1
|
Lu Y, Zhu X, Huo Y, Zhang H, Yang Z, Wang Z, Wu X, Jin Y. Glucose oxidase/copper‑carbon dots/hyaluronic acid self-assembly for self-supply hydrogen peroxide in a double-enzyme cascade to enhance anti-tumor therapy. Int J Biol Macromol 2025; 310:143286. [PMID: 40253041 DOI: 10.1016/j.ijbiomac.2025.143286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Although chemodynamic therapy (CDT) has proven to be a promising anti-tumor strategy, its efficacy is limited by the insufficient supply of H2O2 in tumor tissues. To solve the problem of insufficient H2O2, in this paper, a novel double-enzyme cascade nanoreactor hyaluronic-cinnamaldehyde Schiff base@glucose oxidase (GOx)/copper doped carbon dot (abbreviation HCFCTG), which constructed by co-assembly of copper doped carbon dot (CuFACDs-TPP), glucose oxidase (GOx) and hyaluronic-cinnamaldehyde Schiff base (HA-CA) was designed for the first time. The HCFCTG released GOx and CuFACDs-TPP under pH stimulation. GOx continues to supply H2O2 to CDT by consuming glucose, while cutting off the supply of nutrients to starve cancer cells to death (ST), ultimately amplifying the therapeutic effect of CDT. CuFACDs-TPP precisely anchors mitochondria to destroy mitochondria and induce apoptosis, while copper ions consume glutathione to amplify reactive oxygen species (ROS) levels. Self‑oxygenation of HCFCTG by Fenton-like reaction down-regulates hypoxia-inducible factor (HIF-1α) to consolidate CDT effect. The 808 nm laser activates the photothermal effect enhances CDT. In vitro and in vivo experiments proved that HCFCTG has good biocompatibility and excellent CDT effect. HCFCTG overcomes the problem of insufficient H2O2 in the CDT process.
Collapse
Affiliation(s)
- Yuting Lu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xu Zhu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yibo Huo
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- College of Public Health, Mudanjiang Medical University, Mudanjiang 157009, China
| | - Ziqing Yang
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Shnaikat SG, Shakya AK, Bardaweel SK. Formulation, development and evaluation of hyaluronic acid-conjugated liposomal nanoparticles loaded with regorafenib and curcumin and their in vitro evaluation on colorectal cancer cell lines. Saudi Pharm J 2024; 32:102099. [PMID: 38817822 PMCID: PMC11135027 DOI: 10.1016/j.jsps.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024] Open
Abstract
Colorectal cancer is one of the major causes of global cancer, with chemotherapy and radiation therapy being effective but limited due to low specificity. Regorafenib, a multikinase inhibitor, provides hope to patients with metastatic colorectal cancer and was approved by the FDA in 2012. However, due to resistance issues and adverse events, its efficacy is compromised, necessitating further refinement. Meanwhile, curcumin, a compound of turmeric, exhibits anticancer effects through antioxidant and anti-inflammatory actions, induction of the apoptosis, arrest of cell cycle, inhibition of angiogenesis, and modulation of signaling pathways. Unfortunately, its clinical utility is limited by its poor bioavailability, pointing towards innovative drug delivery strategies for enhanced efficacy in colorectal cancer treatment. Hyaluronic acid (HA)-decorated liposomes (LIPO) have been developed to target colorectal cells through an overexpressed CD44 receptor, increasing antitumor and antimetastasis efficacy. This study investigates the possibility of loading curcumin (CUR) or regorafenib (REGO) into a liposomal formulation for passive and HA-actively targeted treatment, evaluating its critical quality attributes (CQA) (size, zeta potential, polydispersity index) and cytotoxic activity in the HT29 colorectal cancer cell line. The average particle size of the plain liposomes and those decorated with HA was 144.00 ± 0.78 nm and 140.77 ± 1.64 nm, respectively. In contrast, curcumin-loaded plain liposomes and HA-decorated liposomes had 140 ± 2.46 nm and 164.53 ± 15.13 nm, respectively. The prepared liposomes had a spherical shape with a narrow size distribution and an acceptable zeta potential of less than -30 mV. The encapsulation efficiency was 99.2 % ± 0.3 and 99.9 ± 0.2 % for HA-decorated and bare regorafenib loaded. The % EE was 98.9 ± 0.2 % and 97.5 ± 0.2 % for bare liposomal nanoparticles loaded with curcumin and coated with curcumin. The IC50 of free REGO, CUR, REGO-LIPO, CUR-LIPO, REGO-LIPO-HA and CUR-LIPO-HA were 20.17 ± 0.78, 64.4 ± 0.33, 224.8 ± 0.06, 49.66 ± 0.22, 73.66 ± 0.6, and 27.86 ± 0.49 µM, respectively. The MTT assay in HT29 cells showed significant cytotoxic activity of the HA-decorated liposomal formulation compared to the base uncoated formulation, indicating that hyaluronic acid-targeted liposomes loaded with regorafenib or curcumin could be a promising targeted formulation against colorectal cancer cells.
Collapse
Affiliation(s)
| | - Ashok K. Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | |
Collapse
|
3
|
Yetisgin AA, Durak S, Kutlu O, Cetinel S. Hyaluronan-Sphingosine Polymersomes for Treatment of Ocular Neovascularization: Synthesis and Evaluation. Macromol Biosci 2024; 24:e2300531. [PMID: 38318988 DOI: 10.1002/mabi.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Ocular neovascularization is a hallmark of several sight-threatening diseases, including diabetic retinopathy and age-related macular degeneration. Currently, available treatments are limited and often associated with side effects. Therefore, a novel approach to ocular neovascularization treatment through utilization of polymersomes from self-assembled sphingosine-grafted hyaluronic acid (HA-Sph) amphiphilic polymers is presented. The polymersomes are generated in spherical morphologies and sizes between 97.95 - 161.9 nm with homogenous size distributions. Experiments reveal that HA-Sph polymersomes, with concentrations ≥150 µg mL-1, significantly inhibit the proliferation of human umbilical vein endothelial cells (HUVECs), while concurrently promoting the proliferation of retinal pigment epithelial cells. The polymersomes demonstrate gradual disintegration in vitro, leading to sustained release of sphingosine, which prolongs the inhibition of HUVEC proliferation (from 87.5% at 24 h to 35.2% viability at 96 h). The efficacy of polymersomes in inhibiting angiogenesis is confirmed through tube formation assay, revealing a substantial reduction in tube length compared to the control group. The findings also validate the ocular penetration capability of polymersomes through ex vivo whole porcine eye ocular penetration study, indicating their suitability for topical administration. Potentially, HA-Sph polymersomes can be harnessed to develop intricate drug delivery systems that protect the retina and effectively treat ocular diseases.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Saliha Durak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
4
|
Yue H, Zhao X, Yong Q, Shi M, Jiang X, Zhang Y, Yu X. Self-assembly of Hyaluronic Acid-Cu-Quercetin flavonoid nanoparticles: synergistic chemotherapy to target tumors. PeerJ 2023; 11:e15942. [PMID: 37663303 PMCID: PMC10470444 DOI: 10.7717/peerj.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background In this study, a natural compound quercetin (Qu) was investigated for its various antitumor effects. However, due to its poor water solubility and low bioavailability, its clinical application is limited. To overcome this constraint, a modification was to Qu, which resulted in the creation of novel flavonoid self-assembling nanoparticles (HCQ NPs). Methods HCQ NPs were synthesized by a self-assembly method and characterized using transmission electron microscopy, the Malvern Zetasizer instrument, X-ray photoelectron spectroscopy (XPS), the ultraviolet-visible spectrophotometric method (UV-vis), Fourier transform infrared (FITR) and inductively coupled plasma mass spectrometry. Extracellular, methylene blue spectrophotometric analysis was used to determine the ability of HCQ NPs to react with different concentrations of H2O2 to form hydroxyl radicals (•OH). Intracellular, DCFH-DA staining was used to detect the ability of HCQ NPs to react with H2O2 to generate reactive oxygen species. Flow cytometry was used to detect the uptake of HCQ NPs by MDA-MB-231 cells at different time points. The biocompatibility of HCQ NPs was evaluated using the Cell Counting Kit-8 (CCK-8) assay. Calcein AM/PI double staining and the CCK-8 assay were used to evaluate the synergistic antitumor effect of HCQ NPs and H2O2. Results HCQ NPs showed uniformly sized analogous spherical shapes with a hydrodynamic diameter of 55.36 ± 0.27 nm. XPS revealed that Cu was mainly present as Cu2+ in the HCQ NPs. UV-vis absorption spectrum of the characteristic peak of HCQ NPs was located at 296 nm. Similarly, FTIR spectroscopy revealed a complex formation of Qu and Cu2+ that substantially changed the wavenumber of the 4-position C = O characteristic absorption peak. Based on the proportion of Qu and Cu2+ (1:2), the total drug loading of Qu and Cu2+ in the HCQ NPs for therapeutic purposes was calculated to be 9%. Methylene blue spectrophotometric analysis of •OH indicated that Cu can lead to the generation of •OH by triggering Fenton-like reactions. HCQ NPs rapidly accumulated in MDA-MB-231 cells with the extension of time, and the maximum accumulation concentration was reached at about 0.5 h. Calcein AM/PI double staining and CCK-8 revealed synergistic antitumor effects of HCQ NPs including the chemotherapeutic effect of Qu and chemodynamic therapy by Cu2+ in a simulated tumor microenvironment. HCQ NPs demonstrated very low toxicity in LO2 cells in the biocompatibility experiment. Conclusion This study show cases a new method of creating self-assembled flavonoid HCQ NPs that show great for fighting cancer.
Collapse
Affiliation(s)
- Hanxun Yue
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The First people’s Hospital of PingDingShan, Pingdingshan, China
| | - Xuan Zhao
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yong
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Shi
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Jiang
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yating Zhang
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xian Yu
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Coninx S, Kalot G, Godard A, Bodio E, Goze C, Sancey L, Auzély-Velty R. Tailored hyaluronic acid-based nanogels as theranostic boron delivery systems for boron neutron cancer therapy. Int J Pharm X 2022; 4:100134. [PMID: 36304136 PMCID: PMC9594117 DOI: 10.1016/j.ijpx.2022.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Boron-rich nanocarriers possess great potential for advanced boron neutron capture therapy (BNCT) as an effective radiation treatment for invasive malignant tumors. If additionally, they can be imaged in a non-invasive and real-time manner allowing the assessment of local boron concentration, they could serve for dose calculation and image-guided BNCT to enhance tumor treatment efficacy. To meet this challenge, this study describes the design of a theranostic nanogel, enriched in 10B and fluorescent dye, to achieve selective imaging, and sufficient accumulation of boron at the tumor site. The boron-rich and fluorescent nanogels can be easily obtained via temperature triggered-assembly of hyaluronic acid (HA) modified with a thermoresponsive terpolymer. The latter was specifically designed to enable the efficient encapsulation of the fluorescent dye – an aza‑boron-dipyrromethene (aza-BODIPY) – linked to 10B-enriched sodium borocaptate (BSH), in addition to induce nanogel formation below room temperature, and to enable their core-crosslinking by hydrazone bond formation. The HA nanogel considerably concentrates aza-BODIPY-BSH into the hydrophobic nanodomains made of the terpolymer chains. Here, we present the detailed synthesis of the HA-terpolymer conjugate, nanogel formation, and characterization in terms of size, morphology, and stability upon storage, as well as the biological behavior of the boron nanocarrier using real-time fluorescence imaging in cells and in vivo. This work suggested the potential of the theranostic HA nanogel as a boron delivery system for the implementation of BNCT in brain cancer and sarcoma.
Collapse
Affiliation(s)
- Simon Coninx
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France
| | - Ghadir Kalot
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Lucie Sancey
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France,Corresponding author.
| |
Collapse
|
6
|
Chen X, Zhang S, Li J, Huang X, Ye H, Qiao X, Xue Z, Yang W, Wang T. Influence of Elasticity of Hydrogel Nanoparticles on Their Tumor Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202644. [PMID: 35981891 PMCID: PMC9561785 DOI: 10.1002/advs.202202644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Indexed: 05/28/2023]
Abstract
Polymeric nanocarriers have a broad range of clinical applications in recent years, but an inefficient delivery of polymeric nanocarriers to target tissues has always been a challenge. These results show that tuning the elasticity of hydrogel nanoparticles (HNPs) improves their delivery efficiency to tumors. Herein, a microfluidic system is constructed to evaluate cellular uptake of HNPs of different elasticity under flow conditions. It is found that soft HNPs are more efficiently taken up by cells than hard HNPs under flow conditions, owing to the greater adhesion between soft HNPs and cells. Furthermore, in vivo imaging reveals that soft HNPs have a more efficient tumor delivery than hard HNPs, and the greater targeting potential of soft HNPs is associated with both prolonged blood circulation and a high extent of cellular adhesion.
Collapse
Affiliation(s)
- Xiangyu Chen
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130022P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Shuwei Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Department of OrthopedicsChinese PLA General HospitalBeijing100853P. R. China
| | - Jinming Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Xiaobin Huang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Haochen Ye
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Life and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130022P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Life and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| |
Collapse
|
7
|
Souri M, Bagherzadeh MA, Jahromi MAM, Mohammad-Beigi H, Abdoli A, Mir H, Roustazadeh A, Pirestani M, Zangabad PS, Kiani J, Bakhshayesh A, Jahani M, Joghataei MT, Karimi M. Poly-L-Lysine/Hyaluronan Nanocarriers As a Novel Nanosystem for Gene Delivery. J Microsc 2022; 287:32-44. [PMID: 35443072 DOI: 10.1111/jmi.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
The present research comes up with a novel DNA-loaded poly-l-lysine (PLL) / hyaluronan (HA) nanocarrier (DNA-loaded PLL/HA NCs) for gene delivery applications, as a promising candidate for gene delivery into diverse cells. A straightforward approach was employed to prepare such a nanosystem through masking DNA-loaded PLL molecules by HA. Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), field emission-scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) were used to analyze the interaction of the molecules as well as the physicochemical properties of the NCs. The NCs showed a negative charge of -24 ± 3 mV, with an average size of 138 ± 6 nm, in a ellipsoid-shape with smooth surfaces. The DNA loading efficiency (LE) measured by DNA absorbance was around 95 %. The MTT assay showed that the developed NCs are non-toxic to the cells. Furthermore,the uptake of the DNA-loaded PLL/HA NCs by the human embryonic kidney (HEK)-293T cells was evaluated by a flow cytometry method, and demonstrated high potential cellular uptake over 90% for transferring the gene to HEK-293T cells at the optimized conditions. Therefore, the DNA-loaded PLL/HA NCs are the potent strategy for developing nanosystems for gene delivery applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Masoumeh Souri
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | | | - Mirza Ali Mofazzal Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.,Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Amir Abdoli
- Department of Parasitology, and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hamed Mir
- Department of Biochemistry and Nutrition, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Abazar Roustazadeh
- Department of Biochemistry and Nutrition, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Majid Pirestani
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parham Sahandi Zangabad
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Jahani
- Department of Physics, Sharif University of Technology, Tehran, Iran.,Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Taleuzzaman M, Sartaz A, Alam MJ, Javed MN. Emergence of Advanced Manufacturing Techniques for Engineered Polymeric Systems in Cancer Treatment. ADVANCES IN CHEMICAL AND MATERIALS ENGINEERING 2022:152-172. [DOI: 10.4018/978-1-7998-9574-9.ch009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Clinical performances of chemotherapeutic drugs which are used to manage different stages of cancers are usually facing numerous pharmacological challenges such as tumor microenvironment, high dose requirements, poor selectivity towards cancer cells, life-threatening cytotoxicity, and frequent drug resistance incidences, in addition to pharmacotechnical issues such as poor aqueous solubility, uncontrolled drug-release, low stability, non-specific bio-distribution, and erratic bioavailability profiles. The chapter aims to provide a brief account of advancements made in nanotechnology-enabled manufacturing engineering tools for manipulating polymeric materials as efficient carriers so that loaded anti-cancer drugs would exhibit better therapeutic applications and optimized clinical significance in cancers.
Collapse
|
9
|
New Hydrogel Network Based on Alginate and a Spiroacetal Copolymer. Gels 2021; 7:gels7040241. [PMID: 34940301 PMCID: PMC8701164 DOI: 10.3390/gels7040241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
This study reports a strategy for developing a biohybrid complex based on a natural/synthetic polymer conjugate as a gel-type structure. Coupling synthetic polymers with natural compounds represents an important approach to generating gels with superior properties and with potential for biomedical applications. The study presents the preparation of hybrid gels with tunable characteristics by using a spiroacetal polymer and alginate as co-partners in different ratios. The new network formation was tested, and the structure was confirmed by FTIR and SEM techniques. The physical properties of the new gels, namely their thermal stability and swelling behavior, were investigated. The study showed that the increase in alginate content caused a smooth increase in thermal stability due to the additional crosslinking bridges that appeared. Moreover, increasing the content of the synthetic polymer in the structure of the gel network ensures a slower release of carvacrol, the encapsulated bioactive compound.
Collapse
|
10
|
Jing Q, Ruan H, Li J, Wang Z, Pei L, Hu H, He Z, Wu T, Ruan S, Guo T, Wang Y, Feng N, Zhang Y. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials 2021; 278:121142. [PMID: 34571433 DOI: 10.1016/j.biomaterials.2021.121142] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
There is a lack of actively targeting drug delivery carriers for the topical treatment of epidermal diseases, which results in drug waste and an increased incidence of toxic side effects in the clinic. We recently discovered that epidermal cells (HaCaT cells) have homologous targeting functions and developed HaCaT cell membrane-coated pH-sensitive micelles for therapeutic active targeting of skin disease. We encapsulated shikonin in these biomimetic nanocarriers and found that the nanocarriers accumulated mainly in the active epidermis when delivered with karaya gum-fabricated water-soluble microneedles. The nanocarriers were internalized by the target cells, resulting in swelling of histidine fragments with protonation and subsequent triggering of drug release, which increased the therapeutic efficacy of shikonin against imiquimod-induced psoriatic epidermal hyperplasia. This emerging biomimetic delivery strategy is a new approach for improving the treatment of skin diseases and is also very promising for use in the field of cosmetics. Additionally, we found abnormally high protein expression of Na+/K+-ATPase in diseased skin; thus, this protein may be a biomarker of psoriasis.
Collapse
Affiliation(s)
- Qian Jing
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hang Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaqi Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Pei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongmei Hu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Youjie Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Pedziwiatr-Werbicka E, Horodecka K, Shcharbin D, Bryszewska M. Nanoparticles in Combating Cancer: Opportunities and Limitations. A Brief Review. Curr Med Chem 2021; 28:346-359. [PMID: 32000637 DOI: 10.2174/0929867327666200130101605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022]
Abstract
Nanomedicine is a good alternative to traditional methods of cancer treatment but does not solve all the limitations of oncology. Nanoparticles used in anticancer therapy can work as carriers of drugs, nucleic acids, imaging agents or they can sensitize cells to radiation. The present review focuses on the application of nanoparticles to treating cancer, as well as on its problems and limitations. Using nanoparticles as drug carriers, significant improvement in the efficiency of transport of compounds and their targeting directly to the tumour has been achieved; it also reduces the side effects of chemotherapeutic drugs on the body. However, nanoparticles do not significantly improve the effectiveness of the chemotherapeutic agent itself. Most nanodrugs can reduce the toxicity of chemotherapy, but do not significantly affect the effectiveness of treatment. Nanodrugs should be developed that can be effective as an anti-metastatic treatment, e.g. by enhancing the ability of nanoparticles to transport chemotherapeutic loads to sentinel lymph nodes using the immune system and developing chemotherapy in specific metastatic areas. Gene therapy, however, is the most modern method of treating cancer, the cause of cancer being tackled by altering genetic material. Other applications of nanoparticles for radiotherapy and diagnostics are discussed.
Collapse
Affiliation(s)
- Elzbieta Pedziwiatr-Werbicka
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| | - Katarzyna Horodecka
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Maria Bryszewska
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| |
Collapse
|
12
|
Hasanzadeh A, Mofazzal Jahromi MA, Abdoli A, Mohammad-Beigi H, Fatahi Y, Nourizadeh H, Zare H, Kiani J, Radmanesh F, Rabiee N, Jahani M, Mombeiny R, Karimi M. Photoluminescent carbon quantum dot/poly-l-Lysine core-shell nanoparticles: A novel candidate for gene delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Li LS, Ren B, Yang X, Cai ZC, Zhao XJ, Zhao MX. Hyaluronic Acid-Modified and Doxorubicin-Loaded Gold Nanoparticles and Evaluation of Their Bioactivity. Pharmaceuticals (Basel) 2021; 14:ph14020101. [PMID: 33525717 PMCID: PMC7911392 DOI: 10.3390/ph14020101] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Functionalized gold nanoparticles (AuNPs) have been successfully used in many fields as a result of having low cytotoxicity, good biocompatibility, excellent optical properties, and their ability to target cancer cells. Here, we synthesized AuNP carriers that were modified by hyaluronic acid (HA), polyethylene glycol (PEG), and adipic dihydrazide (ADH). The antitumor drug doxorubicin (Dox) was loaded into AuNP carriers and attached chemically. The Au nanocomposite AuNPs@MPA-PEG-HA-ADH-Dox was able to disperse uniformly in aqueous solution, with a diameter of 15 nm. The results of a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that AuNP carriers displayed very little toxicity toward cells in high doses, although the antitumor properties of Au nanocomposites were significantly enhanced. Cellular uptake experiments demonstrated that AuNPs modified with hyaluronic acid were more readily ingested by HepG2 and HCT-116 cells, as they have a large number of CD44 receptors. A series of experiments measuring apoptosis such as Rh123 and annexin V-FITC staining, and analysis of mitochondrial membrane potential (MMP) analysis, indicated that apoptosis played a role in the inhibition of cell proliferation by AuNPs@MPA-PEG-HA-ADH-Dox. Excessive production of reactive oxygen species (ROS) was the principal mechanism by which the Au nanocomposites inhibited cell proliferation, leading to apoptosis. Thus, the Au nanocomposites, which allowed cell imaging in real-time and induced apoptosis in specific cell types, represent theragnostic agents with potential for future clinical applications in bowel cancer.
Collapse
Affiliation(s)
- Lin-Song Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Bin Ren
- School of Mathematics and Statistics, Henan University, Jinming Campus, Kaifeng 475004, China;
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Zhong-Chao Cai
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Xue-Jie Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
- Correspondence:
| |
Collapse
|
14
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
15
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
16
|
Akhter DT, Simpson JD, Fletcher NL, Houston ZH, Fuchs AV, Bell CA, Thurecht KJ. Oral Delivery of Multicompartment Nanomedicines for Colorectal Cancer Therapeutics: Combining Loco‐Regional Delivery with Cell‐Target Specificity. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dewan T. Akhter
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Joshua D. Simpson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Nicholas L. Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Zachary H. Houston
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Adrian V. Fuchs
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Craig A. Bell
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|