1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Baena JC, Pérez LM, Toro-Pedroza A, Kitawaki T, Loukanov A. CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad. Int J Mol Sci 2024; 25:13157. [PMID: 39684867 DOI: 10.3390/ijms252313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our "addition by subtraction model" synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms.
Collapse
Affiliation(s)
- Juan C Baena
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Lucy M Pérez
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Alejandro Toro-Pedroza
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Toshio Kitawaki
- Department of Hematology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Alexandre Loukanov
- Department of Chemistry and Materials Science, National Institute of Technology, Gunma College, Maebashi 371-8530, Japan
- Laboratory of Engineering Nanobiotechnology, University of Mining and Geology "St. Ivan Rilski", 1700 Sofia, Bulgaria
| |
Collapse
|
3
|
Yu Y, Dong L, Dong C, Zhang X. Validation of a Proteomic-Based Prognostic Model for Breast Cancer and Immunological Analysis. Int J Genomics 2023; 2023:1738750. [PMID: 38145160 PMCID: PMC10748720 DOI: 10.1155/2023/1738750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Breast cancer (BC) has emerged as an extremely destructive malignancy, causing significant harm to female patients and society at large. Proteomic research holds great promise for early diagnosis and treatment of diseases, and the integration of proteomics with genomics can offer valuable assistance in the early diagnosis, treatment, and improved prognosis of BC patients. In this study, we downloaded breast cancer protein expression data from The Cancer Genome Atlas (TCGA) and combined proteomics with genomics to construct a proteomic-based prognostic model for BC. This model consists of nine proteins (HEREGULIN, IDO, PEA15, MERIT40_pS29, CIITA, AKT2, CD171 DVL3, and CABL9). The accuracy of the model in predicting the survival prognosis of BC patients was further validated through risk curve analysis, survival curve analysis, and independent prognostic analysis. We further confirmed the impact of differential expression of these nine key proteins on overall survival in BC patients, and the differential expression of the key proteins and their encoding genes was validated using immunohistochemical staining. Enrichment analysis revealed functional associations primarily related to PPAR signaling pathway, steroid hormone metabolism, chemokine signaling pathway, DNA conformation changes, immunoglobulin production, and immunoglobulin complex in the high- and low-risk groups. Immune infiltration analysis revealed differential expression of immune cells between the high- and low-risk groups, providing a theoretical basis for subsequent immunotherapy. The model constructed in this study can predict the survival of BC patients, and the identified key proteins may serve as biomarkers to aid in the early diagnosis of BC. Enrichment analysis and immune infiltration analysis provide a necessary theoretical basis for further exploration of the molecular mechanisms and subsequent immunotherapy.
Collapse
Affiliation(s)
- Yunlin Yu
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| | - Linhuan Dong
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| | - Changjun Dong
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| | - Xianlin Zhang
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| |
Collapse
|
4
|
Hunter JE, Campbell AE, Kerridge S, Fraser C, Hannaway NL, Luli S, Ivanova I, Brownridge PJ, Coxhead J, Taylor L, Leary P, Hasoon MSR, Eyers CE, Perkins ND. Up-regulation of the PI3K/AKT and RHO/RAC/PAK signalling pathways in CHK1 inhibitor resistant Eµ-Myc lymphoma cells. Biochem J 2022; 479:2131-2151. [PMID: 36240067 PMCID: PMC9704644 DOI: 10.1042/bcj20220103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
The development of resistance and the activation of bypass pathway signalling represents a major problem for the clinical application of protein kinase inhibitors. While investigating the effect of either a c-Rel deletion or RelAT505A phosphosite knockin on the Eµ-Myc mouse model of B-cell lymphoma, we discovered that both NF-κB subunit mutations resulted in CHK1 inhibitor resistance, arising from either loss or alteration of CHK1 activity, respectively. However, since Eµ-Myc lymphomas depend on CHK1 activity to cope with high levels of DNA replication stress and consequent genomic instability, it was not clear how these mutant NF-κB subunit lymphomas were able to survive. To understand these survival mechanisms and to identify potential compensatory bypass signalling pathways in these lymphomas, we applied a multi-omics strategy. With c-Rel-/- Eµ-Myc lymphomas we observed high levels of Phosphatidyl-inositol 3-kinase (PI3K) and AKT pathway activation. Moreover, treatment with the PI3K inhibitor Pictilisib (GDC-0941) selectively inhibited the growth of reimplanted c-Rel-/- and RelAT505A, but not wild type (WT) Eµ-Myc lymphomas. We also observed up-regulation of a RHO/RAC pathway gene expression signature in both Eµ-Myc NF-κB subunit mutation models. Further investigation demonstrated activation of the RHO/RAC effector p21-activated kinase (PAK) 2. Here, the PAK inhibitor, PF-3758309 successfully overcame resistance of RelAT505A but not WT lymphomas. These findings demonstrate that up-regulation of multiple bypass pathways occurs in CHK1 inhibitor resistant Eµ-Myc lymphomas. Consequently, drugs targeting these pathways could potentially be used as either second line or combinatorial therapies to aid the successful clinical application of CHK1 inhibitors.
Collapse
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Scott Kerridge
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Callum Fraser
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging (PIVI), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Iglika Ivanova
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Megan S. R. Hasoon
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
5
|
Ikedife J, He J, Wei Y. PEA-15 engages in allosteric interactions using a common scaffold in a phosphorylation-dependent manner. Sci Rep 2022; 12:116. [PMID: 34997083 PMCID: PMC8742051 DOI: 10.1038/s41598-021-04099-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) is a death-effector domain (DED) containing protein involved in regulating mitogen-activated protein kinase and apoptosis pathways. In this molecular dynamics study, we examined how phosphorylation of the PEA-15 C-terminal tail residues, Ser-104 and Ser-116, allosterically mediates conformational changes of the DED and alters the binding specificity from extracellular-regulated kinase (ERK) to Fas-associated death domain (FADD) protein. We delineated that the binding interfaces between the unphosphorylated PEA-15 and ERK2 and between the doubly phosphorylated PEA-15 and FADD are similarly composed of a scaffold that includes both the DED and the C-terminal tail residues of PEA-15. While the unphosphorylated serine residues do not directly interact with ERK2, the phosphorylated Ser-116 engages in strong electrostatic interactions with arginine residues on FADD DED. Upon PEA-15 binding, FADD repositions its death domain (DD) relative to the DED, an essential conformational change to allow the death-inducing signaling complex (DISC) assembly.
Collapse
Affiliation(s)
- Joyce Ikedife
- Department of Chemistry, New Jersey City University, Jersey City, NJ, 07305, USA
| | - Jianlin He
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, Fujian, China
| | - Yufeng Wei
- Department of Chemistry, New Jersey City University, Jersey City, NJ, 07305, USA.
| |
Collapse
|
6
|
Xian F, Li Q, Chen Z. Overexpression of phosphoprotein enriched in astrocytes 15 reverses the damage induced by propofol in hippocampal neurons. Mol Med Rep 2019; 20:1583-1592. [PMID: 31257496 PMCID: PMC6625386 DOI: 10.3892/mmr.2019.10412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 05/20/2019] [Indexed: 01/09/2023] Open
Abstract
Propofol is a general anesthetic used in surgical operations. Phosphoprotein enriched in astrocytes 15(PEA15) was initially identified in astrocytes. The present study examined the role of PEA15 in the damage induced by propofol in hippocampal neurons. A model of hippocampal neuron damage was established using 50 µmol/l propofol. Cell viability, proliferation and apoptosis of hippocampal neurons were tested by Cell Counting Kit‑8 and flow cytometry. Western blotting and reverse transcription‑quantitative polymerase chain reaction analysis were performed to measure the expression levels of PEA15, and additional factors involved in apoptosis or in the signaling pathway downstream of PEA15. The present results suggested that propofol significantly decreased PEA15 expression levels in hippocampal neurons. Furthermore, overexpression of PEA15 significantly increased the cell viability and cell proliferation of cells treated with propofol. Additionally, PEA15 overexpression decreased apoptosis, which was promoted by propofol. Treatment with propofol significantly decreased the protein expression levels of pro‑caspase‑3, B‑cell lymphoma-2, phosphorylated extracellular signal‑regulated kinases (ERK)1/2, ribosomal S6 kinase 2 (RSK2) and phosphorylated cAMP responsive element binding protein 1 (CREB1). However, propofol upregulated active caspase‑3 and Bax expression levels. Notably, PEA15 overexpression was able to reverse the effects of propofol. Collectively, overexpression of PEA15 was able to attenuate the neurotoxicity of propofol in rat hippocampal neurons by increasing proliferation and repressing apoptosis via upregulation of the ERK‑CREB‑RSK2 signaling pathway.
Collapse
Affiliation(s)
- Feng Xian
- Department of Anesthesiology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Qifang Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Zuping Chen
- Department of Anesthesiology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
7
|
Crespo-Flores SL, Cabezas A, Hassan S, Wei Y. PEA-15 C-Terminal Tail Allosterically Modulates Death-Effector Domain Conformation and Facilitates Protein-Protein Interactions. Int J Mol Sci 2019; 20:ijms20133335. [PMID: 31284641 PMCID: PMC6651876 DOI: 10.3390/ijms20133335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) exerts its regulatory roles on several critical cellular pathways through protein–protein interactions depending on its phosphorylation states. It can either inhibit the extracellular signal-regulated kinase (ERK) activities when it is dephosphorylated or block the assembly of death-inducing signaling complex (DISC) and the subsequent activation of apoptotic initiator, caspase-8, when it is phosphorylated. Due to the important roles of PEA-15 in regulating these pathways that lead to opposite cellular outcomes (cell proliferation vs. cell death), we proposed a phosphostasis (phosphorylation homeostasis) model, in which the phosphorylation states of the protein are vigorously controlled and regulated to maintain a delicate balance. The phosphostasis gives rise to the protective cellular functions of PEA-15 to preserve optimum cellular conditions. In this article, using advanced multidimensional nuclear magnetic resonance (NMR) techniques combined with a novel chemical shift (CS)-Rosetta algorithm for de novo protein structural determination, we report a novel conformation of PEA-15 death-effector domain (DED) upon interacting with ERK2. This new conformation is modulated by the irregularly structured C-terminal tail when it first recognizes and binds to ERK2 at the d-peptide recruitment site (DRS) in an allosteric manner, and is facilitated by the rearrangement of the surface electrostatic and hydrogen-bonding interactions on the DED. In this ERK2-bound conformation, three of the six helices (α2, α3, and α4) comprising the DED reorient substantially in comparison to the free-form structure, exposing key residues on the other three helices that directly interact with ERK2 at the DEF-docking site (docking site for ERK, FxF) and the activation loop. Additionally, we provide evidence that the phosphorylation of the C-terminal tail leads to a distinct conformation of DED, allowing efficient interactions with Fas-associated death domain (FADD) protein at the DISC. Our results substantiate the allosteric regulatory roles of the C-terminal tail in modulating DED conformation and facilitating protein–protein interactions of PEA-15.
Collapse
Affiliation(s)
| | - Andres Cabezas
- Department of Chemistry, New Jersey City University, Jersey City, NJ 07305-1596, USA
| | - Sherouk Hassan
- Department of Chemistry, New Jersey City University, Jersey City, NJ 07305-1596, USA
| | - Yufeng Wei
- Department of Chemistry, New Jersey City University, Jersey City, NJ 07305-1596, USA.
| |
Collapse
|
8
|
Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci U S A 2018; 115:E2068-E2076. [PMID: 29440406 PMCID: PMC5834689 DOI: 10.1073/pnas.1716266115] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Davenport et al. discovered that the chimeric antigen receptor (CAR) immune synapse structure is different from the T cell receptor (TCR) synapse. The CAR immune synapse formed a disorganized pattern of Lck and more rapidly recruited lytic granules compared with the TCR. The differing immune synapse correlated with faster killing of tumor target cells and detachment from dying tumor cells by CAR-T cells. These findings provide a mechanism whereby CAR-T cells can effectively reduce large tumor burden in patients. This study will form a basis upon which to compare future receptor design to modulate signaling and programming of cytotoxic CAR-T cells to improve treatment of solid cancers. Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell.
Collapse
|
9
|
Fiory F, Spinelli R, Raciti GA, Parrillo L, D'esposito V, Formisano P, Miele C, Beguinot F. Targetting PED/PEA-15 for diabetes treatment. Expert Opin Ther Targets 2017; 21:571-581. [PMID: 28395542 DOI: 10.1080/14728222.2017.1317749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION PED/PEA-15 is an ubiquitously expressed protein, involved in the regulation of proliferation and apoptosis. It is commonly overexpressed in Type 2 Diabetes (T2D) and in different T2D-associated comorbidities, including cancer and certain neurodegenerative disorders. Areas covered: In mice, Ped/Pea-15 overexpression impairs glucose tolerance and, in combination with high fat diets, further promotes insulin resistance and T2D. It also controls β-cell mass, altering caspase-3 activation and the expression of pro- and antiapoptotic genes. These changes are mediated by PED/PEA-15-PLD1 binding. Overexpression of PLD1 D4 domain specifically blocks Ped/Pea-15-PLD1 interaction, reverting the effect of Ped/Pea-15 in vivo. D4α, a D4 N-terminal peptide, is able to displace Ped/Pea-15-PLD1 binding, but features greater stability in vivo compared to the entire D4 peptide. Here, we review early mechanistic studies on PED/PEA-15 relevance in apoptosis before focusing on its role in cancer and T2D. Finally, we describe potential therapeutic opportunities for T2D based on PED/PEA-15 targeting. Expert opinion: T2D is a major problem for public health and economy. Thus, the identification of new molecules with pharmacological activity for T2D represents an urgent need. Further studies with D4α will help to identify smaller pharmacologically active peptides and innovative molecules of potential pharmacological interest for T2D treatment.
Collapse
Affiliation(s)
- Francesca Fiory
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Rosa Spinelli
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Gregory Alexander Raciti
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Luca Parrillo
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Vittoria D'esposito
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Pietro Formisano
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Claudia Miele
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Francesco Beguinot
- a National Council of Research , URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore" , Naples , Italy.,b Department of Translational Medical Sciences , University of Naples "Federico II" , Naples , Italy
| |
Collapse
|
10
|
The protein phosphatase 4 - PEA15 axis regulates the survival of breast cancer cells. Cell Signal 2016; 28:1389-1400. [PMID: 27317964 DOI: 10.1016/j.cellsig.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND The control of breast cell survival is of critical importance for preventing breast cancer initiation and progression. The activity of many proteins which regulate cell survival is controlled by reversible phosphorylation, so that the relevant kinases and phosphatases play crucial roles in determining cell fate. Several protein kinases act as oncoproteins in breast cancer and changes in their activities contribute to the process of transformation. Through counteracting the activity of oncogenic kinases, the protein phosphatases are also likely to be important players in breast cancer development, but this class of molecules is relatively poorly understood. Here we have investigated the role of the serine/threonine protein phosphatase 4 in the control of cell survival of breast cancer cells. METHODS The breast cancer cell lines, MCF7 and MDA-MB-231, were transfected with expression vectors encoding the catalytic subunit of protein phosphatase 4 (PP4c) or with PP4c siRNAs. Culture viability, apoptosis, cell migration and cell cycle were assessed. The involvement of phosphoprotein enriched in astrocytes 15kDa (PEA15) in PP4c action was investigated by immunoblotting approaches and by siRNA-mediated silencing of PEA15. RESULTS In this study we showed that PP4c over-expression inhibited cell proliferation, enhanced spontaneous apoptosis and decreased the migratory and colony forming abilities of breast cancer cells. Moreover, PP4c down-regulation produced complementary effects. PP4c is demonstrated to regulate the phosphorylation of PEA15, and PEA15 itself regulates the apoptosis of breast cancer cells. The inhibitory effects of PP4c on breast cancer cell survival and growth were lost in PEA15 knockdown cells, confirming that PP4c action is mediated, at least in part, through the de-phosphorylation of apoptosis regulator PEA15. CONCLUSION Our work shows that PP4 regulates breast cancer cell survival and identifies a novel PP4c-PEA15 signalling axis in the control of breast cancer cell survival. The dysfunction of this axis may be important in the development and progression of breast cancer.
Collapse
|