BB extract exhibits high antioxidant activity, as determined by DPPH and ORAC tests. Mice were fed a standard diet, and BB was administered by gavage for ten days, before administration of 2.75% DSS in drinking water. BB significantly protected mice against DSS effects, as assessed by colon length, disease activity index (DAI) scores and colonic pathological damage. In addition, BB inhibited the expression of proinflammatory markers, such as IL-6, IL-17, CXCL1 and TNF-α, and the inflammatory mediators iNOS, TGF-β, FoxP3 and F4/80, while increasing IL-10 expression in the colon. BB modified microbiota composition, attenuating the microbial diversity lost due to DSS, increasing beneficial bacteria like Muribaculum, Lactobacillus, Muscispirillum, Roseburia and Bifidobacterium, and decreasing potentially harmful bacteria such as Proteobacteria and Enterococcus. Interestingly, microbiota-predicted functions using PICRUSt revealed that BB extract increases the antioxidant superpathway of ubiquinol biosynthesis, including ubiquinol-7, 8, 9 and 10 (CoenzymesQ). These findings suggest that Biombalance™ administration may help to reduce gut inflammation and oxidation, at least partly through modifications of the microbiota and its metabolites.
Collapse
Affiliation(s)
- Mohamed Mokrani
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France; (M.M.); (N.S.); (L.N.)
- Bordeaux Sciences Agro, F-33175 Gradignan, France
- Groupe Berkem, 20 Rue Jean Duvert, F-33290 Blanquefort, France; (J.D.); (A.B.)
| | - Naima Saad
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France; (M.M.); (N.S.); (L.N.)
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France
| | - Ludivine Nardy
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France; (M.M.); (N.S.); (L.N.)
- Bordeaux Sciences Agro, F-33175 Gradignan, France
| | - Elodie Sifré
- INSERM U1312 BRIC Bordeaux Institute of Oncology, Université de Bordeaux, F-33077 Bordeaux, France; (E.S.); (C.V.)
| | - Julie Despres
- Groupe Berkem, 20 Rue Jean Duvert, F-33290 Blanquefort, France; (J.D.); (A.B.)
| | - Amandine Brochot
- Groupe Berkem, 20 Rue Jean Duvert, F-33290 Blanquefort, France; (J.D.); (A.B.)
| | - Christine Varon
- INSERM U1312 BRIC Bordeaux Institute of Oncology, Université de Bordeaux, F-33077 Bordeaux, France; (E.S.); (C.V.)
| | - Maria C. Urdaci
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France; (M.M.); (N.S.); (L.N.)
- Bordeaux Sciences Agro, F-33175 Gradignan, France
| |
Collapse
|
3
|
Roşian ŞH, Boarescu I, Boarescu PM. Antioxidant and Anti-Inflammatory Effects of Bioactive Compounds in Atherosclerosis. Int J Mol Sci 2025; 26:1379. [PMID: 39941147 PMCID: PMC11818840 DOI: 10.3390/ijms26031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by the accumulation of lipids and immune cells within arterial walls, remains a leading cause of cardiovascular morbidity and mortality worldwide. Oxidative stress and inflammation are central to its pathogenesis, driving endothelial dysfunction, foam cell formation, and plaque instability. Emerging evidence highlights the potential of bioactive compounds with antioxidant and anti-inflammatory properties to mitigate these processes and promote vascular health. This review explores the mechanisms through which bioactive compounds-such as polyphenols, carotenoids, flavonoids, omega-3 fatty acids, coenzyme Q10, and other natural compounds-modulate oxidative stress and inflammation in atherosclerosis. It examines their effects on key molecular pathways, including the inhibition of reactive oxygen species (ROS) production, suppression of nuclear factor-κB (NF-κB), and modulation of inflammatory cytokines. By integrating current knowledge, this review underscores the therapeutic potential of dietary and supplemental bioactive compounds as complementary strategies for managing atherosclerosis, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Ştefan Horia Roşian
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, 400001 Cluj-Napoca, Romania;
- Cardiology Department of Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400001 Cluj-Napoca, Romania
| | - Ioana Boarescu
- Neurology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
| | - Paul-Mihai Boarescu
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
- Cardiology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
| |
Collapse
|
4
|
Chistyakov DV, Tiulina VV, Gancharova OS, Baksheeva VE, Goriainov SV, Shebardina NG, Ivlev VA, Komarov SV, Shevelyova MP, Tikhomirova NK, Philippov PP, Vasil'ev VG, Sergeeva MG, Permyakov SE, Iomdina EN, Tsvetkov PO, Senin II, Zernii EY. Targeting Oxidative Stress and Inflammation in the Eye: Insights from a New Model of Experimental Autoimmune Uveitis. Int J Mol Sci 2024; 25:12910. [PMID: 39684616 DOI: 10.3390/ijms252312910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Autoimmune uveitis is a relapsing blind-causing ocular condition with complex pathogenesis that is not completely understood. There is a high demand for accurate animal models of experimental autoimmune uveitis (EAU) suitable for elucidating the molecular mechanisms of the disease and testing new therapeutic approaches. Here, we demonstrated that photoreceptor Ca2+/Zn2+-sensor protein recoverin is a uveoretinal antigen in albino rabbits provoking typical autoimmune chorioretinitis 2-4 weeks after immunization. The pathologic process in recoverin-induced EAU shared features with human disease and included lymphocytic infiltration of the retina, Dalen-Fuchs nodules and foci of subtotal or total retinal atrophy, manifested as a decrease in amplitude of the a-wave of the electroretinogram. In some cases, changes in the retinal vascular pattern and subretinal hemorrhages were also observed. These signs were accompanied by a gradual accumulation of serum antibodies against recoverin. Biochemical examination of the aqueous humor (AH) revealed typical characteristics of inflammation and oxidative stress, including increased levels of TNF-α and IL-6 and decreased levels of IL-10, as well as decreased total antioxidant activity, superoxide dismutase and glutathione peroxidase activities, and increased zinc concentration. Consistently, metabolomic and targeted lipidomic analysis of AH showed high lactate and low ascorbic acid levels in early EAU; increased levels of key pro-inflammatory signaling lipids such as PGE2, TXB2, 11-HETE and Lyso-PAF; and reduced levels of the anti-inflammatory fatty acid DHA in advanced stages of the disease. Uveitic AH became enriched with recoverin, confirming disruption of the blood-ocular barrier and photoreceptor damage. Notably, the application of mitochondria-targeted antioxidant therapy impeded EAU progression by maintaining local antioxidant activity and suppressing TNF-α, IL-6 and PGE2 signaling. Overall, our results demonstrate that recoverin-induced EAU in rabbits represents an accurate model of human autoimmune posterior uveitis and suggest new directions for its therapy that can be trialed using the developed model.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Pharmacy Resource Center, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Olga S Gancharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Viktoriia E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergei V Goriainov
- Pharmacy Resource Center, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Natalia G Shebardina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A Ivlev
- Pharmacy Resource Center, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Sergey V Komarov
- Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
| | - Marina P Shevelyova
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Russia
| | - Natalia K Tikhomirova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel P Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasiliy G Vasil'ev
- Pharmacy Resource Center, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergei E Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Russia
| | - Elena N Iomdina
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Philipp O Tsvetkov
- CNRS, UMR 7051, INP, Inst Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, 13005 Marseille, France
| | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
5
|
Eraqi WA, El-Sabbagh WA, Aziz RK, Elshahed MS, Youssef NH, Elkenawy NM. Gastroprotective and microbiome-modulating effects of ubiquinol in rats with radiation-induced enteropathy. Anim Microbiome 2024; 6:40. [PMID: 39030597 PMCID: PMC11264694 DOI: 10.1186/s42523-024-00320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/02/2024] [Indexed: 07/21/2024] Open
Abstract
Radiation enteritis is a frequently encountered issue for patients receiving radiotherapy and has a significant impact on cancer patients' quality of life. The gut microbiota plays a pivotal role in intestinal function, yet the impact of irradiation on gut microorganisms is not fully understood. This study explores the gastroprotective effect and gut microbiome-modulating potential of ubiquinol (Ubq), the reduced form of the powerful antioxidant CoQ-10. For this purpose, male albino rats were randomly assigned to four groups: Control, IRR (acute 7 Gy γ-radiation), Ubq_Post (Ubq for 7 days post-irradiation), and Ubq_Pre/Post (Ubq for 7 days pre and 7 days post-irradiation). The fecal microbiomes of all groups were profiled by 16S rRNA amplicon sequencing followed by bioinformatics and statistical analysis. Histopathological examination of intestinal tissue indicated severe damage in the irradiated group, which was mitigated by ubiquinol with enhanced regeneration, goblet cells, and intestinal alkaline phosphatase expression. Compared to the irradiated group, the Ubq-treated groups had a significant recovery of intestinal interleukin-1β, caspase-3, nitric oxide metabolites, and thio-barbituric reactive substances to near-healthy levels. Ubq_Pre/Post group displayed elevated peroxisome proliferator-activated receptor (PPAR-γ) level, suggesting heightened benefits. Serum insulin reduction in irradiated rats improved post-Ubq treatment, with a possible anti-inflammatory effect on the pancreatic tissue. Fecal microbiota profiling revealed a dysbiosis state with a reduction of bacterial diversity post-irradiation, which was re-modulated in the Ubq treated groups to profiles that are indistinguishable from the control group. These findings underscore Ubq's gastroprotective effects against radiation-induced enteritis and its potential in restoring the gut microbiota's diversity and balance.
Collapse
Affiliation(s)
- Walaa A Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo, 11617, Egypt
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Nora M Elkenawy
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| |
Collapse
|
6
|
Lyu W, Li DF, Li SY, Hu H, Zhou JY, Wang L. Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38835159 DOI: 10.1080/10408398.2024.2361306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The global rise in life expectancy corresponds with a delay in childbearing age among women. Ovaries, seen as the chronometers of female physiological aging, demonstrate features of sped up aging, evidenced by the steady decline in both the quality and quantity of ovarian follicles from birth. The multifaceted pathogenesis of ovarian aging has kindled intensive research interest from the biomedical and pharmaceutical sectors. Novel studies underscore the integral roles of gut microbiota in follicular development, lipid metabolism, and hormonal regulation, forging a nexus with ovarian aging. In this review, we outline the role of gut microbiota in ovarian function (follicular development, oocyte maturation, and ovulation), compile and present gut microbiota alterations associated with age-related ovarian aging. We also discuss potential strategies for alleviating ovarian aging from the perspective of gut microbiota, such as fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
- Wei Lyu
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| | - De-Feng Li
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Shu-Ying Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jian-Yun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Ling Wang
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Kalenikova EI, Gorodetskaya EA, Povarova OV, Medvedev OS. Prospects of Intravenous Coenzyme Q10 Administration in Emergency Ischemic Conditions. Life (Basel) 2024; 14:134. [PMID: 38255749 PMCID: PMC10817270 DOI: 10.3390/life14010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Coenzyme CoQ10 (CoQ10) is an endogenous lipid-soluble antioxidant that effectively protects lipids, proteins, and DNA from oxidation due to its ability to undergo redox transitions between oxidized and reduced forms. Various oxidative stress-associated infectious and somatic diseases have been observed to disrupt the balance of CoQ10 concentration in tissues. As a high molecular weight polar lipophilic compound, CoQ10 exhibits very limited oral bioavailability, which restrains its therapeutic potential. Nevertheless, numerous studies have confirmed the clinical efficacy of CoQ10 therapy through oral administration of high doses over extended time periods. Experimental studies have demonstrated that in emergency situations, intravenous administration of both oxidized and reduced-form CoQ10 leads to a rapid increase in its concentration in organ tissues, offering protection for organ tissues in ischemic conditions. This suggests that the cardio- and neuroprotective efficacy of intravenously administered CoQ10 forms could present new opportunities in treating acute ischemic conditions. Based on these findings, the review provides reasoning supporting further research and implementation of CoQ10 dosage forms for intravenous administration in emergency situations into clinical practice.
Collapse
Affiliation(s)
- Elena I. Kalenikova
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.I.K.); (E.A.G.); (O.S.M.)
| | - Evgeniya A. Gorodetskaya
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.I.K.); (E.A.G.); (O.S.M.)
| | - Oxana V. Povarova
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.I.K.); (E.A.G.); (O.S.M.)
| | - Oleg S. Medvedev
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.I.K.); (E.A.G.); (O.S.M.)
- National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Laboratory of Experimental Pharmacology, 121552 Moscow, Russia
| |
Collapse
|
8
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
9
|
Liang B, Shi L, Du D, Li H, Yi N, Xi Y, Cui J, Li P, Kang H, Noda M, Sun X, Liu J, Qin S, Long J. Hydrogen-Rich Water Ameliorates Metabolic Disorder via Modifying Gut Microbiota in Impaired Fasting Glucose Patients: A Randomized Controlled Study. Antioxidants (Basel) 2023; 12:1245. [PMID: 37371975 DOI: 10.3390/antiox12061245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Molecular hydrogen (H2) exhibits antioxidant, anti-inflammatory and anti-apoptotic effects, and has shown benefits in glucose and lipid metabolism in certain animal metabolic disorder models. However, the potential benefits of H2 treatment in individuals with impaired fasting glucose (IFG) has seldom been studied. This randomized controlled study (RCT) aims to investigate the effects of hydrogen-rich water (HRW) on IFG subjects and explore the underlying mechanism involved. METHODS Seventy-three patients with IFG were enrolled in a randomized, double-blind, placebo-controlled clinical study. These patients were assigned to receive either 1000 mL per day of HRW or placebo pure water (no H2 infusion) for a duration of eight weeks. Metabolic parameters and fecal gut microbiota were assessed at baseline (week 0) and at week 8. A combined analysis of metabolomics and intestinal microbiota was conducted to investigate the correlation between the effect of H2 on the metabolisms and the diversity of intestinal flora in the IGF patients. RESULTS Both pure water and HRW demonstrated a significant reduction in fasting blood glucose in IFG patients, with a significant difference between pure water and HRW after eight weeks. Among IFG patients with abnormal pre-experimental fatty liver, 62.5% (10/16) in the HRW group and 31.6% (6/19) in the pure water group achieved remission. Furthermore, 16S RNA analysis revealed HRW-modified gut microbiota dysbiosis in the fecal samples of IGF patients. Through Pearson correlation analysis, the differential gut microbiota obtained by 16S analysis was found to be highly correlated with nine metabolites. CONCLUSION H2 slightly improved metabolic abnormalities and gut microbiota dysbiosis, providing a novel target and theoretical basis for the prevention and treatment of blood glucose regulation in patients with IFG.
Collapse
Affiliation(s)
- Bing Liang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongyue Du
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ning Yi
- Department of Surgical Nursing, School of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Yue Xi
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Jianjiao Cui
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Ping Li
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hongbin Kang
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Xuejun Sun
- Department of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Shucun Qin
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|