1
|
Kusuma IY, Habibie H, Bahar MA, Budán F, Csupor D. Anticancer Effects of Secoiridoids-A Scoping Review of the Molecular Mechanisms behind the Chemopreventive Effects of the Olive Tree Components Oleocanthal, Oleacein, and Oleuropein. Nutrients 2024; 16:2755. [PMID: 39203892 PMCID: PMC11357637 DOI: 10.3390/nu16162755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The olive tree (Olea europaea) and olive oil hold significant cultural and historical importance in Europe. The health benefits associated with olive oil consumption have been well documented. This paper explores the mechanisms of the anti-cancer effects of olive oil and olive leaf, focusing on their key bioactive compounds, namely oleocanthal, oleacein, and oleuropein. The chemopreventive potential of oleocanthal, oleacein, and oleuropein is comprehensively examined through this systematic review. We conducted a systematic literature search to identify eligible articles from Scopus, PubMed, and Web of Science databases published up to 10 October 2023. Among 4037 identified articles, there were 88 eligible articles describing mechanisms of chemopreventive effects of oleocanthal, oleacein, and oleuropein. These compounds have the ability to inhibit cell proliferation, induce cell death (apoptosis, autophagy, and necrosis), inhibit angiogenesis, suppress tumor metastasis, and modulate cancer-associated signalling pathways. Additionally, oleocanthal and oleuropein were also reported to disrupt redox hemostasis. This review provides insights into the chemopreventive mechanisms of O. europaea-derived secoiridoids, shedding light on their role in chemoprevention. The bioactivities summarized in the paper support the epidemiological evidence demonstrating a negative correlation between olive oil consumption and cancer risk. Furthermore, the mapped and summarized secondary signalling pathways may provide information to elucidate new synergies with other chemopreventive agents to complement chemotherapies and develop novel nutrition-based anti-cancer approaches.
Collapse
Affiliation(s)
- Ikhwan Yuda Kusuma
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Pharmacy Study Program, Universitas Harapan Bangsa, Purwokerto 53182, Indonesia
| | - Habibie Habibie
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Muh. Akbar Bahar
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Ferenc Budán
- Institute of Physiology, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Institute for Translational Medicine, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
2
|
Oleocanthal Attenuates Metastatic Castration-Resistant Prostate Cancer Progression and Recurrence by Targeting SMYD2. Cancers (Basel) 2022; 14:cancers14143542. [PMID: 35884603 PMCID: PMC9317016 DOI: 10.3390/cancers14143542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The Mediterranean, extra-virgin-olive-oil-rich diet ingredient S-(-)-oleocanthal (OC) has emerged as a potential inhibitor for the growth and relapse of the most aggressive prostate cancer type. This effect is mediated through suppression of important enzyme, SMYD2, that drives the activation of several downstream protein effectors. OC treatments reduced SMYD2 downstream substrates, which are critical for prostate cancer growth and relapse. OC is more advantageous than other reported SMYD2 inhibitors because it has shown potent anticancer activity in animal models. OC’s anti-prostate-cancer effect was prominent compared with some standard drugs currently used to control prostate cancer. OC is a potential, novel natural compound appropriate for immediate use by prostate cancer patients and survivors as a nutraceutical or dietary supplement product. Abstract Metastatic castration-resistant prostate cancer (mCRPC) is the most aggressive prostate cancer (PC) phenotype. Cellular lysine methylation is driven by protein lysine methyltransferases (PKMTs), such as those in the SET- and MYND-containing protein (SMYD) family, including SMYD2 methylate, and several histone and non-histone proteins. SMYD2 is dysregulated in metastatic PC patients with high Gleason score and shorter survival. The Mediterranean, extra-virgin-olive-oil-rich diet ingredient S-(-)-oleocanthal (OC) inhibited SMYD2 in biochemical assays and suppressed viability, migration, invasion, and colony formation of PC-3, CWR-R1ca, PC-3M, and DU-145 PC cell lines with IC50 range from high nM to low µM. OC’s in vitro antiproliferative effect was comparable to standard anti-PC chemotherapies or hormone therapies. A daily, oral 10 mg/kg dose of OC for 11 days effectively suppressed the progression of the mCRPC CWR-R1ca cells engrafted into male nude mice. Daily, oral OC treatment for 30 days suppressed tumor locoregional and distant recurrences after the primary tumors’ surgical excision. Collected OC-treated animal tumors showed marked SMYD2 reduction. OC-treated mice showed significant serum PSA reduction. For the first time, this study showed SMYD2 as novel molecular target in mCRPC, and OC emerged as a specific SMYD2 lead inhibitor. OC prevailed over previously reported SMYD2 inhibitors, with validated in vivo potency and high safety profile, and, therefore, is proposed as a novel nutraceutical for mCRPC progression and recurrence control.
Collapse
|
3
|
Rodríguez-Juan E, Martínez Román F, Sánchez-García A, Fernández-Bolaños J, García-Borrego A. From Low-Quality Olive Oils to Valuable Bioactive Compounds: Obtaining Oleacein and Oleocanthal from Olive Oils Intended for Refining. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:333-342. [PMID: 34957829 DOI: 10.1021/acs.jafc.1c05814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of this work was to recover phenolic compounds such as oleacein and oleocanthal from low commercial value olive oils destined for refining [lampante olive oil (LOO)]. For this, the ability of three extraction systems of phenols from oils was evaluated. A new quick and simple extraction method (NM) for obtaining phenols was developed, consisting of the acidified mixture MeOH/H2O (50:50) (v/v) 0.1% formic acid, and it was compared to a conventional method (CM) widely used for the analytical determination of phenolic compounds in olive oil using MeOH: H2O (80:20) (v/v). NM showed a higher yield for the extraction of oleacein with an increase of 14% compared to CM; no significant differences were observed in the extraction of oleocanthal between the two methods. The third method, using two formulations of deep eutectic solvents (DESs) based on ChCl, showed higher extractive efficiency for the two secoiridoids than CM and NM when DES consisted of ChCl and xylitol. On the other hand, the concentrations of oleacein and oleocanthal were determined in 14 samples of blended oils that were previously classified as extra virgin olive oil and LOO according to EU regulation. LOO contained amounts up to 109.89 and 140.16 mg/kg of oleacein and oleocanthal, respectively. Oleacein (>98%) and oleocanthal (>95%) were successfully recovered from phenolic extracts obtained from LOO oils through chromatographic separation and purification by semipreparative high-performance liquid chromatography. Therefore, these low-quality oils are an inexpensive source of bioactive substances.
Collapse
Affiliation(s)
- Elisa Rodríguez-Juan
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Fernando Martínez Román
- Almazara Experimental, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Alicia Sánchez-García
- Laboratory of Mass Spectroscopy, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Aranzazu García-Borrego
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| |
Collapse
|
4
|
Tajmim A, Cuevas-Ocampo AK, Siddique AB, Qusa MH, King JA, Abdelwahed KS, Sonju JJ, El Sayed KA. (-)-Oleocanthal Nutraceuticals for Alzheimer's Disease Amyloid Pathology: Novel Oral Formulations, Therapeutic, and Molecular Insights in 5xFAD Transgenic Mice Model. Nutrients 2021; 13:nu13051702. [PMID: 34069842 PMCID: PMC8157389 DOI: 10.3390/nu13051702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex progressive neurodegenerative disorder affecting humans mainly through the deposition of Aβ-amyloid (Aβ) fibrils and accumulation of neurofibrillary tangles in the brain. Currently available AD treatments only exhibit symptomatic relief but do not generally intervene with the amyloid and tau pathologies. The extra-virgin olive oil (EVOO) monophenolic secoiridoid S-(–)-oleocanthal (OC) showed anti-inflammatory activity through COX system inhibition with potency comparable to the standard non-steroidal anti-inflammatory drug (NSAID) like ibuprofen. OC also showed positive in vitro, in vivo, and clinical therapeutic effects against cardiovascular diseases, many malignancies, and AD. Due to its pungent, astringent, and irritant taste, OC should be formulated in acceptable dosage form before its oral use as a potential nutraceutical. The objective of this study is to develop new OC oral formulations, assess whether they maintained OC activity on the attenuation of β-amyloid pathology in a 5xFAD mouse model upon 4-month oral dosing use. Exploration of potential OC formulations underlying molecular mechanism is also within this study scope. OC powder formulation (OC-PF) and OC-solid dispersion formulation with erythritol (OC-SD) were prepared and characterized using FT-IR spectroscopy, powder X-ray diffraction, and scanning electron microscopy (ScEM) analyses. Both formulations showed an improved OC dissolution profile. OC-PF and OC-SD improved memory deficits of 5xFAD mice in behavioral studies. OC-PF and OC-SD exhibited significant attenuation of the accumulation of Aβ plaques and tau phosphorylation in the brain of 5xFAD female mice. Both formulations markedly suppressed C3AR1 (complement component 3a receptor 1) activity by targeting the downstream marker STAT3. Collectively, these results demonstrate the potential for the application of OC-PF as a prospective nutraceutical or dietary supplement to control the progression of amyloid pathogenesis associated with AD.
Collapse
Affiliation(s)
- Afsana Tajmim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Areli K. Cuevas-Ocampo
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Judy Ann King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
- Correspondence: ; Tel.: +1-318-342-1725
| |
Collapse
|
5
|
Lima AL, Pinho LAG, Chaker JA, Sa-Barreto LL, Marreto RN, Gratieri T, Gelfuso GM, Cunha-Filho M. Hot-Melt Extrusion as an Advantageous Technology to Obtain Effervescent Drug Products. Pharmaceutics 2020; 12:pharmaceutics12080779. [PMID: 32824475 PMCID: PMC7464369 DOI: 10.3390/pharmaceutics12080779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Here, we assessed the feasibility of hot-melt extrusion (HME) to obtain effervescent drug products for the first time. For this, a combined mixture design was employed using paracetamol as a model drug. Extrudates were obtained under reduced torque (up to 0.3 Nm) at 100 °C to preserve the stability of the effervescent salts. Formulations showed vigorous and rapid effervescent disintegration (<3 min), adequate flow characteristics, and complete solubilization of paracetamol instantly after the effervescent reaction. Formulations containing PVPVA in the concentration range of 15–20% m/m were demonstrated to be sensitive to accelerated aging conditions, undergoing marked microstructural changes, since the capture of water led to the agglomeration and loss of their functional characteristics. HPMC matrices, in contrast, proved to be resistant to storage conditions in high relative humidity, showing superior performance to controls, including the commercial product. Moreover, the combined mixture design allowed us to identify significant interactions between the polymeric materials and the disintegrating agents, showing the formulation regions in which the responses are kept within the required levels. In conclusion, this study demonstrates that HME can bring important benefits to the elaboration of effervescent drug products, simplifying the production process and obtaining formulations with improved characteristics, such as faster disintegration, higher drug solubilization, and better stability.
Collapse
Affiliation(s)
- Ana Luiza Lima
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
| | - Ludmila A. G. Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
| | - Juliano A. Chaker
- Faculty of Ceilândia, University of Brasília (UnB), Brasília 72220-900, Brazil; (J.A.C.); (L.L.S.-B.)
| | - Livia L. Sa-Barreto
- Faculty of Ceilândia, University of Brasília (UnB), Brasília 72220-900, Brazil; (J.A.C.); (L.L.S.-B.)
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
| | - Guilherme M. Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (L.A.G.P.); (T.G.); (G.M.G.)
- Correspondence: ; Tel.: +55-61-31071990
| |
Collapse
|
6
|
(-)-Oleocanthal as a Dual c-MET-COX2 Inhibitor for the Control of Lung Cancer. Nutrients 2020; 12:nu12061749. [PMID: 32545325 PMCID: PMC7353354 DOI: 10.3390/nu12061749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Lung cancer (LC) represents the topmost mortality-causing cancer in the U.S. LC patients have overall poor survival rate with limited available treatment options. Dysregulation of the mesenchymal epithelial transition factor (c-MET) and cyclooxygenase 2 (COX2) initiates aggressive LC profile in a subset of patients. The Mediterranean extra-virgin olive oil (EVOO)-rich diet already documented to reduce multiple malignancies incidence. (-)-Oleocanthal (OC) is a naturally occurring phenolic secoiridoid exclusively occurring in EVOO and showed documented anti-breast and other cancer activities via targeting c-MET. This study shows the novel ability of OC to suppress LC progression and metastasis through dual targeting of c-MET and COX-2. Western blot analysis and COX enzymatic assay showed significant reduction in the total and activated c-MET levels and inhibition of COX1/2 activity in the lung adenocarcinoma cells A549 and NCI-H322M, in vitro. In addition, OC treatment caused a dose-dependent inhibition of the HGF-induced LC cells migration. Daily oral treatment with 10 mg/kg OC for 8 weeks significantly suppressed the LC A549-Luc progression and prevented metastasis to brain and other organs in a nude mouse tail vein injection model. Further, microarray data of OC-treated lung tumors showed a distinct gene signature that confirmed the dual targeting of c-MET and COX2. Thus, the EVOO-based OC is an effective lead with translational potential for use as a prospective nutraceutical to control LC progression and metastasis.
Collapse
|
7
|
Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants (Basel) 2020; 9:antiox9020149. [PMID: 32050687 PMCID: PMC7070598 DOI: 10.3390/antiox9020149] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, anti-inflammatory, immunosuppressive, neuroprotective, anti-cancer, and anti-obesity, which increase the interest of studying these types of bioactive compounds in depth. Secoiridoids are thoroughly distributed in several families of plants such as Oleaceae, Valerianaceae, Gentianaceae and Pedialaceae, among others. Specifically, Olea europaea L. (Oleaceae) is rich in oleuropein (OL), dimethyl-OL, and ligstroside secoiridoids, and their hydrolysis derivatives are mostly OL-aglycone, oleocanthal (OLE), oleacein (OLA), elenolate, oleoside-11-methyl ester, elenoic acid, hydroxytyrosol (HTy), and tyrosol (Ty). These compounds have proved their efficacy in the management of diabetes, cardiovascular and neurodegenerative disorders, cancer, and viral and microbial infections. Particularly, the antioxidant, anti-inflammatory, and immunomodulatory properties of secoiridoids from the olive tree (Olea europaea L. (Oleaceae)) have been suggested as a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. Thus, the purpose of this review is to summarize recent advances in the protective role of secoiridoids derived from the olive tree (preclinical studies and clinical trials) in diseases with an important pathogenic contribution of oxidative and peroxidative stress and damage, focusing on their plausible mechanisms of the action involved.
Collapse
|
8
|
Safety Evaluations of Single Dose of the Olive Secoiridoid S-(-)-Oleocanthal in Swiss Albino Mice. Nutrients 2020; 12:nu12020314. [PMID: 31991771 PMCID: PMC7071127 DOI: 10.3390/nu12020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Epidemiological and clinical studies compellingly showed the ability of Mediterranean diet rich in extra-virgin olive oil (EVOO) to reduce multiple diseases such as cancer, cardiovascular diseases, and aging cognitive functions decline. The S-(-)-Oleocanthal (OC) is a minor phenolic secoiridoid exclusively found in extra-virgin olive oil (EVOO). OC recently gained notable research attention due to its excellent in vitro and in vivo biological effects against multiple cancers, inflammations, and Alzheimer's disease. However, OC safety has not been comprehensively studied yet. This study reports for the first time the detailed safety of oral single OC dose in Swiss albino mice, applying the OECD 420 procedure. Male and female Swiss albino mice (n = 10) were orally treated with a single OC dose of either 10, 250, or 500 mg/kg bodyweight or equivalent volumes of distilled water. Mice fed a regular diet, and carefully observed for 14 days. Further, mice were then sacrificed, blood samples, and organs were collected and subjected to hematological, biochemical, and histological examinations. OC 10 mg/kg oral dose appears to be without adverse effects. Further, 250 mg/kg OC, p.o., is suggested as a possible upper dose for preclinical studies in the future.
Collapse
|