1
|
Zhang S, Li M, Zeng J, Zhou S, Yue F, Chen Z, Ma L, Wang Y, Wang F, Luo J. Somatostatin receptor-targeted polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic hepatocellular carcinoma therapy. J Nanobiotechnology 2025; 23:127. [PMID: 39979929 PMCID: PMC11844079 DOI: 10.1186/s12951-025-03214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
INTRODUCTION The CRISPR/Cas9 system-based gene therapy can fundamentally address the issues of cancer occurrence, development, progression, and metastasis. However, the lack of targeting and effectiveness hinders gene therapy from entering clinical application. Herein, a somatostatin receptor-targeted polymeric nanoplatform is developed for the delivery of a PD-L1-targeted CRISPR/Cas9 system and synergistic treatment of hepatocellular carcinoma. This nanoplatform can effectively incorporate the CRISPR/Cas9 system and the chemotherapeutic drug paclitaxel to simultaneously address the biological safety and packaging capacity issues of viral vectors. After the octreotide-modified polymer (LNA-PEG-OCT) guided the nanoparticle into hepatoma carcinoma cells, the nanoparticle protected the CRISPR/Cas9 ribonucleoprotein complex (RNP) and achieved lysosomal escape. Then, the RNP reached the target gene (PD-L1) under the guidance of the single guide RNA (sgRNA) in the RNP. The PD-L1 gene editing efficiency reached up to 55.8% for HepG2 cells in vitro and 46.0% for tumor tissues in vivo, leading to effective suppression of PD-L1 protein expression. Substantial inhibition of hepatocellular carcinoma cell proliferation and further 79.45% growth repression against subcutaneous xenograft tumors were achieved. Overall, this somatostatin receptor-targeted polymeric nanoplatform system not only provides a promising nanocarrier for CRISPR/Cas9 system delivery, but also expands the potential of combining gene editing and chemotherapy.
Collapse
Affiliation(s)
- Suqin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Meng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jingyi Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Songli Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Feifan Yue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhaoyi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Jingwen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
2
|
Yang T, Zhang N, Liu Y, Yang R, Wei Z, Liu F, Song D, Wang L, Wei J, Li Y, Shen D, Liang G. Nanoplatelets modified with RVG for targeted delivery of miR-375 and temozolomide to enhance gliomas therapy. J Nanobiotechnology 2024; 22:623. [PMID: 39402578 PMCID: PMC11476726 DOI: 10.1186/s12951-024-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Gliomas are one of the most frequent primary brain tumors and pose a serious threat to people's lives and health. Platelets, a crucial component of blood, have been applied as drug delivery carriers for disease diagnosis and treatment. In this study, we designed engineered nanoplatelets for targeted delivery of therapeutic miR-375 and temozolomide (TMZ, a first-line glioma treatment agent) to enhance glioma therapy. Nanoplatelets were prepared through mild ultrasound, TMZ and miR-375 were co-loaded through ultrasound and electrostatic interactions, respectively, to combine chemotherapy with gene therapy against glioma. To improve the blood brain barrier (BBB) crossing efficiency and glioma targeting ability, the nanoplatelets were modified with central nervous system-specific rabies viral glycoprotein peptide (RVG) through thiol-maleimide click reaction. The RVG modified nanoplatelets co-loaded TMZ and miR-375 (NR/TMZ/miR-375) not only inherited the good stability and remarkable biocompatibility of platelets, but also promoted the cellular uptake and penetration of glioma tissues, and effectively induced cell apoptosis to enhance the therapeutic effect of drugs. In vivo studies showed that NR/TMZ/miR-375 significantly increased the circulation time of TMZ, and exhibited superior combined antitumor effects. In summary, this multifunctional 'natural' nanodrug delivery system provides a potent, scalable, and safety approach for platelet-based combined cancer chemotherapy and gene therapy.
Collapse
Affiliation(s)
- Tingting Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
- Zhumadian Cental Hospital, Zhumadian, 463000, China
| | - Nan Zhang
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Yuanyuan Liu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Ruyue Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Zhaoyi Wei
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Futai Liu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Dan Song
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Longwei Wang
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Jiangyan Wei
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Yuanpei Li
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Deliang Shen
- Key Laboratory of Cardiac Injury and Repair of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China.
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
3
|
Zhang L, Lou W, Wang J. Advances in nucleic acid therapeutics: structures, delivery systems, and future perspectives in cancer treatment. Clin Exp Med 2024; 24:200. [PMID: 39196428 PMCID: PMC11358240 DOI: 10.1007/s10238-024-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Cancer has emerged as a significant threat to human health. Nucleic acid therapeutics regulate the gene expression process by introducing exogenous nucleic acid fragments, offering new possibilities for tumor remission and even cure. Their mechanism of action and high specificity demonstrate great potential in cancer treatment. However, nucleic acid drugs face challenges such as low stability and limited ability to cross physiological barriers in vivo. To address these issues, various nucleic acid delivery vectors have been developed to enhance the stability and facilitate precise targeted delivery of nucleic acid drugs within the body. In this review article, we primarily introduce the structures and principles of nucleic acid drugs commonly used in cancer therapy, as well as their cellular uptake and intracellular transportation processes. We focus on the various vectors commonly employed in nucleic acid drug delivery, highlighting their research progress and applications in recent years. Furthermore, we propose potential trends and prospects of nucleic acid drugs and their carriers in the future.
Collapse
Affiliation(s)
- Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Uddin MB, Holl MMB, Chowdhury EH. Delivery of siRNAs Against Selective Ion Channels and Transporter Genes Using Hyaluronic Acid-coupled Carbonate Apatite Nanoparticles Synergistically Inhibits Growth and Survival of Breast Cancer Cells. Int J Nanomedicine 2024; 19:7709-7727. [PMID: 39099788 PMCID: PMC11297548 DOI: 10.2147/ijn.s440419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Dysregulated calcium homeostasis and consequentially aberrant Ca2+ signalling could enhance survival, proliferation and metastasis in various cancers. Despite rapid development in exploring the ion channel functions in relation to cancer, most of the mechanisms accounting for the impact of ion channel modulators have yet to be fully clarified. Although harnessing small interfering RNA (siRNA) to specifically silence gene expression has the potential to be a pivotal approach, its success in therapeutic intervention is dependent on an efficient delivery system. Nanoparticles have the capacity to strongly bind siRNAs. They remain in the circulation and eventually deliver the siRNA payload to the target organ. Afterward, they interact with the cell surface and enter the cell via endocytosis. Finally, they help escape the endo-lysosomal degradation system prior to unload the siRNAs into cytosol. Carbonate apatite (CA) nanocrystals primarily is composed of Ca2+, carbonate and phosphate. CA possesses both anion and cation binding domains to target negatively charged siRNA molecules. Methods Hybrid CA was synthesized by complexing CA NPs with a hydrophilic polysaccharide - hyaluronic acid (HA). The average diameter of the composite particles was determined using Zetasizer and FE-SEM and their zeta potential values were also measured. Results and Discussion The stronger binding affinity and cellular uptake of a fluorescent siRNA were observed for HA-CA NPs as compared to plain CA NPs. Hybrid CA was electrostatically bound individually and combined with three different siRNAs to silence expression of calcium ion channel and transporter genes, TRPC6, TRPM8 and SLC41A1 in a human breast cancer cell line (MCF-7) and evaluate their potential for treating breast cancer. Hybrid NPs carrying TRPC6, TRPM8 and SLC41A1 siRNAs could significantly enhance cytotoxicity both in vitro and in vivo. The resultant composite CA influenced biodistribution of the delivered siRNA, facilitating reduced off target distribution and enhanced breast tumor targetability.
Collapse
Affiliation(s)
- Mohammad Borhan Uddin
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia
- Nanoflex LLC, Leesburg, FL, 34748, USA
| |
Collapse
|
5
|
Rastgar A, Kheyrandish S, Vahidi M, Heidari R, Ghorbani M. Advancements in small interfering RNAs therapy for acute lymphoblastic leukemia: promising results and future perspectives. Mol Biol Rep 2024; 51:737. [PMID: 38874790 DOI: 10.1007/s11033-024-09650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children, presenting significant healthcare challenges for some patients, including drug resistance and the need for targeted therapies. SiRNA-based therapy is one potential solution, but problems can arise in administration and the need for a delivery system to protect siRNA during intravenous injection. Additionally, siRNA encounters instability and degradation in the reticuloendothelial system, off-target effects, and potential immune system stimulation. Despite these limitations, some promising results about siRNA therapy in ALL patients have been published in recent years, showing the potential for more effective and precise treatment, reduced side effects, and personalized approaches. While siRNA-based therapies demonstrate safety and efficacy, addressing the mentioned limitations is crucial for further optimization. Advancements in siRNA-delivery technologies and combination therapies hold promise to improve treatment effectiveness and overcome drug resistance. Ultimately, despite its challenges, siRNA therapy has the potential to revolutionize ALL treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Amirhossein Rastgar
- Student Research Committee, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Department of Hematology, Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran.
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Singh H. Role of gene therapy in treatment of cancer with craniofacial regeneration-current molecular strategies, future perspectives, and challenges: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:13-21. [PMID: 37218144 PMCID: PMC10834268 DOI: 10.12701/jyms.2023.00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 05/24/2023]
Abstract
Gene therapy involves the introduction of foreign genetic material into host tissue to alter the expression of genetic products. Gene therapy represents an opportunity to alter the course of various diseases. Hence, genetic products utilizing safe and reliable vectors with improved biotechnology will play a critical role in the treatment of various diseases in the future. This review summarizes various important vectors for gene therapy along with modern techniques for potential craniofacial regeneration using gene therapy. This review also explains current molecular approaches for the management and treatment of cancer using gene therapy. The existing literature was searched to find studies related to gene therapy and its role in craniofacial regeneration and cancer treatment. Various databases such as PubMed, Science Direct, Scopus, Web of Science, and Google Scholar were searched for English language articles using the keywords "gene therapy," "gene therapy in present scenario," "gene therapy in cancer," "gene therapy and vector," "gene therapy in diseases," and "gene therapy and molecular strategies."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, India
| |
Collapse
|
7
|
Liu M, Pan X, Gan Y, Gao M, Li X, Liu Z, Ma X, Geng M, Meng X, Ma N, Li J. Titanium Carbide MXene Quantum Dots-Modified Hydroxyapatite Hollow Microspheres as pH/Near-Infrared Dual-Response Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13325-13334. [PMID: 37612781 DOI: 10.1021/acs.langmuir.3c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Titanium carbide MXene quantum dots (MQDs) possess intrinsic regulatory properties and selective toxicity to cancer cells. Here, MDQs were selected for the modification of hydroxyapatite (HA) microspheres, and MXene quantum dots-modified hydroxyapatite (MQDs-HA) hollow microspheres with controllable shapes and sizes were prepared as bone drug carriers. The results show that the prepared MQDs-HA hollow microspheres had a large BET surface area (231.2 m2/g), good fluorescence, and low toxicity. In addition, MQDs-HA showed a mild storage-release behavior and good responsiveness of pH and near-infrared (NIR). Thus, the MQDs-HA hollow microspheres have broad application prospects in the field of drug delivery and photothermal therapy.
Collapse
Affiliation(s)
- Miaomiao Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuanjing Gan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Gao
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinran Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhen Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Geng
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangqi Meng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
| | - Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Wang J, Zhao P, Chen Z, Wang H, Wang Y, Lin Q. Non-viral gene therapy using RNA interference with PDGFR-α mediated epithelial-mesenchymal transformation for proliferative vitreoretinopathy. Mater Today Bio 2023; 20:100632. [PMID: 37122836 PMCID: PMC10130499 DOI: 10.1016/j.mtbio.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic eye diseases, a series of severe oculopathy, that will destroy normal ocular refractive media and imaging structures. It is characterized by the transformation of the epithelial cells into mesenchyme cells. Proliferative vitreoretinopathy (PVR) is one of these representative diseases. In this investigation, polyethylene glycol grafted branched Polyethyleneimine (PEI-g-PEG) was used as a non-viral gene vector in gene therapy of PVR to achieve anti-fibroblastic effects in vitro and in vivo by interfering with platelet-derived growth factor alpha receptor (PDGFR-α) in the epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells. The plasmid was wrapped by electrostatic conjugation. Physical characterization of the complexes indicated that the gene complexes were successfully prepared. In vitro, cellular experiments showed excellent biocompatibility of PEI-g-PEG, efficient cellular uptake of the gene complexes, and successful expression of the corresponding fragments. Through gene silencing technique, PEI-g-PEG/PDGFR-α shRNA successfully inhibited the process of EMT in vitro. Furthermore, in vivo animal experiments suggested that this method could effectively inhibit the progression of fibroproliferative membranes of PVR. Herein, a feasible and promising clinical idea was provided for developing non-viral gene vectors and preventing fibroblastic eye diseases by RNA interference (RNAi) technology.
Collapse
|
9
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
10
|
PEGylated Strontium Sulfite Nanoparticles with Spontaneously Formed Surface-Embedded Protein Corona Restrict Off-Target Distribution and Accelerate Breast Tumour-Selective Delivery of siRNA. J Funct Biomater 2022; 13:jfb13040211. [PMID: 36412852 PMCID: PMC9680366 DOI: 10.3390/jfb13040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
As transporters of RNAi therapeutics in preclinical and clinical studies, the application of nanoparticles is often hindered by their susceptibility to opsonin-mediated clearance, poor biological stability, ineffectual targeting, and undesirable effects on healthy cells. Prolonging the blood circulation time while minimizing the off-target distribution and associated toxicity is indispensable for the establishment of a clinically viable delivery system for therapeutic small interfering RNAs (siRNAs). Herein, we report a scalable and straightforward approach to fabricate non-toxic and biodegradable pH-responsive strontium sulfite nanoparticles (SSNs) wrapped with a hydrophilic coating material, biotinylated PEG to lessen unforeseen biological interactions. Surface functionalization of SSNs with PEG led to the generation of small and uniformly distributed particles with a significant affinity towards siRNAs and augmented internalization into breast cancer cells. A triple quadrupole liquid chromatography-mass spectrometry (LC-MS) was deployed to identify the proteins entrapped onto the SSNs, with the help of SwissProt.Mus_musculus database. The results demonstrated the reduction of opsonin proteins adsorption owing to the stealth effect of PEG. The distribution of PEGylated SSNs in mice after 4 h and 24 h of intravenous administration in breast tumour-bearing mice was found to be significantly less to the organs of the reticuloendothelial system (RES) and augmented accumulation in the tumour region. The anti-EGFR siRNA-loaded PEG-SSNs exerted a significant inhibitory effect on tumour development in the murine breast cancer model without any significant toxicity to healthy tissues. Therefore, PEGylated SSNs open up a new avenue for tumour-selective efficient delivery of siRNAs in managing breast cancer.
Collapse
|
11
|
Viegas JSR, Bentley MVLB, Vicentini FTMDC. Challenges to perform an efficiently gene therapy adopting non-viral vectors: Melanoma landscape. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Spray drying: Inhalable powders for pulmonary gene therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112601. [DOI: 10.1016/j.msec.2021.112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
|
13
|
Rahman A, Gupta SD, Rahman MA, Tamanna S. An in-silico approach to design potential siRNAs against the ORF57 of Kaposi's sarcoma-associated herpesvirus. Genomics Inform 2021; 19:e47. [PMID: 35012290 PMCID: PMC8752988 DOI: 10.5808/gi.21057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the few human oncogenic viruses, which causes a variety of malignancies, including Kaposi's sarcoma, multicentric Castleman disease, and primary effusion lymphoma, particularly in human immunodeficiency virus patients. The currently available treatment options cannot always prevent the invasion and dissemination of this virus. In recent times, siRNA-based therapeutics are gaining prominence over conventional medications as siRNA can be designed to target almost any gene of interest. The ORF57 is a crucial regulatory protein for lytic gene expression of KSHV. Disruption of this gene translation will inevitably inhibit the replication of the virus in the host cell. Therefore, the ORF57 of KSHV could be a potential target for designing siRNA-based therapeutics. Considering both sequence preferences and target site accessibility, several online tools (i-SCORE Designer, Sfold web server) had been utilized to predict the siRNA guide strand against the ORF57. Subsequently, off-target filtration (BLAST), conservancy test (fuzznuc), and thermodynamics analysis (RNAcofold, RNAalifold, and RNA Structure web server) were also performed to select the most suitable siRNA sequences. Finally, two siRNAs were identified that passed all of the filtration phases and fulfilled the thermodynamic criteria. We hope that the siRNAs predicted in this study would be helpful for the development of new effective therapeutics against KSHV.
Collapse
Affiliation(s)
- Anisur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shipan Das Gupta
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md. Anisur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Saheda Tamanna
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
14
|
Zhiani M, Mousavi MA, Rostamizadeh K, Pirizadeh R, Osali A, Mennati A, Motlagh B, Fathi M. Apoptosis induction by siRNA targeting integrin-β1 and regorafenib/DDAB-mPEG-PCL hybrid nanoparticles in regorafenib-resistant colon cancer cells. Am J Cancer Res 2021; 11:1170-1184. [PMID: 33948352 PMCID: PMC8085858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Colorectal cancer (CRC) is regarded as the third most common cancer worldwide. Although Regorafenib as a receptor tyrosine kinase inhibitor (RTKI) disrupts tumor growth and angiogenesis in metastatic CRC (mCRC) patients, drug resistance leads to poor prognosis and survival. Integrin-β1 overexpression has been proposed to be the major player in this regard. Herein, the Regorafenib-resistant human colon cancer cell line (SW-48) was induced, and the Integrin-β1 gene expression, as well as apoptosis, was assessed through the combination of small interfering RNA (siRNA) targeting Integrin-β1 and Regorafenib/Dimethyldioctadecylammonium bromide (DDAB)-methoxy poly (ethylene glycol) (mPEG)-poly-ε-caprolactone (PCL) hybrid nanoparticles (HNPs). In the current study, Regorafenib-resistant SW-48 cell line was generated in which the Regorafenib half-maximal inhibitory concentration (IC50) for non-resistant and resistant cells was 13.5±1.5 µM and 55.1±0.8 µM, respectively. The results of DLS also demonstrated that the size and the charge of the HNPs were equal to 66.56±0.5 nm and +29.5±1.2 mv, respectively. In addition, the Integrin-β1 gene expression was significantly higher in resistant cells than in non-resistant ones (P<0.05). The siRNA/HNP complexes in combination with Regorafenib/HNPs were accordingly identified as the most effective treatment to decrease the Integrin-β1 gene expression and to enhance the apoptosis rate in resistant cells (P<0.001). Overall, the study indicated that combination therapy using siRNA/HNP and Regorafenib/HNPs complex could down-regulate the Integrin-β1 gene expression and consequently trigger apoptosis, and this may potentially induce drug sensitivity.
Collapse
Affiliation(s)
- Mina Zhiani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
- Student Research Committee, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Mir Ali Mousavi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
- Student Research Committee, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical SciencesZanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical SciencesZanjan, Iran
| | - Reza Pirizadeh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
- Student Research Committee, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Abdolreza Osali
- Department of Immunology, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Afsaneh Mennati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical SciencesZanjan, Iran
| | - Behrouz Motlagh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
| | - Mojtaba Fathi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical SciencesZanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical SciencesZanjan, Iran
| |
Collapse
|
15
|
Preclinical In Vivo Modeling of Pediatric Sarcoma-Promises and Limitations. J Clin Med 2021; 10:jcm10081578. [PMID: 33918045 PMCID: PMC8069549 DOI: 10.3390/jcm10081578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pediatric sarcomas are an extremely heterogeneous group of genetically distinct diseases. Despite the increasing knowledge on their molecular makeup in recent years, true therapeutic advancements are largely lacking and prognosis often remains dim, particularly for relapsed and metastasized patients. Since this is largely due to the lack of suitable model systems as a prerequisite to develop and assess novel therapeutics, we here review the available approaches to model sarcoma in vivo. We focused on genetically engineered and patient-derived mouse models, compared strengths and weaknesses, and finally explored possibilities and limitations to utilize these models to advance both biological understanding as well as clinical diagnosis and therapy.
Collapse
|
16
|
Jahan S, Karim ME, Chowdhury EH. Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics. Biomedicines 2021; 9:114. [PMID: 33530291 PMCID: PMC7910939 DOI: 10.3390/biomedicines9020114] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
The journey of chemotherapeutic drugs from the site of administration to the site of action is confronted by several factors including low bioavailability, uneven distribution in major organs, limited accessibility of drug molecules to the distant tumor tissues, and lower therapeutic indexes. These unavoidable features of classical chemotherapeutics necessitate an additional high, repetitive dose of drugs to obtain maximum therapeutic responses with the result of unintended adverse side effects. An erratic tumor microenvironment, notable drawbacks of conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells warrant precisely designed therapeutics for the treatment of cancers. In recent decades, nanoparticles have been deployed for the delivery of standard anticancer drugs to maximize the therapeutic potency while minimizing the adverse effects to increase the quality and span of life. Several organic and inorganic nanoplatforms that have been designed exploiting the distinctive features of the tumor microenvironment and tumor cells offer favorable physicochemical properties and pharmacokinetic profiles of a parent drug, with delivery of higher amounts of the drug to the pathological site and its controlled release, thereby improving the balance between its efficacy and toxicity. Advances to this front have included design and construction of targeted nanoparticles by conjugating homing devices like peptide, ligand, and Fab on the surface of nanomaterials to navigate nanoparticledrug complexes towards the target tumor cell with minimal destruction of healthy cells. Furthermore, actively targeting nanoparticles can facilitate the delivery and cellular uptake of nanoparticle-loaded drug constructs via binding with specific receptors expressed aberrantly on the surface of a tumor cell. Herein, we present an overview of the principle of targeted delivery approaches, exploiting drug-nanoparticle conjugates with multiple targeting moieties to target specific receptors of breast cancer cells and highlighting therapeutic evaluation in preclinical studies. We conclude that an understanding of the translational gap and challenges would show the possible future directions to foster the development of novel targeted nanotherapeutics.
Collapse
Affiliation(s)
| | | | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya 47500, Malaysia; (S.J.); (M.E.K.)
| |
Collapse
|
17
|
Obeid MA, Aljabali AAA, Rezigue M, Amawi H, Alyamani H, Abdeljaber SN, Ferro VA. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods Mol Biol 2021; 2265:591-620. [PMID: 33704742 DOI: 10.1007/978-1-0716-1205-7_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melanoma accounts for 4% of all skin cancer malignancies, with only 14% of diagnosed patients surviving for more than 5 years after diagnosis. Until now, there is no clear understanding of the detailed molecular contributors of melanoma pathogenesis. Accordingly, more research is needed to understand melanoma development and prognosis.All the treatment approaches that are currently applied have several significant limitations that prevent effective use in melanoma. One major limitation in the treatment of cancer is the acquisition of multidrug resistance (MDR). The MDR results in significant treatment failure and poor clinical outcomes in several cancers, including skin cancer. Treatment of melanoma is especially retarded by MDR. Despite the current advances in targeted and immune-mediated therapy, treatment arms of melanoma are severely limited and stand as a significant clinical challenge. Further, the poor pharmacokinetic profile of currently used chemotherapeutic agents is another reason for treatment failure. Therefore, more research is needed to develop novel drugs and carrier tools for more effective and targeted treatment.Nucleic acid therapy is based on nucleic acids or chemical compounds that are closely related, such as antisense oligonucleotides, aptamers, and small-interfering RNAs that are usually used in situations when a specific gene implicated in a disorder is deemed a therapeutically beneficial target for inhibition. However, the proper application for nucleic acid therapies is hampered by the development of an effective delivery system that can maintain their stability in the systemic circulation and enhance their uptake by the target cells. In this chapter, the prognosis of the different types of melanoma along with the currently used medications is highlighted, and the different types of nucleic acids along with the currently available nanoparticle systems for delivering these nucleic acids into melanoma cells are discussed. We also discuss recently conducted research on the use of different types of nanoparticles for nucleic acid delivery into melanoma cells and highlight the most significant outcomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hanin Alyamani
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shatha N Abdeljaber
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
18
|
Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-Hernández E, Ibáñez-Hernández M. Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters. Front Oncol 2020; 10:605380. [PMID: 33381459 PMCID: PMC7768042 DOI: 10.3389/fonc.2020.605380] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second cause of death worldwide, surpassed only by cardiovascular diseases, due to the lack of early diagnosis, and high relapse rate after conventional therapies. Chemotherapy inhibits the rapid growth of cancer cells, but it also affects normal cells with fast proliferation rate. Therefore, it is imperative to develop other safe and more effective treatment strategies, such as gene therapy, in order to significantly improve the survival rate and life expectancy of patients with cancer. The aim of gene therapy is to transfect a therapeutic gene into the host cells to express itself and cause a beneficial biological effect. However, the efficacy of the proposed strategies has been insufficient for delivering the full potential of gene therapy in the clinic. The type of delivery vehicle (viral or non viral) chosen depends on the desired specificity of the gene therapy. The first gene therapy trials were performed with therapeutic genes driven by viral promoters such as the CMV promoter, which induces non-specific toxicity in normal cells and tissues, in addition to cancer cells. The use of tumor-specific promoters over-expressed in the tumor, induces specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several cancer- and/or tumor-specific promoters systems have been developed to target cancer cells. This review aims to provide up-to-date information concerning targeting gene therapy with cancer- and/or tumor-specific promoters including cancer suppressor genes, suicide genes, anti-tumor angiogenesis, gene silencing, and gene-editing technology, as well as the type of delivery vehicle employed. Gene therapy can be used to complement traditional therapies to provide more effective treatments.
Collapse
Affiliation(s)
- Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Méndez-Guerrero
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Alarcón-Hernández
- Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
19
|
Sharma A, Jha NK, Dahiya K, Singh VK, Chaurasiya K, Jha AN, Jha SK, Mishra PC, Dholpuria S, Astya R, Nand P, Kumar A, Ruokolainen J, Kesari KK. Nanoparticulate RNA delivery systems in cancer. Cancer Rep (Hoboken) 2020; 3:e1271. [PMID: 32729987 DOI: 10.1002/cnr2.1271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drug delivery system is a common practice in cancer treatment. RNA interference-mediated post-transcriptional gene silencing holds promise as an approach to knockdown in the expression of target genes responsible for cancer cell growth and metastasis. RNA interference (RNAi) can be achieved by delivering small interfering RNA (siRNA) and short hairpin RNA (shRNA) to target cells. Since neither interfering RNAs can be delivered in naked form due to poor stability, an efficient delivery system is required that protects, guides, and delivers the siRNA and shRNA to target cells as part of cancer therapy (chemotherapy). RECENT FINDINGS In this review, a discussion is presented about the different types of drug delivery system used to deliver siRNA and shRNA, together with an overview of the potential benefits associated with this sophisticated biomolecular therapy. Improved understanding of the different approaches used in nanoparticle (NP) fabrication, along with an enhanced appreciation of the biochemical properties of siRNA/shRNA, will assist in developing improved drug delivery strategies in basic and clinical research. CONCLUSION These novel delivery techniques are able to solve the problems that form an inevitable part of delivering genes in more efficient manner and as part of more effective treatment protocols. The present review concludes that the nanoparticulate RNA delivery system has great possibility for cancer treatment along with several other proposed methods. Several NPs or nanocarriers are already in use, but the methods proposed here could fulfill the missing gap in cancer research. It is the future technology, which unravels the mystery of resolving genomic diseases that is, especially genomic instability and its signaling cascades.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Life Science, School of Basic Science & Research, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kajal Dahiya
- Department of Life Science, School of Basic Science & Research, Sharda University, Greater Noida, India
| | - Vivek Kumar Singh
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kundan Chaurasiya
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Aditya Narayan Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Prabhu Chandra Mishra
- Department of Regenerative Medicine & Cellular Therapy, StemMax Research & Therapeutics Pvt Ltd., New Delhi, India
| | - Sunny Dholpuria
- Department of Life Science, School of Basic Science & Research, Sharda University, Greater Noida, India
| | - Rani Astya
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Amit Kumar
- Department of Zoology, Ram Krishna College, Lalit Narayan Mithila University, Darbhanga, India
| | | | | |
Collapse
|
20
|
Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. NANOMATERIALS 2020; 10:nano10050834. [PMID: 32349272 PMCID: PMC7712760 DOI: 10.3390/nano10050834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the abnormal, uncontrollable proliferation of cells in the breast. Conventional treatment modalities like chemotherapy induce deteriorating side effects on healthy cells. Non-viral inorganic nanoparticles (NPs) confer exclusive characteristics, such as, stability, controllable shape and size, facile surface modification, and unique magnetic and optical properties which make them attractive drug carriers. Among them, carbonate apatite (CA) particles are pH-responsive in nature, enabling rapid intracellular drug release, but are typically heterogeneous with the tendency to self-aggregate. Here, we modified the nano-carrier by partially substituting Ca2+ with Mg2+ and Fe3+ into a basic lattice structure of CA, forming Fe/Mg-carbonate apatite (Fe/Mg-CA) NPs with the ability to mitigate self-aggregation, form unique protein corona in the presence of serum and efficiently deliver doxorubicin (DOX), an anti-cancer drug into breast cancer cells. Two formulations of Fe/Mg-CA NPs were generated by adding different concentrations of Fe3+ and Mg2+ along with a fixed amount of Ca2+ in bicarbonate buffered DMEM (Dulbecco's Modified Eagle's Medium), followed by 30 min incubation at 37 °C. Particles were characterized by turbidity analysis, z-average diameter and zeta potential measurement, optical microscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), flame atomic absorption spectroscopy (FAAS), pH dissolution, drug binding, cellular uptake, thiazolyl blue tetrazolium bromide (MTT) assay, stability analysis, and protein corona study by LCMS (Liquid chromatography-mass spectrometry). Both formulations of Fe/Mg-CA displayed mostly uniform nano-sized particles with less tendency to aggregate. The EDX and FAAS elemental analysis confirmed the weight (%) of Ca, Fe and Mg, along with their Ca/P ratio in the particles. A constant drug binding efficiency was noticed with 5 μM to 10 μM of initial DOX concentration. A pH dissolution study of Fe/Mg-CA NPs revealed the quick release of DOX in acidic pH. Enhancement of cytotoxicity for the chemotherapy drug was greater for Fe/Mg-CA NPs as compared to CA NPs, which could be explained by an increase in cellular internalization as a result of the small z-average diameter of the former. The protein corona study by LCMS demonstrated that Fe/Mg-CA NPs exhibited the highest affinity towards transport proteins without binding with opsonins. Biodistribution study was performed to study the effect of DOX-loaded Fe/Mg-CA NPs on the tissue distribution of DOX in Balb/c 4T1 tumor-bearing mice. Both formulations of Fe/Mg-CA NPs have significantly increased the accumulation of DOX in tumors. Interestingly, high Fe/Mg-CA NPs exhibited less off-target distribution compared to low Fe/Mg-CA NPs. Furthermore, the blood plasma analysis revealed prolonged blood circulation half-life of DOX-loaded low and high Fe/Mg-CA NPs compared to free DOX solution. Modifying CA NPs with Fe3+ and Mg2+, thereby, led to the generation of nano-sized particles with less tendency to aggregate, enhancing the drug binding efficiency, cellular uptake, and cytotoxicity without hampering drug release in acidic pH, while improving the circulation half-life and tumor accumulation of DOX. Therefore, Fe/Mg-CA which predominantly forms a transport protein-related protein corona could be a proficient carrier for therapeutic delivery in breast cancer.
Collapse
|
21
|
Tolmachov OE. Shielding of non-target cells using RNA vectors conferring gene transfer resistance: A strategy to enhance targeting accuracy and reduce side-effects in therapeutic gene delivery. Med Hypotheses 2019; 132:109328. [PMID: 31421422 DOI: 10.1016/j.mehy.2019.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/29/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022]
|
22
|
Azambuja JH, Schuh RS, Michels LR, Gelsleichter NE, Beckenkamp LR, Iser IC, Lenz GS, de Oliveira FH, Venturin G, Greggio S, daCosta JC, Wink MR, Sevigny J, Stefani MA, Battastini AMO, Teixeira HF, Braganhol E. Nasal Administration of Cationic Nanoemulsions as CD73-siRNA Delivery System for Glioblastoma Treatment: a New Therapeutical Approach. Mol Neurobiol 2019; 57:635-649. [DOI: 10.1007/s12035-019-01730-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
|
23
|
Karim ME, Shetty J, Islam RA, Kaiser A, Bakhtiar A, Chowdhury EH. Strontium Sulfite: A New pH-Responsive Inorganic Nanocarrier to Deliver Therapeutic siRNAs to Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11020089. [PMID: 30791612 PMCID: PMC6410046 DOI: 10.3390/pharmaceutics11020089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inorganic nanoparticles hold great potential in the area of precision medicine, particularly for treating cancer owing to their unique physicochemical properties, biocompatibility and improved pharmacokinetics properties compared to their organic counterparts. Here we introduce strontium sulfite nanoparticles as new pH-responsive inorganic nanocarriers for efficient transport of siRNAs into breast cancer cells. We employed the simplest nanoprecipitation method to generate the strontium sulfite nanoparticles (SSNs) and demonstrated the dramatic roles of NaCl and d-glucose in particle growth stabilization in order to produce even smaller nanosize particles (Na-Glc-SSN) with high affinity towards negatively charged siRNA, enabling it to efficiently enter the cancer cells. Moreover, the nanoparticles were found to be degraded with a small drop in pH, suggesting their potential capability to undergo rapid dissolution at endosomal pH so as to release the payload. While these particles were found to be nontoxic to the cells, they showed higher potency in facilitating cancer cell death through intracellular delivery and release of oncogene-specific siRNAs targeting ros1 and egfr1 mRNA transcripts, than the strontium sulfite particles prepared in absence of NaCl and d-glucose, as confirmed by growth inhibition assay. The mouse plasma binding analysis by Q-TOF LC-MS/MS demonstrated less protein binding to smaller particles of Na-Glc-SSNs. The biodistribution studies of the particles after 4 h of treatment showed Na-Glc-SSNs had less off-target distribution than SSNs, and after 24 h, all siRNAs were cleared from all major organs except the tumors. ROS1 siRNA with its potential therapeutic role in treating 4T1-induced breast tumor was selected for subsequent in vivo tumor regression study, revealing that ROS1 siRNA-loaded SSNs exerted more significant anti-tumor effects than Na-Glc-SSNs carrying the same siRNA following intravenous administration, without any systemic toxicity. Thus, strontium sulfite emerged as a powerful siRNA delivery tool with potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Md Emranul Karim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Jayalaxmi Shetty
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Ahsanul Kaiser
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Athirah Bakhtiar
- Faculty of Pharmacy, Mahsa University, 2, Jalan SP 4/4, Bandar Saujana Putra, 42610 Jenjarom, Malaysia.
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| |
Collapse
|
24
|
Lin CY, Lee HC, Wu JH, Tsai HJ. Short fish-origin DNA elements served as flanking sequences in a knockdown cloning vector enabling the generation of a functional siRNA molecule in mammalian cells and fish embryos. Biochem Biophys Res Commun 2018; 505:850-857. [PMID: 30301529 DOI: 10.1016/j.bbrc.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
Improving the quality of a siRNA-knockdown cloning vector requires simpler, shorter, and more effective flanking sequences. In this study, we designed such flanking sequences based on those found in zebrafish pre-miR3906, namely, internal element (IE) 1 and IE2. We engineered a vegf-shRNA fragment flanked by an 80-bp IE1/IE2 and then inserted into the 3' UTR of GFP reporter cDNA driven by a cytomegalovirus promoter to obtain a plasmid containing gfp-IE-vegf-shRNA-polA. Upon microinjection of this plasmid into zebrafish embryos, we found that IE flanking sequences could effectively induce the production of vegf-shRNA fragment, which was then processed into a functional siRNA to silence the target vegf121 gene. Northern blot showed that the vegf-shRNA fragment was cleaved from gfp-IE-vegf-shRNA-polA, resulting in the loss of polyA tails, subsequently degrading the remaining RNA-containing GFP. Moreover, Western blot revealed that addition of IE-based vegf-shRNA fragment could markedly decrease the expression of VEGF. Finally, to facilitate a more versatile application of the IE-based knockdown vector, we generated an inducible expression vector in which IE-vegf-shRNA was constructed downstream in a Tet-on system to generate a Tet-on-IE-vegf-shRNA construct. After doxycycline induction, the protein level of VEGF in SW620 cells harboring the Tet-on-IE-vegf-shRNA construct was decreased 77%. Interestingly, when SW620 cells harboring Tet-on-IE-vegf-shRNA cells were induced and transplanted into zebrafish embryos, we found that abnormal branch of the sub-intestinal vessels was reduced in the recipient embryos, suggesting that vegf-shRNA cleaved from Tet-on-IE-vegf-shRNA-polA was processed into a functional vegf-siRNA in embryos suppressing endogenous VEGF and reducing tumor angiogenesis. Therefore, we conclude that fish-origin IEs are flanking sequences with short, simple, and effective DNA elements. This IE-based knockdown cloning vector provides a new alternative material to facilitate the generation of functional siRNA with which to perform loss-of-function experiments, both in vitro (mammalian cells) and in vivo (zebrafish embryos).
Collapse
Affiliation(s)
- Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Hung-Chieh Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Ju-Hui Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
25
|
Targeting peroxiredoxin 1 impairs growth of breast cancer cells and potently sensitises these cells to prooxidant agents. Br J Cancer 2018; 119:873-884. [PMID: 30287919 PMCID: PMC6189216 DOI: 10.1038/s41416-018-0263-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our previous work has shown peroxiredoxin-1 (PRDX1), one of major antioxidant enzymes, to be a biomarker in human breast cancer. Hereby, we further investigate the role of PRDX1, compared to its close homolog PRDX2, in mammary malignant cells. METHODS CRISPR/Cas9- or RNAi-based methods were used for genetic targeting PRDX1/2. Cell growth was assessed by crystal violet, EdU incorporation or colony formation assays. In vivo growth was assessed by a xenotransplantation model. Adenanthin was used to inhibit the thioredoxin-dependent antioxidant defense system. The prooxidant agents used were hydrogen peroxide, glucose oxidase and sodium L-ascorbate. A PY1 probe or HyPer-3 biosensor were used to detect hydrogen peroxide content in samples. RESULTS PRDX1 downregulation significantly impaired the growth rate of MCF-7 and ZR-75-1 breast cancer cells. Likewise, xenotransplanted PRDX1-deficient MCF-7 cells presented a retarded tumour growth. Furthermore, genetic targeting of PRDX1 or adenanthin, but not PRDX2, potently sensitised all six cancer cell lines studied, but not the non-cancerous cells, to glucose oxidase and ascorbate. CONCLUSIONS Our study pinpoints the dominant role for PRDX1 in management of exogeneous oxidative stress by breast cancer cells and substantiates further exploration of PRDX1 as a target in this disease, especially when combined with prooxidant agents.
Collapse
|