1
|
Fields L, Dang TC, Tran VNH, Ibarra AE, Li L. Decoding Neuropeptide Complexity: Advancing Neurobiological Insights from Invertebrates to Vertebrates through Evolutionary Perspectives. ACS Chem Neurosci 2025; 16:1662-1679. [PMID: 40261092 PMCID: PMC12180611 DOI: 10.1021/acschemneuro.5c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Neuropeptides are vital signaling molecules involved in neural communication, hormonal regulation, and stress response across diverse taxa. Despite their critical roles, neuropeptide research remains challenging due to their low abundance, complex post-translational modifications (PTMs), and dynamic expression patterns. Mass spectrometry (MS)-based neuropeptidomics has revolutionized peptide identification and quantification, enabling the high-throughput characterization of neuropeptides and their PTMs. However, the complexity of vertebrate neural networks poses significant challenges for functional studies. Invertebrate models, such as Cancer borealis, Drosophila melanogaster, and Caenorhabditis elegans, offer simplified neural circuits, well-characterized systems, and experimental tools for elucidating the functional roles of neuropeptides. These models have revealed conserved neuropeptide families, including allatostatins, RFamides, and tachykinin-related peptides, whose vertebrate homologues regulate analogous physiological functions. Recent advancements in MS techniques, including ion mobility spectrometry and MALDI MS imaging, have further enhanced the spatial and temporal resolution of neuropeptide analysis, allowing for insights into peptide signaling systems. Invertebrate neuropeptide research not only expands our understanding of conserved neuropeptide functions but also informs translational applications including the development of peptide-based therapeutics. This review highlights the utility of invertebrate models in neuropeptide discovery, emphasizing their contributions to uncovering fundamental biological principles and their relevance to vertebrate systems.
Collapse
Affiliation(s)
- Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Tina C. Dang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705
| | - Vu Ngoc Huong Tran
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705
| | - Angel E. Ibarra
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Tripathi V, Bhardwaj SK, Kumar V. Neuropeptides and reproductive flexibility in songbirds: A mini review. J Neuroendocrinol 2025:e70030. [PMID: 40288996 DOI: 10.1111/jne.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Synchronization of physiological and behavioral activities associated with avian reproduction requires corresponding changes in the activity of the hypothalamus-pituitary-gonadal axis. This involves complex brain peptidergic pathways, which show spatial and temporal differences in their expression and distribution during the annual reproductive cycle. The well-studied pathways include gonadotropin-releasing and inhibiting hormones (GnRH, GnIH), neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), vasoactive intestinal peptide (VIP) and other peptides like arginine vasotocin (VT), oxytocin (mesotocin), and spexin. Together, these peptides form a neurochemical framework for the integration of both internal and external (environmental) cues; this results in a neuroendocrine response. Conceivably, therefore, the neurochemical framework within which brain peptides possibly interact and perform reproductive regulatory roles might show species differences. Here, we aim to review briefly the roles of these neuropeptides in reproduction in both opportunistically and seasonally breeding birds. Much of the discussion will be based on our own research on the opportunistic breeding zebra finch and the seasonally breeding redheaded bunting, Indian weaverbird, and spotted munia. The summer breeding redheaded bunting and weaverbird are typical photosensitive long-day species, but they show qualitative differences in response to stimulatory photoperiods during the post-reproductive period of their annual cycle. Buntings exhibit absolute photorefractoriness, while weaverbirds exhibit relative photorefractoriness. The autumn breeding spotted munia, on the other hand, is an atypical photosensitive species. It responds to both short and long photoperiods and presumably lacks photorefractoriness.
Collapse
Affiliation(s)
- Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
- Department of Zoology, Chaudhary Charan Singh University, Meerut, India
| | | | - Vinod Kumar
- Department of Physiology, King George's Medical University, Lucknow, India
| |
Collapse
|
3
|
Wu Z, Qiu C, Liu Y, Yan X, Li Q, Jiang S, Xu J, Pan X, Ye F, Zhang Z, Ning P, Zhang B, Xu L, Cheng B, Xiang X, Qian C, Du Y, Chen G. Structural insights into prolactin-releasing peptide receptor signaling and G-protein coupling selectivity. Cell Rep 2025; 44:115337. [PMID: 39977266 DOI: 10.1016/j.celrep.2025.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Prolactin-releasing peptide receptor (PrRPR), a notable member of the class A peptide-GPCR (G-protein-coupled receptor) family, regulates diverse physiology functions upon activation by PrRP. Herein, we reveal that PrRPR could engage with not only the Gq/11 pathway but also the Gi/o pathway. We further resolve the structures of the PrRPR-Gq and PrRPR-Gi complexes using cryoelectron microscopy (cryo-EM), with PrRP31 as the endogenous ligand. These high-resolution structures enhance our understanding of PrRPR-ligand interactions, aiding the development of targeted drugs aiming at this crucial peptide-receptor system. Comparing these structures with counterparts of other RF-amide peptide receptors accentuates the crucial function of the RF-amide motif in activating receptors and sheds light on the universal mechanism for RF-amide motif detection by RF-amide receptors. Furthermore, structural and functional analysis indicates that conformational alterations in the intracellular loops (ICLs), along with the "wavy hook" of Gα, may explain the selective coupling of G proteins in PrRPR signaling.
Collapse
Affiliation(s)
- Zhangsong Wu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China; The Huanan Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Chen Qiu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yiming Liu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiaoyi Yan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Qiaohui Li
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Shirui Jiang
- The Huanan Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Xin Pan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Fang Ye
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Peiruo Ning
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Lezhi Xu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bangning Cheng
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Xufu Xiang
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Chungen Qian
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Barroso RA, Rodrigues T, Campos A, Almeida D, Guardiola FA, Turkina MV, Antunes A. Proteomic Diversity of the Sea Anemone Actinia fragacea: Comparative Analysis of Nematocyst Venom, Mucus, and Tissue-Specific Profiles. Mar Drugs 2025; 23:79. [PMID: 39997203 PMCID: PMC11857728 DOI: 10.3390/md23020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Sea anemones (Actiniaria, Cnidaria) are promising targets for biomedical research, as they produce unique bioactive compounds, including toxins and antimicrobial peptides (AMPs). However, the diversity and mechanisms underlying their chemical defenses remain poorly understood. In this study, we investigate the proteomic profiles of the unexplored sea anemone Actinia fragacea by analyzing its venom nematocyst extract, tissues, and mucus secretion. A total of 4011 different proteins were identified, clustered into 3383 protein groups. Among the 83 putative toxins detected, actinoporins, neurotoxins, and phospholipase A2 were uncovered, as well as two novel zinc metalloproteinases with two specific domains (ShK) associated with potassium channel inhibition. Common Gene Ontology (GO) terms were related to immune responses, cell adhesion, protease inhibition, and tissue regeneration. Furthermore, 1406 of the 13,276 distinct peptides identified were predicted as potential AMPs, including a putative Aurelin-like AMP localized within the nematocysts. This discovery highlights and strengthens the evidence for a cnidarian-exclusive Aurelin peptide family. Several other bioactive compounds with distinctive defense functions were also detected, including enzymes, pattern recognition proteins (PRPs), and neuropeptides. This study provides the first proteome map of A. fragacea, offering a critical foundation for exploring novel bioactive compounds and valuable insights into its molecular complexity.
Collapse
Affiliation(s)
- Ricardo Alexandre Barroso
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Tomás Rodrigues
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, Campus of International Excellence, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Francisco A. Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Agostinho Antunes
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Lentschat H, Liessmann F, Tydings C, Schermeng T, Stichel J, Urban N, Schaefer M, Meiler J, Beck-Sickinger AG. Hederagenin is a Highly Selective Antagonist of the Neuropeptide FF Receptor 1 that Reveals Mechanisms for Subtype Selectivity. Angew Chem Int Ed Engl 2025; 64:e202417786. [PMID: 39641914 DOI: 10.1002/anie.202417786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
RF-amide peptide receptors including the neuropeptide FF receptor 1 (NPFFR1) are G protein-coupled receptors (GPCRs) that modulate diverse physiological functions. High conservation of endogenous ligands and receptors makes the identification of selective ligands challenging. Previously identified antagonists mimic the C-terminus of peptide ligands and lack selectivity towards the closely related neuropeptide FF receptor 2 (NPFFR2) or the neuropeptide Y1 receptor (Y1R). In a high-throughput screening, we identified the pentacyclic triterpenoid hederagenin (1) as a novel selective antagonist for the NPFFR1. Hederagenin (1) is a natural product isolated from Hedera helix (ivy). We characterized its mode of activity using in vitro and in silico methods, revealing an overlapping binding site of the small molecule with the orthosteric peptide agonists. Despite the high similarity of the orthosteric binding pockets of NPFFR1 and NPFFR2, hederagenin (1) shows strong subtype selectivity, particularly caused by slight differences in the shape of the binding pockets and the rigidity of the small molecule. Several residues inhibiting the activity of hederagenin (1) at the NPFFR2 were identified. As NPFFR1 antagonists are discussed as potential candidates for the treatment of chronic pain, these insights into the structural determinants governing subtype specificity will facilitate the development of next-generation analgesics with improved safety and efficacy.
Collapse
Affiliation(s)
- Hannah Lentschat
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| | - Fabian Liessmann
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, 04103, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, ScaDS.AI Dresden/Leipzig, Leipzig, 04105, Germany
| | - Claiborne Tydings
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
| | - Tina Schermeng
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Leipzig University, Leipzig, 04107, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Leipzig University, Leipzig, 04107, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, 04103, Germany
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, 37232, United States
- Center for Scalable Data Analytics and Artificial Intelligence, ScaDS.AI Dresden/Leipzig, Leipzig, 04105, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| |
Collapse
|
6
|
Lee H, Feranil JB, Jose PA. An Overview on Renal and Central Regulation of Blood Pressure by Neuropeptide FF and Its Receptors. Int J Mol Sci 2024; 25:13284. [PMID: 39769048 PMCID: PMC11675822 DOI: 10.3390/ijms252413284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed in rodent and human brains, participate in cardiovascular regulation. However, the expressions of NPFF and its receptors are not restricted within the central nervous system but are also found in peripheral organs, including the kidneys. Both NPFFR1 and NPFFR2 mainly couple to Gαi/o, which inhibits cyclic adenosine monophosphate (cAMP) production. NPFF also weakly binds to other RFamide receptors and the Mas receptor. Relevant published articles were searched in PubMed, Google Scholar, Web of Science, and Scopus. Herein, we review evidence for the role of NPFF in the regulation of blood pressure, in the central nervous system, particularly within the hypothalamic paraventricular nucleus and the brainstem, and the kidneys. NPFF is a potential target in the treatment of hypertension.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (J.B.F.); (P.A.J.)
| | - Jun B. Feranil
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (J.B.F.); (P.A.J.)
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (J.B.F.); (P.A.J.)
- Department of Pharmacology & Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
7
|
Shen S, Wang D, Liu H, He X, Cao Y, Chen J, Li S, Cheng X, Xu HE, Duan J. Structural basis for hormone recognition and distinctive Gq protein coupling by the kisspeptin receptor. Cell Rep 2024; 43:114389. [PMID: 38935498 DOI: 10.1016/j.celrep.2024.114389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Kisspeptin signaling through its G protein-coupled receptor, KISS1R, plays an indispensable role in regulating reproduction via the hypothalamic-pituitary-gonadal axis. Dysregulation of this pathway underlies severe disorders like infertility and precocious puberty. Here, we present cryo-EM structures of KISS1R bound to the endogenous agonist kisspeptin-10 and a synthetic analog TAK-448. These structures reveal pivotal interactions between peptide ligands and KISS1R extracellular loops for receptor activation. Both peptides exhibit a conserved binding mode, unveiling their common activation mechanism. Intriguingly, KISS1R displays a distinct 40° angular deviation in its intracellular TM6 region compared to other Gq-coupled receptors, enabling distinct interactions with Gq. This study reveals the molecular intricacies governing ligand binding and activation of KISS1R, while highlighting its exceptional ability to couple with Gq. Our findings pave the way for structure-guided design of therapeutics targeting this physiologically indispensable receptor.
Collapse
Affiliation(s)
- Shiyi Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxue Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Heng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglong Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Juanhua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shujie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
9
|
Dorfman VB. Distribution of the kisspeptin system and its relation with gonadotropin-releasing hormone in the hypothalamus. VITAMINS AND HORMONES 2024; 127:51-78. [PMID: 39864946 DOI: 10.1016/bs.vh.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Kisspeptin (KISS1), originally catalogued as metastin because of its capacity as a metastasis suppressor in human melanoma and breast cancer, is now recognized as the major puberty gatekeeper and gonadotropin-releasing hormone (GnRH) neuroendocrine system modulator. It is a member of the family of RFamide-related peptides that also includes the neuropeptide FF group, the gonadotropin-inhibitory hormone, the prolactin-releasing peptide, and the 26RFa peptides. The KISS1 precursor peptide is processed into a family of peptides known as kisspeptins. Its expression has been described in the hypothalamus as well as in the whole reproductive axis and several extra reproductive tissues of mammals as well as fish and amphibians, but not in birds. KISS1 plays an essential role as a regulator of the reproductive axis by inducing the synthesis and release of GnRH, acting through specific receptors. The study of the kisspeptin system and its relation with reproduction in wild and non-classical laboratory species is extremely useful to understand and become aware of the role of KISS1 in the wide variety of possible different reproductive strategies. In this chapter, KISS1 involvement in non-classical laboratory rodents, fishes, and birds is discussed.
Collapse
Affiliation(s)
- Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Iwama A, Kise R, Akasaka H, Sano FK, Oshima HS, Inoue A, Shihoya W, Nureki O. Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103. Nat Commun 2024; 15:4769. [PMID: 38897996 PMCID: PMC11187126 DOI: 10.1038/s41467-024-49030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroglutamylated RF-amide peptide (QRFP) is a peptide hormone with a C-terminal RF-amide motif. QRFP selectively activates a class A G-protein-coupled receptor (GPCR) GPR103 to exert various physiological functions such as energy metabolism and appetite regulation. Here, we report the cryo-electron microscopy structure of the QRFP26-GPR103-Gq complex at 3.19 Å resolution. QRFP26 adopts an extended structure bearing no secondary structure, with its N-terminal and C-terminal sides recognized by extracellular and transmembrane domains of GPR103 respectively. This movement, reminiscent of class B1 GPCRs except for orientation and structure of the ligand, is critical for the high-affinity binding and receptor specificity of QRFP26. Mutagenesis experiments validate the functional importance of the binding mode of QRFP26 by GPR103. Structural comparisons with closely related receptors, including RY-amide peptide-recognizing GPCRs, revealed conserved and diversified peptide recognition mechanisms, providing profound insights into the biological significance of RF-amide peptides. Collectively, this study not only advances our understanding of GPCR-ligand interactions, but also paves the way for the development of novel therapeutics targeting metabolic and appetite disorders and emergency medical care.
Collapse
Affiliation(s)
- Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hidetaka S Oshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
11
|
Jin S, Guo S, Xu Y, Li X, Wu C, He X, Pan B, Xin W, Zhang H, Hu W, Yin Y, Zhang T, Wu K, Yuan Q, Xu HE, Xie X, Jiang Y. Structural basis for recognition of 26RFa by the pyroglutamylated RFamide peptide receptor. Cell Discov 2024; 10:58. [PMID: 38830850 PMCID: PMC11148045 DOI: 10.1038/s41421-024-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/21/2024] [Indexed: 06/05/2024] Open
Abstract
The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the Gq-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.
Collapse
Affiliation(s)
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Wenwen Xin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Heng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Tianwei Zhang
- Lingang Laboratory, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kai Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
12
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Wang Y, Zuo Z, Shi J, Fang Y, Yin Z, Wang Z, Yang Z, Jia B, Sun Y. Modulatory role of neuropeptide FF system in macrophages. Peptides 2024; 174:171164. [PMID: 38272240 DOI: 10.1016/j.peptides.2024.171164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Neuropeptide FF (NPFF) is an octapeptide that regulates various cellular processes, especially pain perception. Recently, there has been a growing interest in understanding the modulation of NPFF in neuroendocrine inflammation. This review aims to provide a thorough overview of the regulation of NPFF in macrophage-mediated biological processes. We delve into the impact of NPFF on macrophage polarization, self-renewal modulation, and the promotion of mitophagy, facilitating the transition from thermogenic fat to fat-storing adipose tissue. Additionally, we explore the NPFF-dependent regulation of the inflammatory response mediated by macrophages, its impact on the differentiation of macrophages, and its capacity to induce alterations in the transcriptome of macrophages. We also address the potential of NPFF as a therapeutic molecule in the field of neuroendocrine inflammation. Overall, our work offers an understanding of the influence of NPFF on macrophage, facilitating the exploration of its pharmacological significance in future studies.
Collapse
Affiliation(s)
- Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Jiajia Shi
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yanwei Fang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhongqian Yin
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
15
|
Shankey NT, Cohen RE. Neural control of reproduction in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:307-321. [PMID: 38247297 DOI: 10.1002/jez.2783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.
Collapse
Affiliation(s)
- Nicholas T Shankey
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| |
Collapse
|
16
|
Rabinowitch I, Colón-Ramos DA, Krieg M. Understanding neural circuit function through synaptic engineering. Nat Rev Neurosci 2024; 25:131-139. [PMID: 38172626 DOI: 10.1038/s41583-023-00777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Synapses are a key component of neural circuits, facilitating rapid and specific signalling between neurons. Synaptic engineering - the synthetic insertion of new synaptic connections into in vivo neural circuits - is an emerging approach for neural circuit interrogation. This approach is especially powerful for establishing causality in neural circuit structure-function relationships, for emulating synaptic plasticity and for exploring novel patterns of circuit connectivity. Contrary to other approaches for neural circuit manipulation, synaptic engineering targets specific connections between neurons and functions autonomously with no user-controlled external activation. Synaptic engineering has been successfully implemented in several systems and in different forms, including electrical synapses constructed from ectopically expressed connexin gap junction proteins, synthetic optical synapses composed of presynaptic photon-emitting luciferase coupled with postsynaptic light-gated channels, and artificial neuropeptide signalling pathways. This Perspective describes these different methods and how they have been applied, and examines how the field may advance.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Daniel A Colón-Ramos
- Wu Tsai Institute, Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Krieg
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| |
Collapse
|
17
|
Goudarzi MH, Eagles DA, Lim J, Biggs KA, Kotze AC, Ruffell AP, Fairlie DP, King GF, Walker AA. Venom composition and bioactive RF-amide peptide toxins of the saddleback caterpillar, Acharia stimulea (Lepidoptera: Limacodidae). Biochem Pharmacol 2023; 213:115598. [PMID: 37201876 DOI: 10.1016/j.bcp.2023.115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Limacodidae is a family of lepidopteran insects comprising >1500 species. More than half of these species produce pain-inducing defensive venoms in the larval stage, but little is known about their venom toxins. Recently, we characterised proteinaceous toxins from the Australian limacodid caterpillar Doratifera vulnerans, but it is unknown if the venom of this species is typical of other Limacodidae. Here, we use single animal transcriptomics and venom proteomics to investigate the venom of an iconic limacodid, the North American saddleback caterpillar Acharia stimulea. We identified 65 venom polypeptides, grouped into 31 different families. Neurohormones, knottins, and homologues of the immune signaller Diedel make up the majority of A.stimulea venom, indicating strong similarities to D. vulnerans venom, despite the large geographic separation of these caterpillars. One notable difference is the presence of RF-amide peptide toxins in A. stimulea venom. Synthetic versions of one of these RF-amide toxins potently activated the human neuropeptide FF1 receptor, displayed insecticidal activity when injected into Drosophila melanogaster, and moderately inhibited larval development of the parasitic nematode Haemonchus contortus. This study provides insights into the evolution and activity of venom toxins in Limacodidae, and provides a platform for future structure-function characterisation of A.stimulea peptide toxins.
Collapse
Affiliation(s)
- Mohaddeseh H Goudarzi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David A Eagles
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kimberley A Biggs
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew C Kotze
- CSIRO Agriculture and Food, St Lucia, Queensland 4072, Australia
| | - Angela P Ruffell
- CSIRO Agriculture and Food, St Lucia, Queensland 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
18
|
Wu Z, Jia Q, Liu B, Fang L, Leung PCK, Cheng JC. NPFF stimulates human ovarian cancer cell invasion by upregulating MMP-9 via ERK1/2 signaling. Exp Cell Res 2023; 430:113693. [PMID: 37392963 DOI: 10.1016/j.yexcr.2023.113693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Neuropeptide FF (NPFF) belongs to the RFamide peptide family. NPFF regulates a variety of physiological functions by binding to a G protein-coupled receptor, NPFFR2. Epithelial ovarian cancer (EOC) is a leading cause of death among gynecological malignancies. The pathogenesis of EOC can be regulated by many local factors, including neuropeptides, through an autocrine/paracrine manner. However, to date, the expression and/or function of NPFF/NPFFR2 in EOC is undetermined. In this study, we show that the upregulation of NPFFR2 mRNA was associated with poor overall survival in EOC. The TaqMan probe-based RT-qPCR showed that NPFF and NPFFR2 were expressed in three human EOC cells, CaOV3, OVCAR3, and SKOV3. In comparison, NPFF and NPFFR2 expression levels were higher in SKOV3 cells than in CaOV3 or OVCAR3 cells. Treatment of SKOV3 cells with NPFF did not affect cell viability and proliferation but stimulated cell invasion. NPFF treatment upregulates matrix metalloproteinase-9 (MMP-9) expression. Using the siRNA-mediated knockdown approach, we showed that the stimulatory effect of NPFF on MMP-9 expression was mediated by the NPFFR2. Our results also showed that ERK1/2 signaling was activated in SKOV3 cells in response to the NPFF treatment. In addition, blocking the activation of ERK1/2 signaling abolished the NPFF-induced MMP-9 expression and cell invasion. This study provides evidence that NPFF stimulates EOC cell invasion by upregulating MMP-9 expression through the NPFFR2-mediated ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Vu NQ, Yen HC, Fields L, Cao W, Li L. HyPep: An Open-Source Software for Identification and Discovery of Neuropeptides Using Sequence Homology Search. J Proteome Res 2023; 22:420-431. [PMID: 36696582 PMCID: PMC10160011 DOI: 10.1021/acs.jproteome.2c00597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuropeptides are a class of endogenous peptides that have key regulatory roles in biochemical, physiological, and behavioral processes. Mass spectrometry analyses of neuropeptides often rely on protein informatics tools for database searching and peptide identification. As neuropeptide databases are typically experimentally built and comprised of short sequences with high sequence similarity to each other, we developed a novel database searching tool, HyPep, which utilizes sequence homology searching for peptide identification. HyPep aligns de novo sequenced peptides, generated through PEAKS software, with neuropeptide database sequences and identifies neuropeptides based on the alignment score. HyPep performance was optimized using LC-MS/MS measurements of peptide extracts from various Callinectes sapidus neuronal tissue types and compared with a commercial database searching software, PEAKS DB. HyPep identified more neuropeptides from each tissue type than PEAKS DB at 1% false discovery rate, and the false match rate from both programs was 2%. In addition to identification, this report describes how HyPep can aid in the discovery of novel neuropeptides.
Collapse
Affiliation(s)
- Nhu Q Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hsu-Ching Yen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Weifeng Cao
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
20
|
Functional evaluation of a novel kisspeptin analogue on the reproduction of female goldfish. Sci Rep 2022; 12:21944. [PMID: 36536005 PMCID: PMC9763426 DOI: 10.1038/s41598-022-25950-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Kisspeptin (kp) is a key regulator of reproduction, which stimulates sexual maturation and gametogenesis in mammals, amphibians, and teleosts. In the present study, to enhance the biological activity of kp10, a novel analog (referred to as M-kp10) was designed based on the endogenous goldfish variant, in which phenylalanine 6 was substituted by tryptophan and the N-terminus was acetylated. Compared with the native kp-10 and salmon gonadotropin-releasing hormone (GnRH3), the effect of M-kp10 on sexual hormones and reproductive indices as well as the expression of kiss1, cyp19a1, and kiss1ra genes in goldfish (Carassius auratus) was investigated. In practice, peptides were synthesized based on the standard Fmoc-solid-phase peptide synthesis and purified by employing RP-HPLC, followed by approving their structure using ESI-MS. The results showed that M-kp10 increased significantly 17,20β-DHP, LH, FSH and E2 as well as fecundity, hatching and fertilization percentages than the other peptides. Histological studies revealed that M-kp10 led to the faster growth of ovarian follicles compared to the kp-10 and GnRH3. The genes of cyp19a1, kiss1ra, and kiss1 were remarkably more expressed after treatment with M-kp10. In conclusion, the results indicated the superiority of M-kp10 over kp-10 in inducing sexual maturation and accelerating the percentage of fecundity, suggesting that M-kp10 could be a promising candidate for application in the artificial breeding of fish.
Collapse
|
21
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
22
|
Zhang Y, Shikina S, Ho YY, Chiu YL, I-Chen Yao J, Zatylny-Gaudin C, Dufour S, Chang CF. Involvement of RFamide neuropeptides in polyp contraction of the adult scleractinian corals Euphyllia ancora and Stylophora pistillata. Gen Comp Endocrinol 2021; 314:113905. [PMID: 34534544 DOI: 10.1016/j.ygcen.2021.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
The distribution and functions of neurons in scleractinian corals remain largely unknown. This study focused on the Arg-Phe amide family of neuropeptides (RFamides), which have been shown to be involved in a variety of biological processes in animals, and performed molecular identification and characterization in the adult scleractinian coral Euphyllia ancora. The deduced amino acid sequence of the identified RFamide preprohormone was predicted to contain 20 potential neuropeptides, including 1 Pro-Gly-Arg-Phe (PGRF) amide and 15 Gln-Gly-Arg-Phe (QGRF) amide peptides. Tissue distribution analysis showed that the level of transcripts in the tentacles was significantly higher than that in other polyp tissues. Immunohistochemical analysis with the FMRFamide antibody showed that RFamide neurons were mainly distributed in the epidermis of the tentacles and mouth with pharynx. Treatment of E. ancora polyps with synthetic QGRFamide peptides induced polyp contraction. The induction of polyp contraction by QGRFamide peptide treatment was also observed in another scleractinian coral, Stylophora pistillata. These results strongly suggested that RFamides play a role in the regulation of polyp contraction in adult scleractinians.
Collapse
Affiliation(s)
- Yan Zhang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan; Zhejiang Marine Fisheries Research Institute, Zhejiang, China; Marine and Fishery Research Institute, Zhejiang Ocean University, Zhejiang, China
| | - Shinya Shikina
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan; Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
| | - Yu-Ying Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ling Chiu
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Jack I-Chen Yao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Céline Zatylny-Gaudin
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), University of Caen-Normandy, Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université des Antilles, 14032, Caen, France and 75231 Paris Cedex 05, France
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), University of Caen-Normandy, Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université des Antilles, 14032, Caen, France and 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan; Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
23
|
Koller J, Herzog H, Zhang L. The distribution of Neuropeptide FF and Neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control. Neuropeptides 2021; 90:102198. [PMID: 34534716 DOI: 10.1016/j.npep.2021.102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
Neuropeptide FF (NPFF) and Neuropeptide VF (NPVF) are part of the extended RFamide peptide family characterized by their common arginine (R) and amidated phenylalanine (F)-motif at the carboxyl terminus. Both peptides signal through their respective high affinity G-protein coupled receptors, NPFFR2 and NPFFR1, but also show binding affinity for the other receptor due to their sequence similarity. NPFF and NPVF are highly conserved throughout evolution and can be found across the whole animal kingdom. Both have been implicated in a variety of biological mechanisms, including nociception, locomotion, reproduction, and response to pain and stress. However, more recently a new major functional role in the control of energy homeostasis has been discovered. In this article we will summarise the current knowledge on the distribution of NPFF, NPVF, and their receptors in central and peripheral tissues, as well as how this relates to the regulation of food intake and energy balance, which will help to better understand their role in these processes and thus might help finding treatments for impaired energy homeostasis disorders, such as obesity or anorexia.
Collapse
Affiliation(s)
- Julia Koller
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, UNSW Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lei Zhang
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
24
|
Zhang L, Koller J, Ip CK, Gopalasingam G, Bajaj N, Lee NJ, Enriquez RF, Herzog H. Lack of neuropeptide FF signalling in mice leads to reduced repetitive behavior, altered drinking behavior, and fuel type selection. FASEB J 2021; 35:e21980. [PMID: 34694651 DOI: 10.1096/fj.202100703r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Although best known for their involvement in modulating nociception, Neuropeptide FF (NPFF) group peptides have been suggested to fulfil a variety of biological functions such as feeding, anxiety behaviors and thermogenesis. However, evidence supporting these functions of NPFF is mostly pharmacological, leaving the physiological relevance unaddressed. Here we examined the physiological impact of lack of NPFF signalling in both genders using a Npff-/- mouse model. NPFF expression in the mouse is restricted to the spinal cord and brainstem while its cognate receptor NPFFR2 has wider distribution throughout the brain. Both male and female Npff-/- mice showed reduced repetitive behaviors evidenced in the marble burying test and self-grooming test. A decrease in anxiety-related behaviors in the Npff-/- mice was also observe in the open field test and to a lesser degree in an elevated plus maze test. Moreover, both male and female Npff-/- mice exhibited increased water intake resulting from increases in drinking size, rather than number of drinking events. During a fasting-refeeding challenge, Npff-/- mice of both genders displayed alterations in reparatory exchange ratio that reflect a greater fuel type flexibility. Npff-/- mice were otherwise wild-type-like regarding body weight, body composition, feeding behaviors, locomotion or energy expenditure. Together, these findings reveal the important physiological roles of NPFF signalling in the regulation of anxiety-related and repetitive behaviors, fluid homeostasis and oxidative fuel selection, highlighting the therapeutical potential of the NPFF system in a number of behavioral and metabolic disorders.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Julia Koller
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Nikita Bajaj
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Ronaldo F Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,School of Medical Sciences, University of NSW, Sydney, New South Wales, Australia.,Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo. Nat Commun 2021; 12:4795. [PMID: 34373460 PMCID: PMC8352926 DOI: 10.1038/s41467-021-24690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a Hydra-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode Caenorhabditis elegans. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors. Engineering de novo synapse-like connections between neurons could enhance our understanding of neuronal circuits and how they generate behaviour. The authors present a two-component system that creates synthetic neuromodulatory connections to manipulate intracellular Ca2+ levels in in vivo neural circuits.
Collapse
|
26
|
Ma Q, Cao Z, Li H, Wang W, Tian Y, Yan L, Liao Y, Chen X, Chen Y, Shi Y, Tang S, Zhou N. Two naturally occurring mutations of human GPR103 define distinct G protein selection bias. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119046. [PMID: 33872671 DOI: 10.1016/j.bbamcr.2021.119046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022]
Abstract
The neuropeptide 26RFa plays important roles in the regulation of many physiological functions. 26RFa has been recognized as an endogenous ligand for receptor GPR103. In the present study, we demonstrate that GPR103 dually couples to Gαq and Gαi/o proteins. However, two naturally occurring missense mutations were identified from a young male patient. In the first, Y68H, induction of Ca2+ mobilization was noted without detection of ERK1/2 activation. In the second, R371W, the potential to activate ERK1/2 signaling was retained but with failure to evoke Ca2+ mobilization. Further analysis provides evidence that Gαq, L-type Ca2+ channel and PKCβI and βII are involved in the Y68H-mediated signaling pathway, whereas Gαi/o, Gβγ, and PKCζ are implicated in the R371W-induced signaling. Our results demonstrate that two point mutations, Y68H and R371W, affect the equilibrium between the different receptor conformations, leading to alteration of G protein-coupling preferences. Importantly, these findings provide a foundation for future elucidation of GPCR-mediated biased signaling and the physiological implications of their bias.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, MOE Frontier Center of Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanzheng Li
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China
| | - Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuan Liao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangnan Chen
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shaohua Tang
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 32500, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
27
|
Bohler M, Pauliukonis A, Gilbert ER, Cline MA. The anorexigenic effect of neuropeptide AF in Japanese quail, Coturnix japonica, is associated with activation of the melanocortin system. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:110982. [PMID: 34023535 DOI: 10.1016/j.cbpa.2021.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Neuropeptide AF (NPAF) decreases food and water intake in birds and food intake in mammals. In this study, the objective was to determine the effects of centrally administered NPAF on food and water intake, hypothalamic c-Fos immunoreactivity and hypothalamic mRNA abundance of appetite-regulating factors in Japanese quail (Coturnix japonica). Seven days post hatch, 6 h fasted quail were intracerebroventricularly (ICV) injected with 0 (vehicle), 4, 8, or 16 nmol of NPAF and food and water intake were measured at 30 min intervals for 180 min. In Experiment 1, chicks which received 4, 8, and 16 nmol ICV NPAF had reduced food intake for 120, 60 and 180 min following injection, respectively, and reduced water intake during the entire 180 min observation. In Experiment 2, there was increased c-Fos immunoreactivity in the paraventricular nucleus, the ventromedial nucleus of the hypothalamus, and the dorsomedial hypothalamic nucleus in NPAF-injected quail. In Experiment 3, ICV NPAF was associated with decreased corticotropin-releasing factor mRNA, and an increase in hypothalamic proopiomelanocortin and melanocortin receptor 4 mRNA. These results demonstrate that central NPAF suppresses food and water intake in quail, effects that are likely mediated via the melanocortin system in the hypothalamus.
Collapse
Affiliation(s)
- Mark Bohler
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Virginia 24061, United States
| | - Alex Pauliukonis
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Virginia 24061, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Virginia 24061, United States
| | - Mark A Cline
- Department of Animal and Poultry Sciences, 2160 Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Virginia 24061, United States.
| |
Collapse
|
28
|
Fallah HP, Rodrigues MS, Zanardini M, Nóbrega RH, Habibi HR. Effects of gonadotropin-inhibitory hormone on early and late stages of spermatogenesis in ex-vivo culture of zebrafish testis. Mol Cell Endocrinol 2021; 520:111087. [PMID: 33249103 DOI: 10.1016/j.mce.2020.111087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022]
Abstract
Gonadotropin-inhibitory hormone (Gnih) is known to play a role in the regulation of reproduction in vertebrates by influencing gonadotropin release and synthesis. While the endocrine actions of Gnih have been identified in several species, its paracrine/autocrine effects in the control of spermatogenesis are less defined. We have used ex vivo culture of zebrafish testis to investigate the role of gonadal zebrafish Gnih (zGnih) in the regulation of the spermatogenic process. We used FACScan cell cycle analysis, morphometric quantifications, BrdU incorporation and caspase-3 activity assays as well as measuring 11-Ketotestosterone (11-KT) level in the culture media. FACScan analysis and morphometric quantification results demonstrated direct action of zGnih on basal and gonadotropin (Lh and Fsh)-induced spermatogenesis. Treatment with zGnih (10 nM) significantly decreased the number of G0/G1 cells after 7-days of culture while no significant changes were found in the proportion area of spermatogonia cell types. Investigation of DNA synthesis using BrdU (5-Bromo-2'-Deoxyuridine) labeling showed that treatment with zGnih (10 nM) significantly decreased proliferative activity of type A spermatogonia, while increased the mitotic activity of type B spermatogonia. We also showed that treatment with zGnih (100 nM) completely eliminated 11-KT release induced by 100 ng/ml Fsh. Treatment with zGnih (10 and 100 nM) also inhibited both hCG and Fsh-induced spermatogenesis. These results, plus our previous findings, demonstrate that zGnih produced locally in the testis is a component of a complex multifactorial system that regulates testicular function in zebrafish.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Maira S Rodrigues
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maya Zanardini
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Rafael H Nóbrega
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
29
|
Higo S, Kanaya M, Ozawa H. Expression analysis of neuropeptide FF receptors on neuroendocrine-related neurons in the rat brain using highly sensitive in situ hybridization. Histochem Cell Biol 2021; 155:465-475. [PMID: 33398437 DOI: 10.1007/s00418-020-01956-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 01/09/2023]
Abstract
RF-amide peptides, a family of peptides characterized by a common carboxy-terminal Arg-Phe-NH2 motif, play various physiological roles in the brain including the modulation of neuroendocrine signaling. Neuropeptide FF (NPFF) receptors exhibit a high affinity for all RF-amide peptides, which suggests that the neurons expressing these NPFF receptors may have multiple functions in the brain. However, the distribution of the neurons expressing NPFF receptors in the rat brain remains poorly understood. This study aimed to determine the detailed histological distribution of mRNA that encodes the neuropeptide FF receptors (Npffr1 and Npffr2) in the rat brain using in situ hybridization. Neurons with strong Npffr1 expression were observed in the lateral septal nucleus and several hypothalamic areas related to neuroendocrine functions, including the paraventricular nucleus (PVN) and arcuate nucleus, whereas Npffr2-expressing neurons were observed mainly in brain regions involved in somatosensory pathways, such as several subnuclei of the thalamus. Npffr1 expression was observed in 70% of corticotropin-releasing hormone neurons, but in only a small population of oxytocin and vasopressin neurons in the PVN. Npffr1 expression was also observed in the dopaminergic neurons in the periventricular nucleus and the dorsal arcuate nucleus, and in the kisspeptin neurons in the anteroventral periventricular nucleus. These results suggest that NPFFR1-mediated signaling may be involved in neuroendocrine functions, such as in reproduction and stress response. In conjunction with a detailed histological map of NPFFRs, this study provides useful data for future neuroendocrine research.
Collapse
Affiliation(s)
- Shimpei Higo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Moeko Kanaya
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8602, Japan.,Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
30
|
DeLaney K, Li L. Neuropeptidomic Profiling and Localization in the Crustacean Cardiac Ganglion Using Mass Spectrometry Imaging with Multiple Platforms. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2469-2478. [PMID: 33595330 PMCID: PMC7893679 DOI: 10.1021/jasms.0c00191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The crustacean cardiac neuromuscular system is a useful model for studying how neural circuits generate behavior, as it is comprised of a simple ganglion containing nine neurons, yet acts as a robust central pattern generator. The crustacean heart is neurogenic, receiving input from neuropeptides. However, the specific effects of neuropeptides on cardiac output is not fully understood, and the large degree of comodulation between multiple neuropeptides makes studying these effects more challenging. To address this challenge, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) imaging was used to localize neuropeptides within the cardiac ganglion (CG), providing information about the identity and localization of neuropeptides being present. CG extracts were also profiled using liquid chromatography coupled to tandem mass spectrometry (MS/MS) with a data independent acquisition method, resulting in the confirmation of 316 neuropeptides. Two MS imaging (MSI) platforms were compared to provide comprehensive results, including a MALDI-Orbitrap instrument for high mass spectral resolution for accurate identifications and a MALDI TOF/TOF instrument for improved spatial resolution and sensitivity, providing more descriptive MS images. MS images for 235 putative neuropeptides were obtained, with the identification of 145 of these being confirmed by either complementary MS/MS data or accurate mass matching. The MSI studies demonstrate the sensitivity and power of this MALDI-based in situ analytical strategy for unraveling the chemical complexity present in a small nine-cell neuronal system. The results of this study will enable more informative assays of the functions of neuropeptides within this important neural circuit.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
- Address reprint requests to Dr. Lingjun Li. Mailing Address: 5125 Rennebohm Hall, 777 Highland Avenue, Madison, WI 53705-2222. Phone: (608)265-8491, Fax: (608)262-5345.
| |
Collapse
|
31
|
Talmont F, Veneziano R, Dietrich G, Moulédous L, Mollereau C, Zajac JM. Pharmacological insight into the activation of the human neuropeptide FF2 receptor. Peptides 2020; 134:170406. [PMID: 32920044 DOI: 10.1016/j.peptides.2020.170406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/13/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
The neuropeptide FF2 (NPFF2) receptor, predominantly expressed in the central nervous system, plays an important role in the modulation of sensory input and opioid analgesia, as well as in locomotion, feeding, intestinal motility, reward, and the control of obesity. The NPFF2 receptor belongs to the RFamide peptide receptor family and to the G protein coupled receptor (GPCR) super family, but contrary to many other class A GPCRs, no 3D structure has been solved. Thus, it is essential to perform mutagenesis to gain information on the fine functioning of the NPFF2 receptor. In this study, we examined the role of aspartic acid (D) from the "D/ERY/F" motif found in the second intracellular loop (ICL2) and the role of the C-terminal end of the receptor in ligand binding and signal transduction. We found that mutation D3.49A does not impair binding capacities but inhibits G protein activation as well as adenylyl cyclase regulation. Truncation of the C terminal part of the receptor has different effects depending on the position of truncation. When truncation was realized downstream of the putative acylation site, ligand binding and signal transduction capabilities were not lost, contrary to total deletion of the C terminus, which totally impairs the activity of the receptor.
Collapse
Affiliation(s)
- Franck Talmont
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France.
| | - Remi Veneziano
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France
| | - Gilles Dietrich
- INSERM IRSD (Institut De Recherche En Santé Digestive) U1220, CHU Purpan Place Du Docteur Baylac, CS 60039 31024, Toulouse Cedex 3, France
| | - Lionel Moulédous
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France
| | - Catherine Mollereau
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France
| | - Jean-Marie Zajac
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France
| |
Collapse
|
32
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
33
|
Wang W, Jiang C, Xu Y, Ma Q, Yang J, Shi Y, Zhou N. Functional characterization of neuropeptide 26RFa receptors GPR103A and GPR103B in zebrafish, Danio rerio. Cell Signal 2020; 73:109677. [PMID: 32470519 DOI: 10.1016/j.cellsig.2020.109677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/10/2020] [Accepted: 05/23/2020] [Indexed: 11/25/2022]
Abstract
The hypothalamic neuropeptide 26RFa is the most recently identified member of the RFamide peptide family, and this 26RFa signaling system has been shown to be implicated in regulating a variety of physiological processes. In zebrafish,26RFa and two putative receptors, DrGPR103A and DrGPR103B, have been in silico identified, and in vivo data derived from overexpression and loss of function mutation experiments suggest the 26RFa signaling system plays an important role in the hypothalamic regulation of sleep. However, the biochemical and pharmacological information on DrGPR103A/B receptors is still unknown. Here, after cloning of cDNAs of two putative 26RFa receptor genes, DrGPR103A and B, from the total RNA of zebrafish whole body, functional assays demonstrated that both receptors were activated by synthetic zebrafish 26RFa neuropeptide, leading to a significant increase in CRE-driven luciferase activity and intracellular Ca2+ mobilization in a Gαq inhibitor- and Gαi/o inhibitor-sensitive manner. Upon activation by 26RFa, DrGPR103A and B evoked ERK1/2 phosphorylation and underwent internalization. Further functional determination also revealed that zebrafish kisspeptin-1 exhibited a slight potency for activating both DrGPR103A and B, and vice versa, zebrafish 26RFa also showed some activity at zebrafish GPR54A and B. Our findings provided evidence that zebrafish GPR103A and B are two functional Gαq- and Gαi/o-dually coupled receptors for 26RFa, enabling the further elucidation of the endocrinological roles of zebrafish 26RFa signaling system in the regulation of physiological activities.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Chaohui Jiang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Yue Xu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Qiang Ma
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Abstract
The significance of KISS1 goes beyond its original discovery as a metastasis suppressor. Its function as a neuropeptide involved in diverse physiologic processes is more well studied. Enthusiasm regarding KISS1 has cumulated in clinical trials in multiple fields related to reproduction and metabolism. But its cancer therapeutic space is unsettled. This review focuses on collating data from cancer and non-cancer fields in order to understand shared and disparate signaling that might inform clinical development in the cancer therapeutic and biomarker space. Research has focused on amino acid residues 68-121 (kisspeptin 54), binding to the KISS1 receptor and cellular responses. Evidence and counterevidence regarding this canonical pathway require closer look at the covariates so that the incredible potential of KISS1 can be realized.
Collapse
Affiliation(s)
- Thuc Ly
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Danny R Welch
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
35
|
DeLaney K, Cao W, Ma Y, Ma M, Zhang Y, Li L. PRESnovo: Prescreening Prior to de novo Sequencing to Improve Accuracy and Sensitivity of Neuropeptide Identification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1358-1371. [PMID: 32266812 PMCID: PMC7332408 DOI: 10.1021/jasms.0c00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Identification of peptides in species lacking fully sequenced genomes is challenging due to the lack of prior knowledge. De novo sequencing is the method of choice, but its performance is less than satisfactory due to algorithmic bias and interference in complex MS/MS spectra. The task becomes even more challenging for endogenous peptides that do not involve an enzymatic digestion step, such as neuropeptides. However, many neuropeptides possess common sequence motifs that are conserved across members of the same family. Taking advantage of this feature to improve de novo sequencing of neuropeptides, we have developed a method named PRESnovo (prescreening precursors prior to de novo sequencing) to predict the motif from a MS/MS spectrum. A neuropeptide sequence is broken into a motif with conserved amino acid residues and the remaining partial sequence. By searching against a predefined motif database constructed from known homologous sequences, PRESnovo assigns the most probable motif to each precursor via a sophisticated scoring function. Performance analysis was conducted with 15 neuropeptide standards, and 11 neuropeptides were correctly identified with PRESnovo compared to 1 identification by PEAKS only. We applied PRESnovo to assign motifs to peptide sequences in conjunction with PEAKS for assigning the rest of the peptide sequence in order to discover neuropeptides in tissue samples of green crab, C. maenas, and Jonah crab, C. borealis. Collectively, a large number of neuropeptides were identified, including 13 putative neuropeptides identified in green crab brain, 77 in Jonah crab brain, and 47 in Jonah crab sinus glands for the first time. This PRESnovo strategy greatly simplifies de novo sequencing and enhances the accuracy and sensitivity of neuropeptide identification when common motifs are present.
Collapse
|
36
|
King TI, Roewekamp AC, Sharma A, Harrison S, Mesangeau C, Mottinelli M, Kamble SH, McCurdy CR, Avery BA. Bioanalytical method development and validation of MES207, a neuropeptide FF receptor antagonist, and its application in preclinical pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1134-1135:121875. [DOI: 10.1016/j.jchromb.2019.121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
|
37
|
Gershkovich MM, Groß VE, Kaiser A, Prömel S. Pharmacological and functional similarities of the human neuropeptide Y system in C. elegans challenges phylogenetic views on the FLP/NPR system. Cell Commun Signal 2019; 17:123. [PMID: 31533726 PMCID: PMC6751662 DOI: 10.1186/s12964-019-0436-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The neuropeptide Y system affects various processes, among others food intake, and is frequently discussed in the context of targeting obesity. Studies in model organisms are indispensable to enable molecular studies in a physiological context. Although the NPY system is evolutionarily conserved in all bilaterians, in the widely used model Caenorhabditis elegans there is controversy on the existence of NPY orthologous molecules. While the FMRFamide-like peptide (FLP)/Neuropeptide receptor-Resemblance (NPR) system in the nematode was initially suggested to be orthologous to the mammalian NPY system, later global phylogenetic studies indicate that FLP/NPR is protostome-specific. METHODS We performed a comprehensive pharmacological study of the FLP/NPR system in transfected cells in vitro, and tested for functional substitution in C. elegans knockout strains. Further, we phenotypically compared different flp loss-of-function strains. Differences between groups were compared by ANOVA and post-hoc testing (Dunnett, Bonferroni). RESULTS Our pharmacological analysis of the FLP/NPR system including formerly functionally uncharacterized NPY-like peptides from C. elegans demonstrates that G protein-coupling and ligand requirements for receptor activation are similar to the human NPY system. In vitro and in vivo analyses show cross-reactivity of NPY with the FLP/NPR system manifesting in the ability of the human GPCRs to functionally substitute FLP/NPR signaling in vivo. The high pharmacological/functional similarities enabled us to identify C. elegans FLP-14 as a key molecule in avoidance behavior. CONCLUSIONS Our data demonstrate the pharmacological and functional similarities of human NPY and C. elegans NPR systems. This adds a novel perspective to current phylogenetic reconstructions of the neuropeptide Y system. NPY and NPR receptors are pharmacologically so similar that the human receptors can functionally compensate for the C. elegans ones, suggesting orthologous relationships. This is also underlined by the presence of NPY-like peptides and parallels in peptide requirements for receptor activation. Further, the results presented here highlight the potential of this knowledge for physiological as well as molecular studies on neuropeptide GPCRs such as the NPY system in the future.
Collapse
Affiliation(s)
| | - Victoria Elisabeth Groß
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Simone Prömel
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
38
|
The Impact of Morphine on Reproductive Activity in Male Rats Is Regulated by Rf-Amid-Related Peptide-3 and Substance P Adjusting Hypothalamic Kisspeptin Expression. J Mol Neurosci 2019; 69:456-469. [DOI: 10.1007/s12031-019-01375-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023]
|
39
|
Sahin Z, Kelestimur H. RF9: May it be a new therapeutic option for hypogonadotropic hypogonadism? Med Hypotheses 2019; 128:54-57. [PMID: 31203909 DOI: 10.1016/j.mehy.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022]
Abstract
Hypogonadotropic hypogonadism (secondary hypogonadism), congenital or acquired, is a form of hypogonadism that is due to problems with either the hypothalamus or pituitary gland affecting gonadotropin levels. Pulsatile secretion of gonadotropin-releasing hormone (GnRH) by hypothalamus is a primer step to initiate the release of pituitary gonadotropins. Kisspeptin and gonadotropin-inhibitory hormone (GnIH) are accepted as two major players in the activation and inhibition of GnRH regarding the neuroendocrine functioning of the hypothalamic pituitary gonadal axis. Kisspeptin is known as the most potent activator of GnRH. Regarding the inhibition of GnRH, RF-amide-related peptide-3 (RFRP-3) is accepted as the mammalian orthologue of GnIH in avian species. RF9 (1-adamantane carbonyl-Arg-Phe-NH2) is an antagonist of RFRP-3/GnIH receptor (neuropeptide FF receptor 1 (NPFFR1; also termed as GPR147). In recent years, several studies have indicated that RF9 activates GnRH neurons and gonadotropins in a kisspeptin receptor (Kiss1r, formerly known as GPR54) dependent manner. These results suggest that RF9 may have a bimodal function as both an RFRP-3 antagonist and a kisspeptin agonist or it may be a kiss1r agonist rather than an RFRP-3/GnIH receptor antagonist. These interactions are possible because Kisspeptin and GnIH are members of the RF-amide family, and both possibilities are not far from explaining the potent gonadotropin stimulating effects of RF9. Therefore, we hypothesize that RF9 may be a new therapeutic option for the hypogonadotropic hypogonadism due to its potent GnRH stimulating effects. A constant or repeated administration of RF9 provides a sustained increase in plasma gonadotrophin levels. However, applications in the same way with GnRH analogues and kisspeptin may result in desensitization of the gonadotropic axis. The reasons reported above contribute to our hypothesis that RF9 may be a good option in the GnRH stimulating as a kisspeptin agonist. We suggest that further studies are needed to elucidate the potential effects of RF9 in the treatment of the hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Zafer Sahin
- Department of Physiology, Karadeniz Technical University, Trabzon, Turkey.
| | | |
Collapse
|
40
|
Diet-induced adaptive thermogenesis requires neuropeptide FF receptor-2 signalling. Nat Commun 2018; 9:4722. [PMID: 30413707 PMCID: PMC6226433 DOI: 10.1038/s41467-018-06462-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/07/2018] [Indexed: 11/24/2022] Open
Abstract
Excess caloric intake results in increased fat accumulation and an increase in energy expenditure via diet-induced adaptive thermogenesis; however, the underlying mechanisms controlling these processes are unclear. Here we identify the neuropeptide FF receptor-2 (NPFFR2) as a critical regulator of diet-induced thermogenesis and bone homoeostasis. Npffr2−/− mice exhibit a stronger bone phenotype and when fed a HFD display exacerbated obesity associated with a failure in activating brown adipose tissue (BAT) thermogenic response to energy excess, whereas the activation of cold-induced BAT thermogenesis is unaffected. NPFFR2 signalling is required to maintain basal arcuate nucleus NPY mRNA expression. Lack of NPFFR2 signalling leads to a decrease in BAT thermogenesis under HFD conditions with significantly lower UCP-1 and PGC-1α levels in the BAT. Together, these data demonstrate that NPFFR2 signalling promotes diet-induced thermogenesis via a novel hypothalamic NPY-dependent circuitry thereby coupling energy homoeostasis with energy partitioning to adipose and bone tissue. Excess caloric intake leads to increased thermogenesis in brown adipose tissue, to limit weight gain. Here, the authors show that neuropeptide FF receptor-2 signalling promotes thermogenesis via control of NPY expression in the arcuate nucleus, and that it absence in mice leads to a failure of activation of diet-induced thermogenesis and the development of exacerbated obesity.
Collapse
|
41
|
Nourbakhsh F, Atabaki R, Roohbakhsh A. The role of orphan G protein-coupled receptors in the modulation of pain: A review. Life Sci 2018; 212:59-69. [PMID: 30236869 DOI: 10.1016/j.lfs.2018.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise a large number of receptors. Orphan GPCRs are divided into six families. These groups contain orphan receptors for which the endogenous ligands are unclear. They have various physiological effects in the body and have the potential to be used in the treatment of different diseases. Considering their important role in the central and peripheral nervous system, their role in the treatment of pain has been the subject of some recent studies. At present, there are effective therapeutics for the treatment of pain including opioid medications and non-steroidal anti-inflammatory drugs. However, the side effects of these drugs and the risks of tolerance and dependence remain a major problem. In addition, neuropathic pain is a condition that does not respond to currently available analgesic medications well. In the present review article, we aimed to review the most recent findings regarding the role of orphan GPCRs in the treatment of pain. Accordingly, based on the preclinical findings, the role of GPR3, GPR7, GPR8, GPR18, GPR30, GPR35, GPR40, GPR55, GPR74, and GPR147 in the treatment of pain was discussed. The present study highlights the role of orphan GPCRs in the modulation of pain and implies that these receptors are potential new targets for finding better and more efficient therapeutics for the management of pain particularly neuropathic pain.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rabi Atabaki
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
|
43
|
Abdellah N, van Remoortel S, Mohey-Elsaeed O, Mustafa MN, Ahmed YA, Timmermans JP, Buckinx R. Neuropeptide AF Induces Piecemeal Degranulation in Murine Mucosal Mast Cells: A New Mediator in Neuro-Immune Communication in the Intestinal Lamina Propria? Anat Rec (Hoboken) 2018; 301:1103-1114. [DOI: 10.1002/ar.23780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 12/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Nada Abdellah
- Histology Department, Faculty of Veterinary Medicine; Sohag University; Sohag Egypt
- Laboratory of Cell Biology & Histology, University of Antwerp; Antwerp Belgium
| | | | - Omnia Mohey-Elsaeed
- Laboratory of Cell Biology & Histology, University of Antwerp; Antwerp Belgium
- Department of Cytology and Histology, Faculty of Veterinary Medicine; Cairo University; Giza 12122 Egypt
| | - Mohamed-Nabil Mustafa
- Department of Anatomy and Histology, Faculty of Veterinary Medicine; Assiut University; Assiut Egypt
| | - Yasser A. Ahmed
- Department of Histology, Faculty of Veterinary Medicine; South Valley University; Qena Egypt
| | | | - Roeland Buckinx
- Laboratory of Cell Biology & Histology, University of Antwerp; Antwerp Belgium
| |
Collapse
|
44
|
Leprince J, Bagnol D, Bureau R, Fukusumi S, Granata R, Hinuma S, Larhammar D, Primeaux S, Sopkova-de Oliveiras Santos J, Tsutsui K, Ukena K, Vaudry H. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br J Pharmacol 2017; 174:3573-3607. [PMID: 28613414 DOI: 10.1111/bph.13907] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
The RFamide neuropeptide 26RFa was first isolated from the brain of the European green frog on the basis of cross-reactivity with antibodies raised against bovine neuropeptide FF (NPFF). 26RFa and its N-terminally extended form glutamine RF-amide peptide (QRFP) have been identified as cognate ligands of the former orphan receptor GPR103, now renamed glutamine RF-amide peptide receptor (QRFP receptor). The 26RFa/QRFP precursor has been characterized in various mammalian and non-mammalian species. In the brain of mammals, including humans, 26RFa/QRFP mRNA is almost exclusively expressed in hypothalamic nuclei. The 26RFa/QRFP transcript is also present in various organs especially in endocrine glands. While humans express only one QRFP receptor, two isoforms are present in rodents. The QRFP receptor genes are widely expressed in the CNS and in peripheral tissues, notably in bone, heart, kidney, pancreas and testis. Structure-activity relationship studies have led to the identification of low MW peptidergic agonists and antagonists of QRFP receptor. Concurrently, several selective non-peptidic antagonists have been designed from high-throughput screening hit optimization. Consistent with the widespread distribution of QRFP receptor mRNA and 26RFa binding sites, 26RFa/QRFP exerts a large range of biological activities, notably in the control of energy homeostasis, bone formation and nociception that are mediated by QRFP receptor or NPFF2. The present report reviews the current knowledge concerning the 26RFa/QRFP-QRFP receptor system and discusses the potential use of selective QRFP receptor ligands for therapeutic applications.
Collapse
Affiliation(s)
- Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| | - Didier Bagnol
- CNS Drug Discovery, Arena Pharmaceuticals Inc., San Diego, CA, USA
| | - Ronan Bureau
- Normandy Centre for Studies and Research on Medicines (CERMN), Normandy University, Caen, France
| | - Shoji Fukusumi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shuji Hinuma
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, Suita-City, Osaka, Japan
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden
| | - Stefany Primeaux
- Department of Physiology, Joint Diabetes, Endocrinology & Metabolism Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science, Tokyo, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| |
Collapse
|
45
|
Lin YT, Yu YL, Hong WC, Yeh TS, Chen TC, Chen JC. NPFFR2 Activates the HPA Axis and Induces Anxiogenic Effects in Rodents. Int J Mol Sci 2017; 18:ijms18081810. [PMID: 28825666 PMCID: PMC5578197 DOI: 10.3390/ijms18081810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide FF (NPFF) belongs to the RFamide family and is known as a morphine-modulating peptide. NPFF regulates various hypothalamic functions through two receptors, NPFFR1 and NPFFR2. The hypothalamic-pituitary-adrenal (HPA) axis participates in physiological stress response by increasing circulating glucocorticoid levels and modulating emotional responses. Other RFamide peptides, including neuropeptide AF, neuropeptide SF and RFamide related peptide also target NPFFR1 or NPFFR2, and have been reported to activate the HPA axis and induce anxiety- or depression-like behaviors. However, little is known about the action of NPFF on HPA axis activity and anxiety-like behaviors, and the role of the individual receptors remains unclear. In this study, NPFFR2 agonists were used to examine the role of NPFFR2 in activating the HPA axis in rodents. Administration of NPFFR2 agonists, dNPA (intracerebroventricular, ICV) and AC-263093 (intraperitoneal, IP), time-dependently (in rats) and dose-dependently (in mice) increased serum corticosteroid levels and the effects were counteracted by the NPFF receptor antagonist, RF9 (ICV), as well as corticotropin-releasing factor (CRF) antagonist, α-helical CRF(9-41) (intravenous, IV). Treatment with NPFFR2 agonist (AC-263093, IP) increased c-Fos protein expression in the hypothalamic paraventricular nucleus and induced an anxiogenic effect, which was evaluated in mice using an elevated plus maze. These findings reveal, for the first time, that the direct action of hypothalamic NPFFR2 stimulates the HPA axis and triggers anxiety-like behaviors.
Collapse
Affiliation(s)
- Ya-Tin Lin
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University, No. 259 Wenhwa 1st Road, Guishan, Taoyuan 333, Taiwan.
| | - Yu-Lian Yu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan.
| | - Wei-Chen Hong
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan.
| | - Ting-Shiuan Yeh
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Ting-Chun Chen
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan.
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University, No. 259 Wenhwa 1st Road, Guishan, Taoyuan 333, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital, No. 5, Fusing St., Guishan, Taoyuan 333, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
46
|
Kim JS, Brown CH, Anderson GM. Anti-opioid Effects of RFRP-3 on Magnocellular Neuron Activity in Morphine-naïve and Morphine-treated Female Rats. Endocrinology 2016; 157:4003-4011. [PMID: 27533886 DOI: 10.1210/en.2016-1374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuropeptide FF receptors (NPFFR1 and NPFFR2) have been proposed to possess anti-opioid properties, and be involved in the development of opiate tolerance and dependence. However, there is no evidence to date supporting such opioid effects at the cellular level in vivo. Using in vivo electrophysiological recordings from vasopressin and oxytocin neurons in the supraoptic nucleus, we aimed to determine the effects of NPFFRs on opiate inhibition, tolerance, and dependence at a cellular level. Both vasopressin and oxytocin neurons are acutely inhibited by opioids and develop opiate tolerance. Oxytocin neurons also develop cellular opiate dependence and undergo withdrawal hyperexcitation upon cessation of opiate administration. Here, the classical μ-opioid receptor agonist, morphine robustly inhibited the spontaneous firing rate of vasopressin and oxytocin neurons, and this inhibition was attenuated by pretreatment with the NPFFR1 agonist, RFamide-related peptide-3. In rats infused with morphine for 6 d, vasopressin neurons were unresponsive to morphine, indicating the development of cellular tolerance, but pretreatment with the NPFFR antagonist, GJ14, restored acute morphine inhibition. In morphine-infused rats, RFamide related peptide-3 did not induce withdrawal excitation in oxytocin neurons and GJ14 did not reverse naloxone-precipitated withdrawal excitation. This is the first evidence of anti-opioid effects of the NPFFR system at a cellular level in vivo. Our results suggest that the anti-opioid properties of the NPFFR system reduce morphine sensitivity during tolerance but that it is not involved in dependence.
Collapse
Affiliation(s)
- Joon S Kim
- Centre for Neuroendocrinology and Departments of Anatomy (J.S.K., G.M.A.) and Physiology (C.H.B.), University of Otago, Dunedin 9054, New Zealand
| | - Colin H Brown
- Centre for Neuroendocrinology and Departments of Anatomy (J.S.K., G.M.A.) and Physiology (C.H.B.), University of Otago, Dunedin 9054, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Departments of Anatomy (J.S.K., G.M.A.) and Physiology (C.H.B.), University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
47
|
Kim JS. What's in a Name? Roles of RFamide-Related Peptides Beyond Gonadotrophin Inhibition. J Neuroendocrinol 2016; 28. [PMID: 27369805 DOI: 10.1111/jne.12407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/29/2022]
Abstract
RFamide-related peptides (RFRPs) have been heavily implicated in the control of reproductive function subsequent to their discovery more than 16 years ago. However, recent studies using genetic and pharmacological tools have challenged their importance in regulating the hypothalamic-pituitary-gonadal axis. It is generally accepted that RFRPs act as part of a wider RFamide system, which involves two receptors, called the neuropeptide FF receptors (NPFFR1 and R2), and includes the closely-related neuropeptide NPFF. NPFF has been studied ever since the 1980s and many of the functions of NPFF are also shared by RFRPs. The current review questions whether these functions of NPFF are indeed specific to just NPFF alone and presents evidence from both neuroendocrine and pharmacological perspectives. Furthermore, recently emerging new functions of RFRPs are discussed with the overall goal of clarifying the functions of RFRPs beyond the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- J S Kim
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
48
|
Chronic activation of NPFFR2 stimulates the stress-related depressive behaviors through HPA axis modulation. Psychoneuroendocrinology 2016; 71:73-85. [PMID: 27243477 DOI: 10.1016/j.psyneuen.2016.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Neuropeptide FF (NPFF) is a morphine-modulating peptide that regulates the analgesic effect of opioids, and also controls food consumption and cardiovascular function through its interaction with two cognate receptors, NPFFR1 and NPFFR2. In the present study, we explore a novel modulatory role for NPFF-NPFFR2 in stress-related depressive behaviors. In a mouse model of chronic mild stress (CMS)-induced depression, the expression of NPFF significantly increased in the hypothalamus, hippocampus, medial prefrontal cortex (mPFC) and amygdala. In addition, transgenic (Tg) mice over-expressing NPFFR2 displayed clear depression and anxiety-like behaviors with hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis, reduced expression of glucocorticoid receptor (GR) and neurogenesis in the hippocampus. Furthermore, acute treatment of NPFFR2 agonists in wild-type (WT) mice enhanced the activity of the HPA axis, and chronic administration resulted in depressive and anxiety-like behaviors. Chronic stimulation of NPFFR2 also decreased the expression of hippocampal GR and led to persistent activation of the HPA axis. Strikingly, bilateral intra-paraventricular nucleus (PVN) injection of NPFFR2 shRNA predominately inhibits the depressive-like behavior in CMS-exposed mice. Antidepressants, fluoxetine and ketamine, effectively relieved the depressive behaviors of NPFFR2-Tg mice. We speculate that persistent NPFFR2 activation, in particular in the hypothalamus, up-regulates the HPA axis and results in long-lasting increases in circulating corticosterone (CORT), consequently damaging hippocampal function. This novel role of NPFFR2 in regulating the HPA axis and hippocampal function provides a new avenue for combating depression and anxiety-like disorder.
Collapse
|
49
|
Schreiber AL, Arceneaux KP, Malbrue RA, Mouton AJ, Chen CS, Bench EM, Braymer HD, Primeaux SD. The effects of high fat diet and estradiol on hypothalamic prepro-QRFP mRNA expression in female rats. Neuropeptides 2016; 58:103-9. [PMID: 26823127 PMCID: PMC4960001 DOI: 10.1016/j.npep.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/22/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Estradiol (E2) is a potent regulator of feeding behavior, body weight and adiposity in females. The hypothalamic neuropeptide, QRFP, is an orexigenic peptide that increases the consumption of high fat diet (HFD) in intact female rats. Therefore, the goal of the current series of studies was to elucidate the effects of E2 on the expression of hypothalamic QRFP and its receptors, QRFP-r1 and QRFP-r2, in female rats fed a HFD. Alterations in prepro-QRFP, QRFP-r1, and QRFP-r2 expression across the estrous cycle, following ovariectomy (OVX) and following estradiol benzoate (EB) treatment were assessed in the ventral medial nucleus of the hypothalamus/arcuate nucleus (VMH/ARC) and the lateral hypothalamus. In intact females, consumption of HFD increased prepro-QRFP and QRFP-r1 mRNA levels in the VMH/ARC during diestrus, a phase associated with increased food intake and low levels of E2. To assess the effects of diminished endogenous E2, rats were ovariectomized. HFD consumption and OVX increased prepro-QRFP mRNA in the VMH/ARC. Ovariectomized rats consuming HFD expressed the highest levels of QRFP. In the third experiment, all rats received EB replacement every 4days following OVX to examine the effects of E2 on QRFP expression. Prepro-QRFP, QRFP-r1 and QRFP-r2 mRNA were assessed prior to and following EB administration. EB replacement significantly reduced prepro-QRFP mRNA expression in the VMH/ARC. Overall these studies support a role for E2 in the regulation of prepro-QRFP mRNA in the VMH/ARC and suggest that E2's effects on food intake may be via a direct effect on the orexigenic peptide, QRFP.
Collapse
Affiliation(s)
- Allyson L Schreiber
- Department of Physiology, 1901 Perdido Street, Louisiana State University Health Science Center-New Orleans, New Orleans, LA 70112, USA
| | - Kenneth P Arceneaux
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Raphael A Malbrue
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Alan J Mouton
- Department of Physiology, 1901 Perdido Street, Louisiana State University Health Science Center-New Orleans, New Orleans, LA 70112, USA
| | - Christina S Chen
- Joint Diabetes, Endocrinology & Metabolism Program, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Elias M Bench
- Joint Diabetes, Endocrinology & Metabolism Program, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - H Douglas Braymer
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Stefany D Primeaux
- Department of Physiology, 1901 Perdido Street, Louisiana State University Health Science Center-New Orleans, New Orleans, LA 70112, USA; Joint Diabetes, Endocrinology & Metabolism Program, 6400 Perkins Road, Baton Rouge, LA 70808, USA; Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
50
|
Deluca SH, Rathmann D, Beck-Sickinger AG, Meiler J. The activity of prolactin releasing peptide correlates with its helicity. Biopolymers 2016; 99:314-25. [PMID: 23426574 DOI: 10.1002/bip.22162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/30/2012] [Accepted: 09/15/2012] [Indexed: 11/09/2022]
Abstract
The prolactin releasing peptide (PrRP) is involved in regulating food intake and body weight homeostasis, but molecular details on the activation of the PrRP receptor remain unclear. C-terminal segments of PrRP with 20 (PrRP20) and 13 (PrRP8-20) amino acids, respectively, have been suggested to be fully active. The data presented herein indicate this is true for the wildtype receptor only; a 5-10-fold loss of activity was found for PrRP8-20 compared to PrRP20 at two extracellular loop mutants of the receptor. To gain insight into the secondary structure of PrRP, we used CD spectroscopy performed in TFE and SDS. Additionally, previously reported NMR data, combined with ROSETTANMR, were employed to determine the structure of amidated PrRP20. The structural ensemble agrees with the spectroscopic data for the full-length peptide, which exists in an equilibrium between α- and 3(10)-helix. We demonstrate that PrRP8-20's reduced propensity to form an α-helix correlates with its reduced biological activity on mutant receptors. Further, distinct amino acid replacements in PrRP significantly decrease affinity and activity but have no influence on the secondary structure of the peptide. We conclude that formation of a primarily α-helical C-terminal region of PrRP is critical for receptor activation.
Collapse
Affiliation(s)
- Stephanie H Deluca
- Vanderbilt University Center for Structural Biology, 5144B Biosci/MRBIII, 465 21st Avenue South, Nashville, TN 37232-8725
| | | | | | | |
Collapse
|