1
|
Jimenez-Carretero M, Pozo-Gualda T, Lázaro M, Sola-Leyva A, Rodriguez-Jimenez PA, Carrasco-Jiménez MP, Iglesias GR, Perduca M, Jimenez-Lopez C. Role of Mms7 from Magnetococcus marinus MC-1 in controlling the growth and properties of biomimetic magnetic nanoparticles. Int J Biol Macromol 2025; 307:142165. [PMID: 40101825 DOI: 10.1016/j.ijbiomac.2025.142165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Depicting the function of the magnetosome-associated protein Mms7 is important for further understanding the formation of magnetite by magnetotactic bacteria, and from a biotechnological point of view, for the synthesis of magnetosome-like biomimetic magnetic nanoparticles (BMNPs). In this work, the role of Mms7 (Magnetococcus marinus MC-1) in magnetite precipitation was analyzed by using this protein to in vitro produce BMNPs (Mms7-BMNPs). The new nanoparticles were characterized (X-ray diffraction, electron microscopy, magnetic properties, surface area, thermogravimetry, infrared spectroscopy, electrophoretic mobility and hyperthermia) and compared with MamC-mediated BMNPs (MamC-BMNPs) and inorganic (protein-free) magnetic nanoparticles (MNPs). Results suggest that the N-terminus of Mms7 induces the nucleation of magnetite and stabilizes the nuclei, which later dissolve to provide iron for the growth of larger crystals formed at the C-terminus. We hypothesize that the acidic amino acids in the C-terminus block the growth of (311) and (110) crystal faces, that show up in the final morphology along with the (111) faces already present in MNPs. The resulting Mms7-BMNPs are similar to MamC-BMNPs in terms of size (⁓33 nm) and morphology, but their magnetic saturation (43.7 emu/g) and their ability to raise the temperature when exposed to alternating magnetic fields is lower. However, the heating efficiency upon laser irradiation in the near infrared is similar in all cases. The changes in Mms7-BMNPs are probably related to a higher protein content (⁓8 wt%) attached to the magnetic core, which also provides an isoelectric point of ⁓4.7 to the nanoparticles and allows cell uptake and drug binding/release based on electrostatic interactions.
Collapse
Affiliation(s)
| | | | - Marina Lázaro
- Department of Applied Physics, University of Granada, 18071 Granada, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|
2
|
Adhikari S, Efremova MV, Spaeth P, Koopmans B, Lavrijsen R, Orrit M. Single-Particle Photothermal Circular Dichroism and Photothermal Magnetic Circular Dichroism Microscopy. NANO LETTERS 2024; 24:5093-5103. [PMID: 38578845 PMCID: PMC11066954 DOI: 10.1021/acs.nanolett.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Recent advances in single-particle photothermal circular dichroism (PT CD) and photothermal magnetic circular dichroism (PT MCD) microscopy have shown strong promise for diverse applications in chirality and magnetism. Photothermal circular dichroism microscopy measures direct differential absorption of left- and right-circularly polarized light by a chiral nanoobject and thus can measure a pure circular dichroism signal, which is free from the contribution of circular birefringence and linear dichroism. Photothermal magnetic circular dichroism, which is based on the polar magneto-optical Kerr effect, can probe the magnetic properties of a single nanoparticle (of sizes down to 20 nm) optically. Single-particle measurements enable studies of the spatiotemporal heterogeneity of magnetism at the nanoscale. Both PT CD and PT MCD have already found applications in chiral plasmonics and magnetic nanomaterials. Most importantly, the advent of these microscopic techniques opens possibilities for many novel applications in biology and nanomaterial science.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maria V. Efremova
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Patrick Spaeth
- Department
of Sustainable Energy Materials, AMOLF; Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Bert Koopmans
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Reinoud Lavrijsen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
3
|
Shirvalilou S, Khoei S, Khoee S, Soleymani M, Shirvaliloo M, Ali BH, Mahabadi VP. Dual-drug delivery by thermo-responsive Janus nanogel for improved cellular uptake, sustained release, and combination chemo-thermal therapy. Int J Pharm 2024; 653:123888. [PMID: 38342325 DOI: 10.1016/j.ijpharm.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
The goal of this work was to examine the heat-sensitizing effects of Janus-coated magnetic nanoparticles (JMNPs) as a vehicle for 5-fluorouracil (5-Fu) and Quercetin (Qu) in C6 and OLN-93 cell lines. The cellular uptake of nanoparticles was evaluated using Prussian blue staining and ICP-OES after monolayer culturing of C6 (rat brain cancer cell) and OLN-93 (normal rat brain cell) cells. The cells were treated with free 5-Fu, Qu, and MJNPs loaded with Qu/5-Fu for 24 h, followed by magnetic hyperthermia under an alternating magnetic field (AMF) at a temperature of 43 °C. Using the MTT test and Flow cytometry, the C6 and OLN-93 cells were investigated after being subjected to hyperthermia with and without magnetic nanoparticles. The results of Prussian blue staining confirmed the potential of MJNPs as carriers that facilitate the uptake of drugs by cancer cells. The results showed that the combined application of Qu/5-Fu/MJNPs with hyperthermia significantly increased the amount of ROS production compared to interventions without MJNPs. The therapeutic results demonstrated that the combination of Qu/5-Fu/MJNPs with hyperthermia considerably enhanced the rate of apoptotic and necrotic cell death compared to that of interventions without MJNPs. Furthermore, MTT findings indicated that controlled exposure of Qu/5-Fu/MJNPs to AMF caused a synergistic effect. The advanced Janus magnetic nanoparticles in this study can be proposed as a promising dual drug carrier (Qu/5-Fu) and thermosensitizer platform for dual-modal synergistic cancer therapy.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Soleymani
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Milad Shirvaliloo
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, United Kingdom
| | - Bahareh Haji Ali
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
5
|
Cepero A, Jiménez-Carretero M, Jabalera Y, Gago L, Luque C, Cabeza L, Melguizo C, Jimenez-Lopez C, Prados J. LGR5 as a Therapeutic Target of Antibody-Functionalized Biomimetic Magnetoliposomes for Colon Cancer Therapy. Int J Nanomedicine 2024; 19:1843-1865. [PMID: 38414530 PMCID: PMC10898605 DOI: 10.2147/ijn.s440881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose The lack of specificity of conventional chemotherapy is one of the main difficulties to be solved in cancer therapy. Biomimetic magnetoliposomes are successful chemotherapy controlled-release systems, hyperthermia, and active targeting agents by functionalization of their surface with monoclonal antibodies. The membrane receptor Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) stands out as colorectal cancer (CRC) biomarker and appears to be related to treatment resistance and the development of metastasis. The aim of this study was to assess the effectiveness and safety of LGR5-targeted biomimetic magnetoliposomes loaded with oxaliplatin (OXA) or 5-fluorouracil (5-FU) in the selective treatment of CRC and their possible application in hyperthermia. Methods Synthesis, characterization and determination of heating capacity of magnetoliposomes transporting OXA or 5-FU (with and without LGR5 functionalization) were conducted. In vitro antitumoral activity was assayed in multiple colorectal cell lines at different times of exposition. In addition to this, cell internalization was studied by Prussian Blue staining, flow cytometry and fluorescence microscopy. In vivo acute toxicity of magnetoliposomes was performed to evaluate iron-related toxicity. Results OXA and 5-FU loaded magnetoliposomes functionalized with LGR5 antibody showed higher cellular uptake than non-targeted nanoformulation with a reduction of the percentage of proliferation in colon cancer cell lines up to 3.2-fold of the IC50 value compared to that of free drug. The differences between non-targeted and targeted nanoformulations were more evident after short exposure times (4 and 8 hours). Interestingly, assays in the MC38 transduced cells with reduced LGR5 expression (MC38-L(-)), showed lower cell internalization of LGR5-targeted magnetoliposomes compared to non-transduced MC38 cell line. In addition, magnetoliposomes showed an in vitro favorable heating response under magnetic excitation and great iron-related biocompatibility data in vivo. Conclusion Drug-loaded magnetoliposomes functionalized with anti-LGR5 antibodies could be a promising CRC treatment strategy for LGR5+ targeted chemotherapy, magnetic hyperthermia, and both in combination.
Collapse
Affiliation(s)
- Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | | | - Ylenia Jabalera
- Department of Microbiology, Sciences School, University of Granada, Granada, 18002, Spain
| | - Lidia Gago
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | | | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| |
Collapse
|
6
|
Chen B, Hatamie S, Chiu H, Wei Z, Hu S, Yao D. Shape‐Mediated Magnetocrystalline Anisotropy and Relaxation Controls by Cobalt Ferrite Core–Shell Heterostructures for Magnetothermal Penetration Delivery. ADVANCED MATERIALS INTERFACES 2022; 9. [DOI: 10.1002/admi.202200022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 01/05/2025]
Abstract
AbstractSimultaneous delivery of therapeutic agents and energy by magnetic nanoparticles (MNPs) at targeted sites can boost cancer therapy and alleviate side effects. To achieve this goal, however, the magnetic fluid hyperthermia (MFH) usually exhibits the unsufficient thermal efficiency due to their narrow magnetization curves. Besides, an inappropriately large administration concentration also causes health deterioration as shown in an animal model. In this study, the core–shell cube that enhances the coercivity and magnetization related to single‐compositional MNPs by elaborately tuning their interface relaxation via the magnetocrystalline and surface anisotropy is developed. Néel and Brownian relaxation can be adjusted by the particles’ structures to maximize the hyperthermia efficacy upon an alternating‐magnetic‐field (AMF). Furthermore, temozolomide and lactoferrin‐coated CoFe2O4@Fe3O4 core–shell cubes are rapidly internalized by targeting cancer cells and penetrate into tumor spheroids while subjecting to AMF. The targeted cubes with the capabilities of enhanced coercivity, AMF‐induced drug penetration into tumors, and magnetothermal ablation for cancer therapy display potentials for clinical uses.
Collapse
Affiliation(s)
- Bo‐Wei Chen
- Institute of NanoEngineering and MicroSystems National Tsing Hua University Hsinchu 30013 Taiwan
| | - Shadie Hatamie
- Department of Ophthalmology National Taiwan University Hospital National Taiwan University Taipei 10002 Taiwan
| | - Hsin‐Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 30013 Taiwan
| | - Zung‐Hang Wei
- Institute of NanoEngineering and MicroSystems National Tsing Hua University Hsinchu 30013 Taiwan
- Department of Power Mechanical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Shang‐Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 30013 Taiwan
| | - Da‐Jeng Yao
- Institute of NanoEngineering and MicroSystems National Tsing Hua University Hsinchu 30013 Taiwan
- Department of Power Mechanical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
7
|
Kwizera EA, Stewart S, Mahmud MM, He X. Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. JOURNAL OF HEAT TRANSFER 2022; 144:030801. [PMID: 35125512 PMCID: PMC8813031 DOI: 10.1115/1.4053007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.
Collapse
Affiliation(s)
- Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Md Musavvir Mahmud
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
8
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
9
|
Jabalera Y, Montalban-Lopez M, Vinuesa-Rodriguez JJ, Iglesias GR, Maqueda M, Jimenez-Lopez C. Antibacterial directed chemotherapy using AS-48 peptide immobilized on biomimetic magnetic nanoparticles combined with magnetic hyperthermia. Int J Biol Macromol 2021; 189:206-213. [PMID: 34419547 DOI: 10.1016/j.ijbiomac.2021.08.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 12/01/2022]
Abstract
The design of new strategies to increase the effectiveness of the antibacterial treatments is a main goal in public health. So, the aim of the study was to achieve a local antibacterial directed therapy as novel alternative allowing both, the delivery of the drug at the target, while minimizing undesirable side effects, thus anticipating an enhanced effectiveness. Hence, we have developed an innovative nanoformulation composed by biomimetic magnetic nanoparticles functionalized with the antimicrobial peptide AS-48 and its potential against Gram-positive and Gram-negative bacteria, either by itself or combined with magnetic hyperthermia has been investigated. Besides, the physical properties, binding efficiency, stability and mechanism of action of this nanoassembly are analyzed. Remarkably, the nanoassembly has a strong bactericidal effect on Gram-positive bacteria, but surprisingly also on E. coli and, finally, when combined with magnetic hyperthermia, on P. aeruginosa and K. pneumoniae. The results obtained represent a breakthrough since it allows a local treatment of infections, reducing and concentrating the dose of antimicrobial compounds, avoiding secondary effects, including the resistance generation and particularly because the combination with magnetic hyperthermia helps sensitizing resistant bacteria to the bactericidal effect of AS-48. Thus, this new formulation should be considered a promising tool in the antibacterial fight.
Collapse
Affiliation(s)
- Y Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - M Montalban-Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - J J Vinuesa-Rodriguez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - G R Iglesias
- Department of Applied Physic, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - M Maqueda
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - C Jimenez-Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
10
|
Ovejero JG, Spizzo F, Morales MP, Del Bianco L. Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6416. [PMID: 34771940 PMCID: PMC8585339 DOI: 10.3390/ma14216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023]
Abstract
The increasing use of magnetic nanoparticles as heating agents in biomedicine is driven by their proven utility in hyperthermia therapeutic treatments and heat-triggered drug delivery methods. The growing demand of efficient and versatile nanoheaters has prompted the creation of novel types of magnetic nanoparticle systems exploiting the magnetic interaction (exchange or dipolar in nature) between two or more constituent magnetic elements (magnetic phases, primary nanoparticles) to enhance and tune the heating power. This process occurred in parallel with the progress in the methods for the chemical synthesis of nanostructures and in the comprehension of magnetic phenomena at the nanoscale. Therefore, complex magnetic architectures have been realized that we classify as: (a) core/shell nanoparticles; (b) multicore nanoparticles; (c) linear aggregates; (d) hybrid systems; (e) mixed nanoparticle systems. After a general introduction to the magnetic heating phenomenology, we illustrate the different classes of nanoparticle systems and the strategic novelty they represent. We review some of the research works that have significantly contributed to clarify the relationship between the compositional and structural properties, as determined by the synthetic process, the magnetic properties and the heating mechanism.
Collapse
Affiliation(s)
- Jesus G. Ovejero
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, E-28007 Madrid, Spain
| | - Federico Spizzo
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| | - M. Puerto Morales
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
| | - Lucia Del Bianco
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| |
Collapse
|
11
|
Raouf I, Gas P, Kim HS. Numerical Investigation of Ferrofluid Preparation during In-Vitro Culture of Cancer Therapy for Magnetic Nanoparticle Hyperthermia. SENSORS (BASEL, SWITZERLAND) 2021; 21:5545. [PMID: 34450987 PMCID: PMC8402254 DOI: 10.3390/s21165545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022]
Abstract
Recently, in-vitro studies of magnetic nanoparticle (MNP) hyperthermia have attracted significant attention because of the severity of this cancer therapy for in-vivo culture. Accurate temperature evaluation is one of the key challenges of MNP hyperthermia. Hence, numerical studies play a crucial role in evaluating the thermal behavior of ferrofluids. As a result, the optimum therapeutic conditions can be achieved. The presented research work aims to develop a comprehensive numerical model that directly correlates the MNP hyperthermia parameters to the thermal response of the in-vitro model using optimization through linear response theory (LRT). For that purpose, the ferrofluid solution is evaluated based on various parameters, and the temperature distribution of the system is estimated in space and time. Consequently, the optimum conditions for the ferrofluid preparation are estimated based on experimental and mathematical findings. The reliability of the presented model is evaluated via the correlation analysis between magnetic and calorimetric methods for the specific loss power (SLP) and intrinsic loss power (ILP) calculations. Besides, the presented numerical model is verified with our experimental setup. In summary, the proposed model offers a novel approach to investigate the thermal diffusion of a non-adiabatic ferrofluid sample intended for MNP hyperthermia in cancer treatment.
Collapse
Affiliation(s)
- Izaz Raouf
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Korea;
| | - Piotr Gas
- Department of Electrical and Power Engineering, AGH University of Science and Technology, Mickiewicza 30 Avenue, 30-059 Krakow, Poland
| | - Heung Soo Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Korea;
| |
Collapse
|
12
|
Jabalera Y, Sola-Leyva A, Gaglio SC, Carrasco-Jiménez MP, Iglesias GR, Perduca M, Jimenez-Lopez C. Enhanced Cytotoxic Effect of TAT-PLGA-Embedded DOXO Carried by Biomimetic Magnetic Nanoparticles upon Combination with Magnetic Hyperthermia and Photothermia. Pharmaceutics 2021; 13:1168. [PMID: 34452129 PMCID: PMC8398382 DOI: 10.3390/pharmaceutics13081168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022] Open
Abstract
The synergy between directed chemotherapy and thermal therapy (both magnetic hyperthermia and photothermia) mediated by a nanoassembly composed of functionalized biomimetic magnetic nanoparticles (BMNPs) with the chemotherapeutic drug doxorubicin (DOXO) covered by the polymer poly(lactic-co-glycolic acid) (PLGA), decorated with TAT peptide (here referred to as TAT-PLGA(DOXO-BMNPs)) is explored in the present study. The rationale behind this nanoassembly lies in an optimization of the nanoformulation DOXO-BMNPs, already demonstrated to be more efficient against tumor cells, both in vitro and in vivo, than systemic traditional therapies. By embedding DOXO-BMNPs into PLGA, which is further functionalized with the cell-penetrating TAT peptide, the resulting nanoassembly is able to mediate drug transport (using DOXO as a drug model) and behaves as a hyperthermic agent (induced by an alternating magnetic field (AMF) or by laser irradiation with a laser power density of 2 W/cm2). Our results obtained using the HepG2 cell line show that there is a synergy between chemotherapy and thermal therapy that results in a stronger cytotoxic effect when compared to that caused by the soluble DOXO. This is probably due to the enhanced DOXO release occurring upon the application of the thermal therapy, as well as the induced local temperature rise mediated by BMNPs in the nanoassembly following exposition to AMF or to near-infrared (NIR) laser irradiation. These results represent a proof of concept demonstrating that TAT-PLGA(DOXO-BMNPs) can be used to efficiently combine therapies against tumor cells, which is a step forward in the transition from systemic to local treatments.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain;
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18014 Granada, Spain
| | | | | | - Guillermo R. Iglesias
- Department of Applied Physic, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | | |
Collapse
|
13
|
Synergistic Photothermal-Chemotherapy Based on the Use of Biomimetic Magnetic Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13050625. [PMID: 33924828 PMCID: PMC8144968 DOI: 10.3390/pharmaceutics13050625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022] Open
Abstract
MamC-mediated biomimetic magnetic nanoparticles (BMNPs) have emerged as one of the most promising nanomaterials due to their magnetic features (superparamagnetic character and large magnetic moment per particle), their novel surface properties determined by MamC, their biocompatibility and their ability as magnetic hyperthermia agents. However, the current clinical application of magnetic hyperthermia is limited due to the fact that, in order to be able to reach an effective temperature at the target site, relatively high nanoparticle concentration, as well as high magnetic field strength and/or AC frequency are needed. In the present study, the potential of BMNPs to increase the temperature upon irradiation of a laser beam in the near infrared, at a wavelength at which tissues become partially transparent, is explored. Moreover, our results also demonstrate the synergy between photothermia and chemotherapy in terms of drug release and cytotoxicity, by using BMNPs functionalized with doxorubicin, and the effectiveness of this combination therapy against tumor cells in in vitro experiments. Therefore, the findings of the present study open the possibility of a novel, alternative approach to fight localized tumors.
Collapse
|
14
|
Peigneux A, Glitscher EA, Charbaji R, Weise C, Wedepohl S, Calderón M, Jimenez-Lopez C, Hedtrich S. Protein corona formation and its influence on biomimetic magnetite nanoparticles. J Mater Chem B 2021; 8:4870-4882. [PMID: 32108191 DOI: 10.1039/c9tb02480h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biomimetic magnetite nanoparticles (BMNPs) synthesized in the presence of MamC, a magnetosome-associated protein from Magnetoccus marinus MC-1, have gained interest for biomedical applications because of their unique magnetic properties. However, their behavior in biological systems, like their interaction with proteins, still has to be evaluated prior to their use in clinics. In this study, doxorubicin (DOXO) as a model drug was adsorbed onto BMNPs to form nanoassemblies. These were incubated with human plasma to trigger protein corona (PC) formation. Proteins from the human plasma stably attached to either BMNPs or DOXO-BMNP nanoassemblies. In particular, fibrinogen was detected as the main component in the PC of DOXO-BMNPs that potentially provides advantages, e.g. protecting the particles from phagocytosis, thus prolonging their circulation time. Adsorption of PC to the BMNPs did not alter their magnetic properties but improved their colloidal stability, thus reducing their toxicity in human macrophages. In addition, PC formation enhanced cellular internalization and did not interfere with DOXO activity. Overall, our data indicate that the adsorption of PC onto DOXO-BMNPs in biological environment even increases their efficiency as drug carrier systems.
Collapse
Affiliation(s)
- Ana Peigneux
- Department of Microbiology, University of Granada, Faculty of Sciences, Campus de Fuentenueva s/n, 18002 Granada, Spain.
| | - Emanuel A Glitscher
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Rawan Charbaji
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Stefanie Wedepohl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Chemistry, Takustr. 3, 14195 Berlin, Germany and POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Concepción Jimenez-Lopez
- Department of Microbiology, University of Granada, Faculty of Sciences, Campus de Fuentenueva s/n, 18002 Granada, Spain.
| | - Sarah Hedtrich
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2-4, 14195 Berlin, Germany and University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC, Canada.
| |
Collapse
|
15
|
|
16
|
Bhardwaj A, Parekh K, Jain N. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Sci Rep 2020; 10:15249. [PMID: 32943662 PMCID: PMC7499255 DOI: 10.1038/s41598-020-71552-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
Self-regulating temperature-controlled nanoparticles such as Mn–Zn ferrite nanoparticles based magnetic fluid can be a better choice for magnetic fluid hyperthermia because of its controlled regulation of hyperthermia temperature window of 43–45 °C. To test this hypothesis magnetic fluid with said properties was synthesized, and its effect on cervical and breast cancer cell death was studied. We found that the hyperthermia window of 43–45 °C was maintained for one hour at the smallest possible concentration of 0.35 mg/mL without altering the magnetic field applicator parameters. Their hyperthermic effect on HeLa and MCF7 was investigated at the magnetic field of 15.3 kA/m and frequency 330 kHz, which is close to the upper safety limit of 5 * 109 A/m s. We have tested the cytotoxicity of synthesized Mn–Zn ferrite fluid using MTT assay and the results were validated by trypan blue dye exclusion assay that provides the naked eye microscopic view of actual cell death. Since cancer cells tend to resist treatment and show re-growth, we also looked into the effect of multiple sessions hyperthermia using a 24 h window till 72 h using trypan blue assay. The multiple sessions of hyperthermia showed promising results, and it indicated that a minimum of 3 sessions, each of one-hour duration, is required for the complete killing of cancer cells. Moreover, to simulate an in vivo cellular environment, a phantom consisting of magnetic nanoparticles dispersed in 1 and 5% agarose gel was constituted and studied. These results will help to decide the magnetic fluid based hyperthermic therapeutic strategies using temperature-sensitive magnetic fluid.
Collapse
Affiliation(s)
- Anand Bhardwaj
- Dr. K C Patel R&D Centre, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India.,P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India
| | - Kinnari Parekh
- Dr. K C Patel R&D Centre, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India
| | - Neeraj Jain
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India.
| |
Collapse
|
17
|
da Silva FAS, de Campos MF. Study of heating curves generated by magnetite nanoparticles aiming application in magnetic hyperthermia. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00063-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Nanoformulation Design Including MamC-Mediated Biomimetic Nanoparticles Allows the Simultaneous Application of Targeted Drug Delivery and Magnetic Hyperthermia. Polymers (Basel) 2020; 12:polym12081832. [PMID: 32824256 PMCID: PMC7465699 DOI: 10.3390/polym12081832] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies. In fact, MNPs can be used simultaneously as drug nanocarriers and magnetic hyperthermia agents and, moreover, they can be guided toward the target by an external magnetic field and by their functionalization with a specific probe. However, it is difficult to find a system based on MNPs that exhibits optimal conditions as a drug nanocarrier and as a magnetic hyperthermia agent. In this work, a novel nanoformulation is proposed to be used as a multifunctional platform that also allows dual complementary guidance. This nanoformulation is based on mixtures of inorganic magnetic nanoparticles (M) that have been shown to be optimal hyperthermia agents, and biomimetic magnetic nanoparticles (BM), that have been shown to be highly efficient drug nanocarriers. The presence of the magnetosome protein MamC at the surface of BM confers novel surface properties that allow for the efficient and stable functionalization of these nanoparticles without the need of further coating, with the release of the relevant molecule being pH-dependent, improved by magnetic hyperthermia. The BM are functionalized with Doxorubicin (DOXO) as a model drug and with an antibody that allows for dual guidance based on a magnetic field and on an antibody. The present study represents a proof of concept to optimize the nanoformulation composition in order to provide the best performance in terms of the magnetic hyperthermia agent and drug nanocarrier.
Collapse
|
19
|
Sola-Leyva A, Jabalera Y, Chico-Lozano MA, Carrasco-Jiménez MP, Iglesias GR, Jimenez-Lopez C. Reactive oxygen species (ROS) production in HepG2 cancer cell line through the application of localized alternating magnetic field. J Mater Chem B 2020; 8:7667-7676. [PMID: 32705099 DOI: 10.1039/d0tb01306d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies have shown the potential of magnetic hyperthermia in cancer treatments. However, the underlying mechanisms involved have not been yet fully described. In particular, the cell death related to magnetic hyperthermia observed in cultures incubated with low concentration of magnetic nanoparticles and under a low intensity alternating magnetic field, in which a macroscopic temperature rise is not observed, is still not understood. In the present study, we investigate the production of intracellular Reactive Oxygen Species (ROS) as a mechanism to induce cell death under these conditions. In this study, the production and influence of ROS on the viability of HepG2 human hepatoma cells (used as a model cell line) are analyzed under the application of variable magnetic fields using hyperthermia agents, such as biomimetic magnetic nanoparticles (BMNPs) mediated by magnetosome MamC protein from Magnetococcus marinus MC-1. The results show that intracellular ROS production increases up to ∼90% following upon the exposure of AMF to HepG2 cells containing BMNPs, which could determine the loss of cell viability (up to ∼40% reduction) without a significant rise in temperature. Such ROS production is linked to mitochondrial dysfunction caused by the application of AMF to cells containing BMNPs.
Collapse
Affiliation(s)
- Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Biomimetic Magnetoliposomes as Oxaliplatin Nanocarriers: In Vitro Study for Potential Application in Colon Cancer. Pharmaceutics 2020; 12:pharmaceutics12060589. [PMID: 32599905 PMCID: PMC7356838 DOI: 10.3390/pharmaceutics12060589] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Current chemotherapy for colorectal cancer (CRC) includes the use of oxaliplatin (Oxa), a first-line cytotoxic drug which, in combination with irinotecan/5-fluorouracil or biologic agents, increases the survival rate of patients. However, the administration of this drug induces side effects that limit its application in patients, making it necessary to develop new tools for targeted chemotherapy. MamC-mediated biomimetic magnetic nanoparticles coupled with Oxa (Oxa-BMNPs) have been previously demonstrated to efficiently reduce the IC50 compared to that of soluble Oxa. However, their strong interaction with the macrophages revealed toxicity and possibility of aggregation. In this scenario, a further improvement of this nanoassembly was necessary. In the present study, Oxa-BMNPs nanoassemblies were enveloped in phosphatidylcholine unilamellar liposomes (both pegylated and non-pegylated). Our results demonstrate that the addition of both a lipid cover and further pegylation improves the biocompatibility and cellular uptake of the Oxa-BMNPs nanoassemblies without significantly reducing their cytotoxic activity in colon cancer cells. In particular, with the pegylated magnetoliposome nanoformulation (a) hemolysis was reduced from 5% to 2%, being now hematocompatibles, (b) red blood cell agglutination was reduced, (c) toxicity in white blood cells was eliminated. This study represents a truly stepforward in this area as describes the production of one of the very few existing nanoformulations that could be used for a local chemotherapy to treat CRC.
Collapse
|
21
|
Pharmaceutical Particulates and Membranes for the Delivery of Drugs and Bioactive Molecules. Pharmaceutics 2020; 12:pharmaceutics12050412. [PMID: 32369897 PMCID: PMC7285108 DOI: 10.3390/pharmaceutics12050412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
The delivery of drugs and bioactive molecules using pharmaceutical particulates and membranes are of great significance for various applications such as the treatment of secondary infections, cancer treatment, skin regeneration, orthopedic applications and others [...].
Collapse
|
22
|
Abstract
Abstract
In the review we describe a method for concentration of anionic liposomes with encapsulated water-soluble substances within a small volume via electrostatic liposome adsorption on the surface of polymer particles with grafted cationic chains (spherical polycationic brushes), or cationic microgel particles. Dozens of intact liposomes can be bound to each polymer particle, the resulting polymer/liposome complex does not dissociate into the original components in a physiological solution. This allows fabrication of multi-liposomal complexes (MLCs) with a required ratio of encapsulated substances. Two approaches are discussed for the synthesis of stimuli-sensitive MLCs. The first is to incorporate the conformation switch, morpholinocyclohexanol-based lipid, into the liposomal membrane thus forming pH-sensitive liposomes capable of releasing their cargo when acidifying the surrounding solution. These liposomes complexed with the brushes release encapsulated substances much faster than the uncomplexed liposomes. The second is to adsorb liposomes on cationic thermo-responsive microgels. The resulting MLCs contracts upon heating over a volume phase transition temperature from the swollen to the collapsed state of microgel, thus causing the adsorbed liposomes to change drastically their morphology and release an encapsulated substance. Complexation of anionic liposomes with chitosan microgels and polylactide micelles gives MLCs which degrade in the presence of enzymes down to small particles, 10–15 nm in diameter. A novel promising approach suggests that immobilized liposomes can act as a capacious depot for biologically active compounds and ensure their controllable leakage to surrounding solution.
Collapse
Affiliation(s)
- Alexander A. Yaroslavov
- Lomonosov Moscow State University , Department of Chemistry , Leninskie Gory 1-3 , Moscow 119991 , Russian Federation
| | - Andrey V. Sybachin
- Lomonosov Moscow State University , Department of Chemistry , Leninskie Gory 1-3 , Moscow 119991 , Russian Federation
| |
Collapse
|
23
|
Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field. NANOMATERIALS 2019; 9:nano9101457. [PMID: 31615049 PMCID: PMC6835341 DOI: 10.3390/nano9101457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
The superparamagnetic substance magnetoferritin is a potential bio-nanomaterial for tumor magnetic hyperthermia because of its active tumor-targeting outer protein shell, uniform and tunable nanosized inner mineral core, monodispersity and good biocompatibility. Here, we evaluated the heating efficiency of magnetoferritin nanoparticles in an alternating magnetic field (AMF). The effects of core-size, Fe concentration, viscosity, and field frequency and amplitude were investigated. Under 805.5 kHz and 19.5 kA/m, temperature rise (ΔT) and specific loss power (SLP) measured on magnetoferritin nanoparticles with core size of 4.8 nm at 5 mg/mL were 14.2 °C (at 6 min) and 68.6 W/g, respectively. The SLP increased with core-size, Fe concentration, AMF frequency, and amplitude. Given that: (1) the SLP was insensitive to viscosity of glycerol-water solutions and (2) both the calculated effective relaxation time and the fitted relaxation time were closer to Néel relaxation time, we propose that the heating generation mechanism of magnetoferritin nanoparticles is dominated by the Néel relaxation. This work provides new insights into the heating efficiency of magnetoferritin and potential future applications for tumor magnetic hyperthermia treatment and heat-triggered drug release.
Collapse
|