1
|
Erdoğan Ü, Uğur ŞS. Chitosan-enriched milk thistle extract-loaded liposomes anchored on nonwoven cotton fabric with antioxidant, anti-aging and UV protective effects. Int J Biol Macromol 2025; 304:140963. [PMID: 39952514 DOI: 10.1016/j.ijbiomac.2025.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
This work focused on grafting milk thistle extract (MTE)-loaded liposomes with antioxidant and UV protection properties onto nonwoven cotton fabric by layer-by-layer (LbL) self-assembly. Liposome vesicles were manufactured using the double solvent displacement (DSD) method and characterized based on particle size, polydispersity, and zeta potential measurements. In the coating process, chitosan served as a biocompatible and biodegradable polymer to provide the positive charge required for electrostatic LbL self-assembly. The findings showed that the liposomal population was ∼223 nm in average particle size, with a low polydispersity index of 0.398, indicating high particle homogeneity. Additionally, the zeta potentials of liposomes and chitosan were determined to be -28 and + 68.23, respectively. SEM-EDX findings revealed that the elements of the liposomes on the fabric changed with the increase of the assembled layers, while ATR-FTIR provided evidence that the liposomes were successfully loaded on the nonwoven cotton fabric. The findings showed significant levels of tyrosinase inhibitory activity and antioxidant ability in fabrics coated with chitosan-enriched MTE phenolics. Moreover, when compared with untreated and pretreated fabrics, the fabric with coated MTE exhibited very good sun protection ability with a UPF value of 30.55.
Collapse
Affiliation(s)
- Ümit Erdoğan
- Department of Rose and Aromatic Plants Application and Research Center Isparta University of Applied Sciences, Isparta, Türkiye.
| | - Şule Sultan Uğur
- Department of Textile Engineering, Faculty of Engineering and Natural Sciences, Suleyman Demirel University, Isparta, Türkiye.
| |
Collapse
|
2
|
Ma C, Du L, Guo Y, Yang X. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges. Int J Biol Macromol 2024; 280:135838. [PMID: 39317293 DOI: 10.1016/j.ijbiomac.2024.135838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Hydrogels can imitate the extracellular matrix, therefore facilitating the creation of an ideal healing environment for wounds. Consequently, they are popular as a material choice for wound dressings. Polysaccharides have been widely used in wound dressings due to their good biocompatibility and degradability. In this study, we first discuss skin and wound physiology before summarizing the methods for producing hydrogels from polysaccharides and their derivatized. These include not just normal polysaccharides like chitosan, cellulose, and alginate, but also Chinese medicinal polysaccharides with therapeutic properties. Then, strategies for causing hydrogel production from polysaccharides or their derivatives are briefly explained. Finally, the functions of hydrogel dressings are reviewed, including antibacterial, antioxidant, and adhesive properties, as well as the methods for achieving these properties. Furthermore, current issues and concerns are discussed, with the goal of providing fresh paths for the development of future wound dressings.
Collapse
Affiliation(s)
- Chao Ma
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lianxin Du
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China
| | - Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China.
| | - Xin Yang
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Shandong Benefit Mankind Glycobiology Co., Ltd, Weihai 264499, China.
| |
Collapse
|
3
|
Freitas AS, Oliveira R, Ribeiro A, Almeida-Aguiar C. Biofunctional Textiles: Antioxidant and Antibacterial Finishings of Cotton with Propolis and Honey. Int J Mol Sci 2024; 25:8034. [PMID: 39125604 PMCID: PMC11311988 DOI: 10.3390/ijms25158034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
The growing activity in the textile industry has been demanding the search for new and innovative technologies to meet consumers' needs regarding more sustainable and ecological processes, with functionality receiving more attention. Bee products are known for their wide spectra of properties, including antioxidant and antibacterial activities. Propolis and honey are the most popular and used since ancient times for the most diverse applications due to their health benefits. With the increasing need for safer and more sustainable practices, the use of natural products for the functional finishing process can be a suitable alternative due to their safety and eco-friendly nature. For that, a biosolution, composed of a mixture of propolis and honey in water, was used to perform the functional finishing of cotton knits, both in the presence and in the absence of potassium alum as a chemical mordant. The fastness strength was also evaluated after three washing cycles. The antioxidant potential of the biosolution, assessed with the in vitro ABTS scavenging assay, provided textiles with the capacity to reduce more than 90% of the ABTS radical, regardless of the mordant presence and even after three washing cycles. Furthermore, biofunctional textiles decreased the growth of Bacillus subtilis, Propionibacterium acnes, Escherichia coli, and, particularly, Staphylococcus aureus cultures after 24 h of incubation with an increase in antibacterial activity when potassium alum was used. These findings show that bee products are promising and effective alternatives to be used in the textile industry to confer antioxidant and antibacterial properties to cotton textiles, thereby enhancing human health.
Collapse
Affiliation(s)
- Ana Sofia Freitas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Alice Ribeiro
- CeNTI—Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Cristina Almeida-Aguiar
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Andrade-Guel M, Cabello-Alvarado CJ, Ávila Orta CA, Cadenas-Pliego G, Cruz-Ortiz B. Functional Technical Textile-Based Polymer Nanocomposites with Adsorbent Properties of Toxins and Dyes also Have Antibacterial Behavior. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3007. [PMID: 38930376 PMCID: PMC11205333 DOI: 10.3390/ma17123007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
This is the first study of non-woven fabrics elaborated by melt-blowing from polymer nanocomposites made of Nylon 6 and nanoclay (Cloisite 20A) modified with an amine (1,4 diaminobutane dihydrochloride). Morphological and physical characteristics, adsorption capacity, and antibacterial properties are presented. From the X-ray diffraction (XRD) results, it was possible to observe a displacement of the signals to other 2θ angles, due to an α to ϒ phase shift. The scanning electron microscopy (SEM) images showed that the mean diameter of fiber decreased as the content of nanoclay increased. The mechanical tests showed that the tear strength force of neat nylon was 1.734 N, but this characteristic increased to 2.135 N for the sample with 0.5% modified nanoclay. The inulin adsorption efficiency of the Nylon 6/C20A 1.5% and Nylon 6/C20A 2% samples at 15 min was 75 and 74%, respectively. The adsorption capacity of Nylon 6/C20A 1.5% and Nylon 6/C20A 2% for methylene blue and methyl orange remained above 90% even after four adsorption cycles. In addition, non-woven fabrics present antibacterial activity against E. coli.
Collapse
Affiliation(s)
- Marlene Andrade-Guel
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.A.Á.O.); (G.C.-P.)
| | - Christian J. Cabello-Alvarado
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.A.Á.O.); (G.C.-P.)
- México CONAHCYT-CIQA, Av. Insurgentes Sur 1562, Col. Credito Constructor, Alcaldía Benito Juárez, CDMX 03940, Mexico
| | - Carlos Alberto Ávila Orta
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.A.Á.O.); (G.C.-P.)
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.A.Á.O.); (G.C.-P.)
| | - Brenda Cruz-Ortiz
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| |
Collapse
|
5
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
6
|
Nortjie E, Basitere M, Moyo D, Nyamukamba P. Assessing the Efficiency of Antimicrobial Plant Extracts from Artemisia afra and Eucalyptus globulus as Coatings for Textiles. PLANTS (BASEL, SWITZERLAND) 2024; 13:514. [PMID: 38498494 PMCID: PMC10893333 DOI: 10.3390/plants13040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
This study aimed to assess the antimicrobial activities of plant extracts from Artemisia afra and Eucalyptus globulus when used as coatings for textiles. A pulsed ultrasound-assisted extraction method (PUAE) was employed to obtain methanolic and hexanoic extracts from both plants. Eucalyptus globulus methanol extraction exhibited the highest yield at 22.76% (±0.61%), while Artemisia afra demonstrated lower yields. Phytochemical screening identified various secondary metabolites in the extracts, including phenols, quinones, and steroids. Antimicrobial tests against Staphylococcus aureus and Escherichia coli revealed varying degrees of susceptibility, with Eucalyptus globulus hexanoic extracts showing the highest activity against Staphylococcus aureus at an average percentage growth of 18.74% (±0.26%). Minimum inhibitory concentration (MIC) values were determined for the extracts, but complete inhibition did not occur at concentrations below 500 μg/mL. The extracts exhibited varying effects on Staphylococcus aureus and Escherichia coli growth, with some extracts promoting bacterial growth. Coating textiles with Eucalyptus globulus methanolic extracts demonstrated antibacterial activity against Staphylococcus aureus with the highest zone of inhibition observed in cotton-coated samples (258.4 mm2). Polyester-coated samples exhibited smaller inhibition zones, with the lowest observed in Eucalyptus globulus methanolic extract coating (65.97 mm2). Scanning electron microscope (SEM) analysis revealed visible surface morphology changes in coated fabrics, depicting fine, cluster, lumpy, flaky, and fragment-like morphologies. Laundering effects on coated fabrics were investigated, showing a significant decrease in antimicrobial activity after washing. Fourier-transform infrared spectroscopy (FTIR) identified functional groups in the extracts associated with antimicrobial properties. The complexity of the bioactive compounds suggests potential antimicrobial efficacy, resting on factors such as geographical location, climate, and extraction methods. Notwithstanding the limitations, this study contributes valuable insights into the use of plant extracts as antimicrobial coatings for textiles.
Collapse
Affiliation(s)
- Elvino Nortjie
- Bioresource Engineering Research Group, Department of Chemical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa;
| | - Moses Basitere
- Academic Support Programme for Engineering in Cape Town (ASPECT), Centre for Higher Education Development, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Doice Moyo
- Technology Station Clothing and Textiles, Symphony Way, Bellville 7535, South Africa; (D.M.); (P.N.)
| | - Pardon Nyamukamba
- Technology Station Clothing and Textiles, Symphony Way, Bellville 7535, South Africa; (D.M.); (P.N.)
| |
Collapse
|
7
|
Repon MR, Islam T, Islam T, Ghorab AE, Rahman MM. Cleaner pathway for developing bioactive textile materials using natural dyes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48793-48823. [PMID: 36879092 DOI: 10.1007/s11356-023-26131-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/21/2023] [Indexed: 04/16/2023]
Abstract
Bioactive textile materials are a promising field in the development of functional textiles. The integration of bioactive compounds, such as natural dyes, into textiles offers a range of benefits, including UV protection, anti-microbial properties, and insect repellency. Natural dyes have been shown to have bioactivity, and their integration into textiles has been extensively studied. The application of natural dyes on textile substrates will be an advantage for their inherent functional properties along with their non-toxic and eco-friendly nature. This review addresses the effect of natural dyes on surface modification of most used natural and synthetic fibers and its subsequent effects on their anti-microbial, UV protection and insect repellent properties with natural dyes. Natural dyes have proved to be environmentally friendly in an attempt to improve bioactive functions in textile materials. This review provides a clear view of sustainable resources for the dyeing and finishing of textiles to develop a cleaner pathway of bioactive textiles using natural dyes. Furthermore, the dye source, advantages and disadvantages of natural dye, main dye component, and chemical structure are listed. However, there is still a need for interdisciplinary research to further optimize the integration of natural dyes into textiles and to improve their bioactivity, biocompatibility, and sustainability. The development of bioactive textile materials using natural dyes has the potential to revolutionize the textile industry and to provide a range of benefits to consumers and society.
Collapse
Affiliation(s)
- Md Reazuddin Repon
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh.
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, 51424, Kaunas, Lithuania.
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Tarikul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Ahmed El Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, 72341, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
8
|
Solanki D, Vinchhi P, Patel MM. Design Considerations, Formulation Approaches, and Strategic Advances of Hydrogel Dressings for Chronic Wound Management. ACS OMEGA 2023; 8:8172-8189. [PMID: 36910992 PMCID: PMC9996804 DOI: 10.1021/acsomega.2c06806] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wound healing is a complex and dynamic physiological process consisting of a series of cellular and molecular events that initiate immediately after a tissue lesion, to reconstruct the skin layer. It is indubitable that patients with chronic wounds, severely infected wounds, or any metabolic disorder of the wound microenvironment always endure severe pain and discomfort that affect their quality of life. It is essential to treat chronic wounds for conserving the physical as well as mental well-being of affected patients and for convalescing to improve their quality of life. For supporting and augmenting the healing process, the selection of pertinent wound dressing is essential. A substantial reduction in healing duration, disability, associated cost, and risk of recurrent infections can be achieved via engineering wound dressings. Hydrogels play a leading role in the path of engineering ideal wound dressings. Hydrogels, comprising water to a large extent, providing a moist environment, being comfortable to patients, and having biocompatible and biodegradable properties, have found their success as suitable wound dressings in the market. The exploitation of hydrogels is increasing perpetually after substantiation of their broader therapeutic actions owing to their resemblance to dermal tissues, their capability to stimulate partial skin regeneration, and their ability to incorporate therapeutic moieties promoting wound healing. This review entails properties of hydrogel supporting wound healing, types of hydrogels, cross-linking mechanisms, design considerations, and formulation strategies of hydrogel engineering. Various categories of hydrogel wound dressing fabricated recently are discussed based on their gel network composition, degradability, and physical and chemical cross-linking mechanisms, which provide an outlook regarding the importance of tailoring the physicochemical properties of hydrogels. The examples of marketed hydrogel wound dressings are also incorporated along with the future perspectives and challenges associated with them.
Collapse
|
9
|
da Silva DJ, Duran A, Cabral AD, Fonseca FLA, Bueno RF, Wang SH, Rosa DS. Delta SARS-CoV-2 inactivation and bactericidal performance of cotton wipes decorated with TiO 2/Ag nanoparticles like Brazilian heavy-fruited Myrciaria cauliflora. MATERIALS TODAY. COMMUNICATIONS 2022; 33:104288. [PMID: 36033158 PMCID: PMC9394096 DOI: 10.1016/j.mtcomm.2022.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The current pandemic of Coronavirus Disease 2019 (COVID-19) raised several concerns about using conventional textiles for manufacturing personal protective equipment without self-disinfecting properties since the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is transmitted mainly by aerosols that can transpose cotton masks. Therefore, developing new cotton fibers with high self-disinfecting ability is essential to avoid a new pandemic due to new SARS-CoV-2 variants. Herein, we developed cotton wipes (CFs) with fibers coated by Ag, TiO2, and Ag/TiO2 hybrid nanoparticles like Brazilian heavy-fruited Myrciaria cauliflora by a sonochemical approach. Moreover, the coated CFs present high antimicrobial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), being able to inactivate infectious SARS-CoV-2 (Delta variant) by the destruction of the spike, membrane, and nucleocapsid proteins while the viral RNA is not significantly affected, according to the molecular biological findings.
Collapse
Affiliation(s)
- Daniel J da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
- Department of Metallurgical and Materials Engineering, Polytechnic School, University of São Paulo, Av. Prof. Mello Moraes 2643, São Paulo, SP, 05508-030, Brazil
| | - Adriana Duran
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
| | - Aline D Cabral
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
| | - Fernando L A Fonseca
- Faculty of Medicine of ABC (FMABC), Department of Clinical Analysis, Av. Lauro Gomes 2000, Santo André, SP 09060-870, Brazil
| | - Rodrigo F Bueno
- Coordinator of the COVID-19 Monitoring Network in Wastewater National Water and Basic Sanitation Agency, Ministry of Science, Technology and Innovation and Ministry of Health, Brazil. Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
| | - Shu Hui Wang
- Department of Metallurgical and Materials Engineering, Polytechnic School, University of São Paulo, Av. Prof. Mello Moraes 2643, São Paulo, SP, 05508-030, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
| |
Collapse
|
10
|
Anchoring silver nanoparticles on nanofibers by thermal bonding to construct functional surface. Biointerphases 2022; 17:061005. [PMID: 36376145 DOI: 10.1116/6.0002206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Generally, the anchoring of inorganic nanoparticles onto the surface of fibers faces the problem of poor stability, which limits the wide application of nanoparticle functionalized fibers. Herein, nanofibers with shell-core structures were constructed by coaxial electrospinning of two polymers with different melting points (Tm). Polyglycolic acid (PGA, Tm = 225 °C) was employed as the core layer, while polycaprolactone (PCL, Tm = 60 °C) was used as the shell layer. Silver nanoparticles (AgNPs) were electrosprayed on the nanofibers and the shell layer (PCL) was heated and melted to bond the AgNPs, thus realizing a stable AgNP-composited nanofiber for the construction of antibacterial functional surface. By regulating the shell-core flow ratio and the condition for heat treatment, the appropriate thickness of the shell layer was obtained with a flow ratio of 3:1 (PCL:PGA). The optimal composite structure was constructed when the thermal bonding was taken under 80 °C for 5 min. Furthermore, it was found that the composite nanofibers prepared by thermal bonding had better hydrophilicity, mechanical property, and AgNPs bonding stability, and their antibacterial rate against Staphylococcus aureus (S. aureus) reached over 97%. Overall, a facile and universal method for the preparation of nanoparticle-anchored nanofibers was established in this study. The robust nanoparticle-composited nanofibers are promising for applications in optoelectronic devices, electrode materials, and so on.
Collapse
|
11
|
Alves C, Ribeiro A, Pinto E, Santos J, Soares G. Exploring Z-Tyr-Phe-OH-based hydrogels loaded with curcumin for the development of dressings for wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MA, Chen S, Duan B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. APPLIED MATERIALS TODAY 2022; 27:101473. [PMID: 35434263 PMCID: PMC8994858 DOI: 10.1016/j.apmt.2022.101473] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
Collapse
Key Words
- CNT, carbon nanotube
- COVID-19, coronavirus disease 2019
- ECM, extracellular matrix
- Electrospinning
- FDA, food and drug administration
- GF, gauge factor
- GO, graphene oxide
- HAVIC, human aortic valve interstitial cell
- HAp, hydroxyapatite
- MSC, mesenchymal stem cell
- MSC-SC, MSC derived Schwann cell-like cell
- MWCNT, multiwalled carbon nanotube
- MY, microfiber yarn
- MeGel, methacrylated gelatin
- NGC, nerve guidance conduit
- NHMR, neutral hollow metal rod
- NMD, neutral metal disc
- NY, nanofiber yarn
- Nanoyarns
- PA6, polyamide 6
- PA66, polyamide 66
- PAN, polyacrylonitrile
- PANi, polyaniline
- PCL, polycaprolactone
- PEO, polyethylene oxide
- PGA, polyglycolide
- PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- PLCL, poly(L-lactide-co-ε-caprolactone)
- PLGA, poly(lactic-co-glycolic acid)
- PLLA, poly(L-lactic acid)
- PMIA, poly(m-phenylene isophthalamide)
- PPDO, polydioxanone
- PPy, polypyrrole
- PSA, poly(sulfone amide)
- PU, polyurethane
- PVA, poly(vinyl alcohol)
- PVAc, poly(vinyl acetate)
- PVDF, poly(vinylidene difluoride)
- PVDF-HFP, poly(vinylidene floride-co-hexafluoropropylene)
- PVDF-TrFE, poly(vinylidene fluoride trifluoroethylene)
- PVP, poly(vinyl pyrrolidone)
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SC, Schwann cell
- SF, silk fibroin
- SWCNT, single-walled carbon nanotube
- TGF-β1, transforming growth factor-β1
- Textile-forming technique
- Tissue scaffolds
- VEGF, vascular endothelial growth factor
- Wearable bioelectronics
- bFGF, basic fibroblast growth factor
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ting Dong
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mingchao Sun
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Caldas AR, Faria MJ, Ribeiro A, Machado R, Gonçalves H, Gomes AC, Soares GM, Lopes CM, Lúcio M. Avobenzone-loaded and omega-3-enriched lipid formulations for production of UV blocking sunscreen gels and textiles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Cotton bandages finished with microcapsules of volatile organic constituents of marine macro-algae for wound healing. Bioprocess Biosyst Eng 2021; 45:203-216. [PMID: 34648054 DOI: 10.1007/s00449-021-02653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Microencapsulation is an innovative technique having a growing application in textile finishing. Besides, marine macroalgae contain plenty of phytoconstituents used in various fields especially textile finishing. This work imparts the property of wound healing finish to cotton fabrics producing a bandage from eco-friendly algal volatile organic constituents (VOCs). VOCs extracted from Digenea simplex, Lurencea papillosa, Galaxurea oblongata, and Turbenaria decurrens Egyptian marine macroalgae scattered along the coastline of the Red sea were 0.52, 0.9, 0.87, and 0.62% (v/w), respectively. These VOCs as well as their microencapsulated (VOM) forms were finished onto cotton fabrics by a conventional pad-dry cure technique using sodium alginate (SA) as a shell wall material. The VOCs of each alga were extracted and chemically investigated using gas chromatography coupled with mass spectrometry (GC-MS). The results indicate, in addition to the identification of 125 volatile compounds, the diversity and outstanding differences in volatile composition among the 4 algae. Wound healing activities of the finished fabrics were evaluated. VOCs microcapsules-finished (VOMF) fabrics were more effective compared to VOCs-finished (VOF) fabrics and almost comparable to mebo-ointment (standard drug)-finished (MoF) fabrics. The differences in VOCs efficiencies may be attributable to the diversity in type and amount of volatiles found in the four algae. Therefore, this is a low-cost, convenient, reproducible, and scalable way to obtain encapsulated VOCs for the application in textile wound healing.
Collapse
|
15
|
Development of Advanced Textile Finishes Using Nano-Emulsions from Herbal Extracts for Organic Cotton Fabrics. COATINGS 2021. [DOI: 10.3390/coatings11080939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of textile finishing with improved functional properties has been a growing interest among industry and scientists worldwide. The recent global pandemic also enhanced the awareness amongst many toward improved hygiene and the use of antimicrobial textiles. Generally, natural herbal components are known to possess antimicrobial properties which are green and eco-friendly. This research reports a novel and innovative method of developing and optimising nano-emulsions using two combinations of herbal extracts produced from Moringa Oleifera, curry leaf, coconut oil (nano-emulsion 1) and other using Aegle marmelos with curry leaf and coconut oil (nano-emulsion 2). Nano-emulsions were optimised for their pH, thermal stability, and particle size, and percentage add-on. Organic cotton fabrics (20 and 60 gsm) were finished with nano-emulsions using continuous and batch processes and characterised for their surface morphology using scanning electron microscopy, energy dispersive X-ray (EDX) analysis and Fourier transform infrared spectroscopy (FTIR) analysis. The finished fabrics were evaluated for their Whiteness Index, assessed for antimicrobial resistance against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) using AATCC 100 and 147 methods. In addition, fabrics were assessed for their antifungal efficacy (AATCC 30), tensile strength and air permeability. Results suggested that finished organic fabrics with nano-emulsions had antimicrobial resistance, antifungal, wash fastness after 20 washing cycles, and sufficient strength. This novel finishing method suggests that organic cotton fabrics treated with nano-emulsions can be used as a durable antimicrobial textile for healthcare and hygiene textiles.
Collapse
|
16
|
Gulati R, Sharma S, Sharma RK. Antimicrobial textile: recent developments and functional perspective. Polym Bull (Berl) 2021; 79:5747-5771. [PMID: 34276116 PMCID: PMC8275915 DOI: 10.1007/s00289-021-03826-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Antimicrobial textiles are functionally active textiles, which may kill the microorganisms or inhibit their growth. The present article explores the applications of different synthetic and natural antimicrobial compounds used to prepare antimicrobial textiles. Different types of antimicrobial textiles including: antibacterial, antifungal and antiviral have also been discussed. Different strategies and methods used for the detection of a textile's antimicrobial properties against bacterial and fungal pathogens as well as viral particles have also been highlighted. These antimicrobial textiles are used in a variety of applications ranging from households to commercial including air filters, food packaging, health care, hygiene, medical, sportswear, storage, ventilation and water purification systems. Public awareness on antimicrobial textiles and growth in commercial opportunities has been observed during past few years. Not only antimicrobial properties, but its durability along with the color, prints and designing are also important for fashionable clothing; thus, many commercial brands are now focusing on such type of materials. Overall, this article summarizes the scientific aspect dealing with different fabrics including natural or synthetic antimicrobial agents along with their current functional perspective and future opportunities. Graphic abstract
Collapse
Affiliation(s)
- Rehan Gulati
- Department of Biosciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| | - Saurav Sharma
- Department of Fashion Design, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| |
Collapse
|
17
|
Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers (Basel) 2021; 13:polym13132086. [PMID: 34202828 PMCID: PMC8272167 DOI: 10.3390/polym13132086] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Some of thermo-responsive polysaccharides, namely, cellulose, xyloglucan, and chitosan, and protein-like gelatin or elastin-like polypeptides can exhibit temperature dependent sol–gel transitions. Due to their biodegradability, biocompatibility, and non-toxicity, such biomaterials are becoming popular for drug delivery and tissue engineering applications. This paper aims to review the properties of sol–gel transition, mechanical strength, drug release (bioavailability of drugs), and cytotoxicity of stimuli-responsive hydrogel made of thermo-responsive biopolymers in drug delivery systems. One of the major applications of such thermos-responsive biopolymers is on textile-based transdermal therapy where the formulation, mechanical, and drug release properties and the cytotoxicity of thermo-responsive hydrogel in drug delivery systems of traditional Chinese medicine have been fully reviewed. Textile-based transdermal therapy, a non-invasive method to treat skin-related disease, can overcome the poor bioavailability of drugs from conventional non-invasive administration. This study also discusses the future prospects of stimuli-responsive hydrogels made of thermo-responsive biopolymers for non-invasive treatment of skin-related disease via textile-based transdermal therapy.
Collapse
|
18
|
Antunes JC, Domingues JM, Miranda CS, Silva AFG, Homem NC, Amorim MTP, Felgueiras HP. Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Mar Drugs 2021; 19:md19070359. [PMID: 34201803 PMCID: PMC8303307 DOI: 10.3390/md19070359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Marine-derived chitosan (CS) is a cationic polysaccharide widely studied for its bioactivity, which is mostly attached to its primary amine groups. CS is able to neutralize reactive oxygen species (ROS) from the microenvironments in which it is integrated, consequently reducing cell-induced oxidative stress. It also acts as a bacterial peripheral layer hindering nutrient intake and interacting with negatively charged outer cellular components, which lead to an increase in the cell permeability or to its lysis. Its biocompatibility, biodegradability, ease of processability (particularly in mild conditions), and chemical versatility has fueled CS study as a valuable matrix component of bioactive small-scaled organic drug-delivery systems, with current research also showcasing CS’s potential within tridimensional sponges, hydrogels and sutures, blended films, nanofiber sheets and fabric coatings. On the other hand, renewable plant-derived extracts are here emphasized, given their potential as eco-friendly radical scavengers, microbicidal agents, or alternatives to antibiotics, considering that most of the latter have induced bacterial resistance because of excessive and/or inappropriate use. Loading them into small-scaled particles potentiates a strong and sustained bioactivity, and a controlled release, using lower doses of bioactive compounds. A pH-triggered release, dependent on CS’s protonation/deprotonation of its amine groups, has been the most explored stimulus for that control. However, the use of CS derivatives, crosslinking agents, and/or additional stabilization processes is enabling slower release rates, following extract diffusion from the particle matrix, which can find major applicability in fiber-based systems within ROS-enriched microenvironments and/or spiked with microbes. Research on this is still in its infancy. Yet, the few published studies have already revealed that the composition, along with an adequate drug release rate, has an important role in controlling an existing infection, forming new tissue, and successfully closing a wound. A bioactive finishing of textiles has also been promoting high particle infiltration, superior washing durability, and biological response.
Collapse
|
19
|
Mehravani B, Ribeiro AI, Zille A. Gold Nanoparticles Synthesis and Antimicrobial Effect on Fibrous Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1067. [PMID: 33919401 PMCID: PMC8143294 DOI: 10.3390/nano11051067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
Depositing nanoparticles in textiles have been a promising strategy to achieve multifunctional materials. Particularly, antimicrobial properties are highly valuable due to the emergence of new pathogens and the spread of existing ones. Several methods have been used to functionalize textile materials with gold nanoparticles (AuNPs). Therefore, this review highlighted the most used methods for AuNPs preparation and the current studies on the topic in order to obtain AuNPs with suitable properties for antimicrobial applications and minimize the environmental concerns in their production. Reporting the detailed information on the functionalization of fabrics, yarns, and fibers with AuNPs by different methods to improve the antimicrobial properties was the central objective. The studies combining AuNPs and textile materials have opened valuable opportunities to develop antimicrobial materials for health and hygiene products, as infection control and barrier material, with improved properties. Future studies are needed to amplify the antimicrobial effect of AuNPs onto textiles and minimize the concerns related to the synthesis.
Collapse
Affiliation(s)
| | | | - Andrea Zille
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Campus de Azúrem, Universidade do Minho, 4800-058 Guimaraes, Portugal; (B.M.); (A.I.R.)
| |
Collapse
|
20
|
Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Atanasova D, Staneva D, Grabchev I. Textile Materials Modified with Stimuli-Responsive Drug Carrier for Skin Topical and Transdermal Delivery. MATERIALS 2021; 14:ma14040930. [PMID: 33669245 PMCID: PMC7919809 DOI: 10.3390/ma14040930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Textile materials, as a suitable matrix for different active substances facilitating their gradual release, can have an important role in skin topical or transdermal therapy. Characterized by compositional and structural variety, those materials readily meet the requirements for applications in specific therapies. Aromatherapy, antimicrobial substances and painkillers, hormone therapy, psoriasis treatment, atopic dermatitis, melanoma, etc., are some of the areas where textiles can be used as carriers. There are versatile optional methods for loading the biologically active substances onto textile materials. The oldest ones are by exhaustion, spraying, and a pad-dry-cure method. Another widespread method is the microencapsulation. The modification of textile materials with stimuli-responsive polymers is a perspective route to obtaining new textiles of improved multifunctional properties and intelligent response. In recent years, research has focused on new structures such as dendrimers, polymer micelles, liposomes, polymer nanoparticles, and hydrogels. Numerous functional groups and the ability to encapsulate different substances define dendrimer molecules as promising carriers for drug delivery. Hydrogels are also high molecular hydrophilic structures that can be used to modify textile material. They absorb a large amount of water or biological fluids and can support the delivery of medicines. These characteristics correspond to one of the current trends in the development of materials used in transdermal therapy, namely production of intelligent materials, i.e., such that allow controlled concentration and time delivery of the active substance and simultaneous visualization of the process, which can only be achieved with appropriate and purposeful modification of the textile material.
Collapse
Affiliation(s)
- Daniela Atanasova
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Desislava Staneva
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-2-8163266
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria;
| |
Collapse
|
22
|
Advanced Hydrogels as Wound Dressings. Biomolecules 2020; 10:biom10081169. [PMID: 32796593 PMCID: PMC7464761 DOI: 10.3390/biom10081169] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Skin is the largest organ of the human body, protecting it against the external environment. Despite high self-regeneration potential, severe skin defects will not heal spontaneously and need to be covered by skin substitutes. Tremendous progress has been made in the field of skin tissue engineering, in recent years, to develop new skin substitutes. Among them, hydrogels are one of the candidates with most potential to mimic the native skin microenvironment, due to their porous and hydrated molecular structure. They can be applied as a permanent or temporary dressing for different wounds to support the regeneration and healing of the injured epidermis, dermis, or both. Based on the material used for their fabrication, hydrogels can be subdivided into two main groups—natural and synthetic. Moreover, hydrogels can be reinforced by incorporating nanoparticles to obtain “in situ” hybrid hydrogels, showing superior properties and tailored functionality. In addition, different sensors can be embedded in hydrogel wound dressings to provide real-time information about the wound environment. This review focuses on the most recent developments in the field of hydrogel-based skin substitutes for skin replacement. In particular, we discuss the synthesis, fabrication, and biomedical application of novel “smart” hydrogels.
Collapse
|
23
|
History of Cyclodextrin Nanosponges. Polymers (Basel) 2020; 12:polym12051122. [PMID: 32423091 PMCID: PMC7285114 DOI: 10.3390/polym12051122] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Nowadays, research in the field of nanotechnology and nanomedicine has become increasingly predominant, focusing on the manipulation and development of materials on a nanometer scale. Polysaccharides have often been used as they are safe, non-toxic, hydrophilic, biodegradable and are low cost. Among them, starch derivatives and, in particular, cyclodextrin-based nanosponges (CD NSs) have recently emerged due to the outstanding properties attributable to their peculiar structure. In fact, alongside the common polysaccharide features, such as the presence of tunable functional groups and their ability to interact with biological tissues, thus giving rise to bioadhesion, which is particularly useful in drug delivery, what makes CD NSs unique is their three-dimensional network made up of crosslinked cyclodextrin units. The name “nanosponge” appeared for the first time in the 1990s due to their nanoporous, sponge-like structure and responded to the need to overcome the limitations of native cyclodextrins (CDs), particularly their water solubility and inability to encapsulate charged and large molecules efficiently. Since CD NSs were introduced, efforts have been made over the years to understand their mechanism of action and their capability to host molecules with low or high molecular weight, charged, hydrophobic or hydrophilic by changing the type of cyclodextrin, crosslinker and degree of crosslinking used. They enabled great advances to be made in various fields such as agroscience, pharmaceutical, biomedical and biotechnological sectors, and NS research is far from reaching its conclusion. This review gives an overview of CD NS research, focusing on the origin and key points of the historical development in the last 50 years, progressing from relatively simple crosslinked networks in the 1960s to today’s multifunctional polymers. The approach adopted in writing the present study consisted in exploring the historical evolution of NSs in order to understand their role today, and imagine their future.
Collapse
|