1
|
Santos JF, Laere CV, Silva CD, Cassells I, Fernandes C, Raposinho P, Belchior A, Pinto CIG, Mendes F, Cawthorne C, Ooms M, Voorde MVD, Cleeren F, Paulo A. Mitochondria-tropic radioconjugates to enhance the therapeutic potential of terbium-161. EJNMMI Radiopharm Chem 2025; 10:18. [PMID: 40214871 PMCID: PMC11992321 DOI: 10.1186/s41181-025-00339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Strategies that focus on delivering Auger electron emitters to highly radiosensitive intracellular targets-such as the nucleus, cell membrane, or mitochondria-are gaining attention. Targeting these organelles could enhance therapeutic efficacy while minimizing off-target toxicity by allowing lower administered doses. In this context, this study explores the therapeutic potential of 161Tb-labeled radiocomplexes that integrate the mitochondria-targeting triphenylphosphonium (TPP) moiety with a prostate-specific membrane antigen (PSMA) targeting vector. The goal is to assess these dual-targeted radiocomplexes for their ability to deliver conversion electrons (CE) and Auger electrons (AEs) to prostate cancer (PCa) cells, specifically targeting the mitochondria to enhance therapeutic efficacy. RESULTS Two novel radiocomplexes, [161Tb]Tb-TPP-PSMA and [161Tb]Tb-TPP-G3-PSMA, were synthesized with high radiochemical yield and purity. The proposed structures were validated using HPLC and ESI-MS analysis, with their natTb counterparts serving as reference compounds. In vitro experiments included cellular uptake, internalization, mitochondrial uptake, and DNA damage assays in PSMA-positive PCa cell lines. Clonogenic assays were performed to evaluate cell survival post-treatment. In vivo studies were conducted using SCID/Beige mice bearing PCa xenografts and involved µSPECT/CT imaging and radiometabolite analysis to evaluate biodistribution, pharmacokinetics, tumor uptake and in vivo stability of the radiocomplexes. Both [161Tb]Tb-TPP-PSMA and [161Tb]Tb-TPP-G3-PSMA showed high radiochemical stability and were efficiently internalized by PSMA-positive cells, while showing minimal uptake in PSMA-negative cells. These dual-targeted radiocomplexes demonstrated significantly higher mitochondrial uptake compared to the non-TPP-containing [161Tb]Tb-PSMA-617, leading to increased DNA damage and enhanced radiocytotoxicity. In vivo, the dual-targeted complexes demonstrated PSMA-specific tumor uptake and pharmacokinetics comparable to [161Tb]Tb-PSMA-617, with effective clearance from non-target tissues. CONCLUSIONS The TPP-modified 161Tb-radiocomplexes effectively targeted the mitochondria of PSMA-positive PCa cells, leading to increased DNA damage and reduced cell viability compared to single-targeted radiocomplexes. These findings suggest that dual-targeting strategies, which combine PSMA and mitochondrial targeting, can enhance the therapeutic potential of radiopharmaceuticals for prostate cancer treatment.
Collapse
Affiliation(s)
- Joana F Santos
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
| | - Camille Van Laere
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, B-3000, Belgium
| | - Catarina D Silva
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
| | - Irwin Cassells
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, B-3000, Belgium
| | - Célia Fernandes
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
| | - Paula Raposinho
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
| | - Ana Belchior
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
| | - Catarina I G Pinto
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
| | - Filipa Mendes
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Maarten Ooms
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Michiel Van de Voorde
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, B-3000, Belgium.
| | - António Paulo
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal.
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, 2695-066, Portugal.
| |
Collapse
|
2
|
Rowe C, Santiago N, Warner J, Tsytsarev V, Rozhkova EA, Ngwu-Hyacinth O, Bolding M. Human perception of ionizing radiation. Phys Life Rev 2025; 53:1-21. [PMID: 39987784 DOI: 10.1016/j.plrev.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/25/2025]
Abstract
Here we address the question of whether humans can perceive ionizing radiation. We conducted a thorough review of the clinical and experimental literature related to ionizing radiation, with a focus on its acute effects. Specifically, we examined the three domains of X-ray perception found in animals (abdominal, olfactory, and retinal), which led us to instances of ionizing radiation-induced hearing and taste sensory phenomena in humans thus suggesting that humans can perceive X-rays across various sensory modalities via multiple mechanisms. We also analyzed literature to understand the mechanisms associated with reported symptoms, this led us to the concept of radiomodulation, an understudied modulatory effect of sub-ablative ionizing radiation doses on neurons. Based on this review of the literature we propose the hypothesis that a significant radiomodulation mechanism is the formation of reactive oxygen species from radiolysis which activates immune and sensory signal transduction mechanisms specifically related to the redox activity in TRP and K+ channels. Additionally, we find evidence to support the previous claims of perception stemming from Cherenkov radiation and ozone production which are perceived using canonical sensory modalities. Finally, for we provide a concise summary of the applications of ionizing radiation in clinical imaging and therapy, as well as prospects for future developments of radiation technologies for biomedical and fundamental research.
Collapse
Affiliation(s)
- Caleb Rowe
- Department of Surgery, University of Alabama at Birmingham, United States
| | - Nathan Santiago
- Department of Immunology, University of Alabama at Birmingham, United States
| | - Jeffrey Warner
- Department of Ophthalmology, University of Alabama at Birmingham, United States
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, United States
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, United States
| | | | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham, United States.
| |
Collapse
|
3
|
Ling SW, van der Veldt A, Segbers M, Luiting H, Brabander T, Verburg F. Tubarial salivary glands show a low relative contribution to functional salivary gland tissue mass. Ann Nucl Med 2024; 38:913-918. [PMID: 39060832 PMCID: PMC11489203 DOI: 10.1007/s12149-024-01965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND In 2021, the tubarial salivary glands (TSGs) were newly identified on prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) as macroscopic glands in the nasopharyngeal wall. However, the relative contribution of the TSGs to the total salivary gland function, and consequently on the development of xerostomia after external beam radiotherapy (EBRT) or PSMA-targeted radionuclide therapy (RNT) is not known. Therefore, we aimed to determine the presence of the TSGs and to quantify uptake in the TSGs on PSMA PET. METHODS Qualitative and quantitative analyses were performed on 68Ga-PSMA-11 PET/CT scans of 100 patients with prostate cancer. The mean and maximum standardized uptake value (SUVmean and SUVmax) in the TSGs were measured and compared to the parotid, submandibular and sublingual salivary glands (PSGs, SMSGs and SLSGs, respectively). Furthermore, proportional function of the TSGs was compared to the PSGs, SMSGs and SLSGs based on the total organ PSMA (TO-PSMA). RESULTS The TSGs were visible on 95% of the 68Ga-PSMA-11 PET/CT scans. The normalized median SUVmean and SUVmax was significantly higher for the PSGs (p < 0.001) and SMSGs (p < 0.001) compared to the TSGs, but not for the SLSGs (p = 0.242 and p = 0.300, respectively). The normalized median TO-PSMA was significantly higher for the PSGs (p < 0.001) and SMSGs (p < 0.001), and significant lower for the SLSGs (p < 0.001) compared the TSGs. CONCLUSIONS The SUVmean, SUVmax and TO-PSMA of the TSGs were most comparable to the SLSGs. However, the measured PSMA uptake may be disproportional towards the saliva production. Therefore, future studies should focus on the relation between PSMA uptake and salivary function before and after PSMA therapy.
Collapse
Affiliation(s)
- Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Astrid van der Veldt
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
- Department of Medical Oncology, Erasmus MC, Rotterdam, the Netherlands
| | - Marcel Segbers
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Henk Luiting
- Department of Urology, Erasmus MC, Rotterdam, the Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Frederik Verburg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Caracciolo M, Castello A, Castellani M, Bartolomei M, Lopci E. Prognostic Role of PSMA-Targeted Imaging in Metastatic Castration-Resistant Prostate Cancer: An Overview. Biomedicines 2024; 12:2355. [PMID: 39457667 PMCID: PMC11504290 DOI: 10.3390/biomedicines12102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) has gained a primary role in prostate cancer (PCa) imaging, overcoming conventional imaging and prostate-specific antigen (PSA) serum levels, and has recently emerged as a promising technique for monitoring therapy response in metastatic castration-resistant prostate cancer (mCRPC) patients treated with novel hormonal therapy, taxanes, and radioligand therapy (RLT). In this review, we aim to provide an overview of the most relevant aspects under study and future prospects related to the prognostic role of PSMA PET/CT in mCRPC. METHODS A systematic literature search was performed in the following databases: MEDLINE, PubMed, and EMBASE databases. The study focused exclusively on English-language studies, excluding papers not pertinent to the topic. RESULTS PSMA PET imaging offers a higher sensitivity and specificity than conventional imaging and provides accurate staging and efficient diagnosis of distant metastases. The data presented herein highlight the usefulness of PET in risk stratification, with a prognostic potential that can have a significant impact on clinical practice. Several prospective trials are ongoing and will shortly provide more evidence supporting the prognostic potential of PET PSMA data in this clinical scenario. CONCLUSIONS Current evidence proves the prognostic role of PSMA PET/CT in different settings, with raising relevance also in the context of mCRPC.
Collapse
Affiliation(s)
- Matteo Caracciolo
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy; (M.C.); (M.B.)
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20089 Milan, Italy; (A.C.)
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20089 Milan, Italy; (A.C.)
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy; (M.C.); (M.B.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, Rozzano, Via Manzoni 56, 20089 Milan, Italy
| |
Collapse
|
5
|
Stamatakos PV, Fragkoulis C, Leventi A, Gklinos K, Kontolatis N, Papatsoris A, Dellis A. PSMA-based therapeutics for prostate cancer. Expert Opin Pharmacother 2024; 25:1405-1419. [PMID: 39054909 DOI: 10.1080/14656566.2024.2385726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The prostate cancer (PCa) consists the most frequently diagnosed malignancy of urogenital system in males. Traditionally, treatment of localized PCa was based on surgery or radiotherapy while hormonotherapy was used in more advanced stages. However, the implementation of radiolabels has revolutionized the landscape of prostate cancer. Specifically, prostate-specific membrane antigen (PSMA) has been investigated in different aspects of PCa therapeutic era. AREAS COVERED A literature review is presented about the implications of PSMA radiolabels on prostate cancer treatment. PSMA tracers were initially used as an imaging technique. Afterwards, PSMA labeled with isotopes presenting cytotoxic abilities, such as lutetium-117 and actinium-225, while reports exist about the use of radioligand immunotherapy. Meanwhile, ongoing trials examine the development of novel radionuclides as well as the evolution of the PSMA-targeted ligands. EXPERT OPINION Currently, PSMA radioligand treatment of prostate cancer is approved in the metastatic stage of the disease. Meanwhile, a variety of trials exist about its possible role in less advanced stages. However, plenty of parameters should be addressed before these implementations, such as PSMA dosage, dosimetry issues, and its safety profile. A future well-designed study with proper patient selection is mandatory to further explore PSMA radioligand theranostics perspectives.
Collapse
Affiliation(s)
| | | | - Aggeliki Leventi
- Department of Urology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Konstantinos Gklinos
- Department of Urology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Nikolaos Kontolatis
- Department of Urology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, National and Kapodistrian University of Athens, Hospital of Athens "Sismanoglio", Athens, Greece
| | - Athanasios Dellis
- 1st Department of Urology, School of Medicine, National and Kapodistrian University of Athens, Hospital of Athens "Aretaieion", Athens, Greece
| |
Collapse
|
6
|
Iannone MN, Valtorta S, Stucchi S, Altomonte S, Turolla EA, Vino E, Rainone P, Zecca V, Lo Dico A, Maspero M, Figini M, Bellone M, Ciceri S, Colombo D, Chinello C, Pagani L, Moresco RM, Todde S, Ferraboschi P. Automated radiosynthesis and preclinical evaluation of two new PSMA-617 derivatives radiolabelled via [ 18F]AlF 2+ method. EJNMMI Radiopharm Chem 2024; 9:50. [PMID: 38904859 PMCID: PMC11192711 DOI: 10.1186/s41181-024-00280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND In the last decade the development of new PSMA-ligand based radiopharmaceuticals for the imaging and therapy of prostate cancer has been a highly active and important area of research. The most promising derivative in terms of interaction with the antigen and clinical properties has been found to be "PSMA-617", and its lutetium-177 radiolabelled version has recently been approved by EU and USA regulatory agencies for therapeutic purposes. For the above reasons, the development of new derivatives of PSMA-617 radiolabelled with fluorine-18 may still be of great interest. This paper proposes the comparison of two different PSMA-617 derivatives functionalized with NODA and RESCA chelators, respectively, radiolabelled via [18F]AlF2+ complexation. RESULTS The organic synthesis of two PSMA-617 derivatives and their radiolabelling via [18F]AlF2+ complexation resulted to proceed efficiently and successfully. Moreover, stability in solution and in plasma has been evaluated. The whole radiosynthesis procedure has been fully automated, and the final products have been obtained with radiochemical yield and purity potentially suitable for clinical studies. The biodistribution of the two derivatives was performed both in prostate cancer and glioma tumour models. Compared with the reference [18F]F-PSMA-1007 and [18F]F-PSMA-617-RESCA, [18F]F-PSMA-617-NODA derivative showed a higher uptake in both tumors, faster clearance in non-target organs, and lower uptake in salivary glands. CONCLUSION PSMA-617 NODA and RESCA derivatives were radiolabelled successfully via [18F]AlF2+ chelation, the former being more stable in solution and human plasma. Moreover, preclinical biodistribution studies showed that [18F]F-PSMA-617-NODA might be of potential interest for clinical applications.
Collapse
Affiliation(s)
| | - Silvia Valtorta
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy
| | - Stefano Stucchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Stefano Altomonte
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elia Anna Turolla
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elisa Vino
- Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
| | - Paolo Rainone
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy
| | - Valentina Zecca
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy
| | - Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco Maspero
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy
| | - Mariangela Figini
- ANP2, Department of Advanced Diagnostics, Fondazione IRCCS, Istituto Nazionale Dei Tumori, Milan, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, IRCCS, Milan, Italy
| | - Samuele Ciceri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Diego Colombo
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Clizia Chinello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Pagani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sergio Todde
- Tecnomed Foundation, University of Milano-Bicocca, Monza, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
| | - Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| |
Collapse
|
7
|
Schatz CA, Zitzmann-Kolbe S, Moen I, Klotz M, Nair S, Stargard S, Bjerke RM, Wickstrøm Biseth K, Feng YZ, Indrevoll B, Cruciani V, Karlsson J, Haendler B, Nielsen CH, Alfsen MZ, Hammer S, Hennekes H, Cuthbertson A, Hagemann UB, Larsen Å. Preclinical Efficacy of a PSMA-Targeted Actinium-225 Conjugate (225Ac-Macropa-Pelgifatamab): A Targeted Alpha Therapy for Prostate Cancer. Clin Cancer Res 2024; 30:2531-2544. [PMID: 38593212 DOI: 10.1158/1078-0432.ccr-23-3746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE Initially, prostate cancer responds to hormone therapy, but eventually resistance develops. Beta emitter-based prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is approved for the treatment of metastatic castration-resistant prostate cancer. Here we introduce a targeted alpha therapy (TAT) consisting of the PSMA antibody pelgifatamab covalently linked to a macropa chelator and labeled with actinium-225 and compare its efficacy and tolerability with other TATs. EXPERIMENTAL DESIGN The in vitro characteristics and in vivo biodistribution, antitumor efficacy, and tolerability of 225Ac-macropa-pelgifatamab (225Ac-pelgi) and other TATs were investigated in cell line- and patient-derived prostate cancer xenograft models. The antitumor efficacy of 225Ac-pelgi was also investigated in combination with the androgen receptor inhibitor darolutamide. RESULTS Actinium-225-labeling of 225Ac-pelgi was efficient already at room temperature. Potent in vitro cytotoxicity was seen in PSMA-expressing (LNCaP, MDA-PCa-2b, and C4-2) but not in PSMA-negative (PC-3 and DU-145) cell lines. High tumor accumulation was seen for both 225Ac-pelgi and 225Ac-DOTA-pelgi in the MDA-PCa-2b xenograft model. In the C4-2 xenograft model, 225Ac-pelgi showed enhanced antitumor efficacy with a T/Cvolume (treatment/control) ratio of 0.10 compared with 225Ac-DOTA-pelgi, 225Ac-DOTA-J591, and 227Th-HOPO-pelgifatamab (227Th-pelgi; all at 300 kBq/kg) with T/Cvolume ratios of 0.37, 0.39, and 0.33, respectively. 225Ac-pelgi was less myelosuppressive than 227Th-pelgi. 225Ac-pelgi showed dose-dependent treatment efficacy in the patient-derived KuCaP-1 model and strong combination potential with darolutamide in both cell line- (22Rv1) and patient-derived (ST1273) xenograft models. CONCLUSIONS These results provide a strong rationale to investigate 225Ac-pelgi in patients with prostate cancer. A clinical phase I study has been initiated (NCT06052306).
Collapse
|
8
|
Sallam M, Nguyen NT, Sainsbury F, Kimizuka N, Muyldermans S, Benešová-Schäfer M. PSMA-targeted radiotheranostics in modern nuclear medicine: then, now, and what of the future? Theranostics 2024; 14:3043-3079. [PMID: 38855174 PMCID: PMC11155394 DOI: 10.7150/thno.92612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
In 1853, the perception of prostate cancer (PCa) as a rare ailment prevailed, was described by the eminent Londoner surgeon John Adams. Rapidly forward to 2018, the landscape dramatically altered. Currently, men face a one-in-nine lifetime risk of PCa, accentuated by improved diagnostic methods and an ageing population. With more than three million men in the United States alone grappling with this disease, the overall risk of succumbing to stands at one in 39. The intricate clinical and biological diversity of PCa poses serious challenges in terms of imaging, ongoing monitoring, and disease management. In the field of theranostics, diagnostic and therapeutic approaches that harmoniously merge targeted imaging with treatments are integrated. A pivotal player in this arena is radiotheranostics, employing radionuclides for both imaging and therapy, with prostate-specific membrane antigen (PSMA) at the forefront. Clinical milestones have been reached, including FDA- and/or EMA-approved PSMA-targeted radiodiagnostic agents, such as [18F]DCFPyL (PYLARIFY®, Lantheus Holdings), [18F]rhPSMA-7.3 (POSLUMA®, Blue Earth Diagnostics) and [68Ga]Ga-PSMA-11 (Locametz®, Novartis/ ILLUCCIX®, Telix Pharmaceuticals), as well as PSMA-targeted radiotherapeutic agents, such as [177Lu]Lu-PSMA-617 (Pluvicto®, Novartis). Concurrently, ligand-drug and immune therapies designed to target PSMA are being advanced through rigorous preclinical research and clinical trials. This review delves into the annals of PSMA-targeted radiotheranostics, exploring its historical evolution as a signature molecule in PCa management. We scrutinise its clinical ramifications, acknowledge its limitations, and peer into the avenues that need further exploration. In the crucible of scientific inquiry, we aim to illuminate the path toward a future where the enigma of PCa is deciphered and where its menace is met with precise and effective countermeasures. In the following sections, we discuss the intriguing terrain of PCa radiotheranostics through the lens of PSMA, with the fervent hope of advancing our understanding and enhancing clinical practice.
Collapse
Affiliation(s)
- Mohamed Sallam
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Frank Sainsbury
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Piranfar A, Moradi Kashkooli F, Zhan W, Bhandari A, Saboury B, Rahmim A, Soltani M. Radiopharmaceutical transport in solid tumors via a 3-dimensional image-based spatiotemporal model. NPJ Syst Biol Appl 2024; 10:39. [PMID: 38609421 PMCID: PMC11015041 DOI: 10.1038/s41540-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA)-targeted radiopharmaceutical therapy is a clinically approved treatment for patients with metastatic castration-resistant prostate cancer (mCRPC). Even though common practice reluctantly follows "one size fits all" approach, medical community believes there is significant room for deeper understanding and personalization of radiopharmaceutical therapies. To pursue this aim, we present a 3-dimensional spatiotemporal radiopharmaceutical delivery model based on clinical imaging data to simulate pharmacokinetic of 177Lu-PSMA within the prostate tumors. The model includes interstitial flow, radiopharmaceutical transport in tissues, receptor cycles, association/dissociation with ligands, synthesis of PSMA receptors, receptor recycling, internalization of radiopharmaceuticals, and degradation of receptors and drugs. The model was studied for a range of values for injection amount (100-1000 nmol), receptor density (10-500 nmol•l-1), and recycling rate of receptors (10-4 to 10-1 min-1). Furthermore, injection type, different convection-diffusion-reaction mechanisms, characteristic time scales, and length scales are discussed. The study found that increasing receptor density, ligand amount, and labeled ligands improved radiopharmaceutical uptake in the tumor. A high receptor recycling rate (0.1 min-1) increased radiopharmaceutical concentration by promoting repeated binding to tumor cell receptors. Continuous infusion results in higher radiopharmaceutical concentrations within tumors compared to bolus administration. These insights are crucial for advancing targeted therapy for prostate cancer by understanding the mechanism of radiopharmaceutical distribution in tumors. Furthermore, measures of characteristic length and advection time scale were computed. The presented spatiotemporal tumor transport model can analyze different physiological parameters affecting 177Lu-PSMA delivery.
Collapse
Affiliation(s)
- Anahita Piranfar
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Babak Saboury
- Department of Computational Nuclear Oncology, Institute of Nuclear Medicine, Bethesda, MD, USA
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
10
|
Chambers C, Chitwood B, Smith CJ, Miao Y. Elevating theranostics: The emergence and promise of radiopharmaceutical cell-targeting heterodimers in human cancers. IRADIOLOGY 2024; 2:128-155. [PMID: 38708130 PMCID: PMC11067702 DOI: 10.1002/ird3.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 05/07/2024]
Abstract
Optimal therapeutic and diagnostic efficacy is essential for healthcare's global mission of advancing oncologic drug development. Accurate diagnosis and detection are crucial prerequisites for effective risk stratification and personalized patient care in clinical oncology. A paradigm shift is emerging with the promise of multi-receptor-targeting compounds. While existing detection and staging methods have demonstrated some success, the traditional approach of monotherapy is being reevaluated to enhance therapeutic effectiveness. Heterodimeric site-specific agents are a versatile solution by targeting two distinct biomarkers with a single theranostic agent. This review describes the innovation of dual-targeting compounds, examining their design strategies, therapeutic implications, and the promising path they present for addressing complex diseases.
Collapse
Affiliation(s)
- Claudia Chambers
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
- Research Division, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - Broc Chitwood
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
| | - Charles J. Smith
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
- Research Division, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA
- Department of Radiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
11
|
Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, de Blois E. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem 2024; 9:9. [PMID: 38319526 PMCID: PMC10847084 DOI: 10.1186/s41181-024-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.
Collapse
Affiliation(s)
- Eline L Hooijman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Santos JF, Braz MT, Raposinho P, Cleeren F, Cassells I, Leekens S, Cawthorne C, Mendes F, Fernandes C, Paulo A. Synthesis and Preclinical Evaluation of PSMA-Targeted 111In-Radioconjugates Containing a Mitochondria-Tropic Triphenylphosphonium Carrier. Mol Pharm 2024; 21:216-233. [PMID: 37992229 DOI: 10.1021/acs.molpharmaceut.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Nuclear DNA is the canonical target for biological damage induced by Auger electrons (AE) in the context of targeted radionuclide therapy (TRT) of cancer, but other subcellular components might also be relevant for this purpose, such as the energized mitochondria of tumor cells. Having this in mind, we have synthesized novel DOTA-based chelators carrying a prostate-specific membrane antigen (PSMA) inhibitor and a triphenyl phosphonium (TPP) group that were used to obtain dual-targeted 111In-radioconjugates ([111In]In-TPP-DOTAGA-PSMA and [111In]In-TPP-DOTAGA-G3-PSMA), aiming to promote a selective uptake of an AE-emitter radiometal (111In) by PSMA+ prostate cancer (PCa) cells and an enhanced accumulation in the mitochondria. These dual-targeted 111In-radiocomplexes are highly stable under physiological conditions and in cell culture media. The complexes showed relatively similar binding affinities toward the PSMA compared to the reference tracer [111In]In-PSMA-617, in line with their high cellular uptake and internalization in PSMA+ PCa cells. The complexes compromised cell survival in a dose-dependent manner and in the case of [111In]In-TPP-DOTAGA-G3-PSMA to a higher extent than observed for the single-targeted congener [111In]In-PSMA-617. μSPECT imaging studies in PSMA+ PCa xenografts showed that the TPP pharmacophore did not interfere with the excellent in vivo tumor uptake of the "golden standard" [111In]In-PSMA-617, although it led to a higher kidney retention. Such kidney retention does not necessarily compromise their usefulness as radiotherapeutics due to the short tissue range of the Auger/conversion electrons emitted by 111In. Overall, our results provide valuable insights into the potential use of mitochondrial targeting by PSMA-based radiocomplexes for efficient use of AE-emitting radionuclides in TRT, giving impetus to extend the studies to other AE-emitting trivalent radiometals (e.g., 161Tb or 165Er) and to further optimize the designed dual-targeting constructs.
Collapse
Affiliation(s)
- Joana F Santos
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Maria T Braz
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, B-3000 Leuven, Belgium
| | - Irwin Cassells
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, B-3000 Leuven, Belgium
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Simon Leekens
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, B-3000 Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Filipa Mendes
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Célia Fernandes
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
13
|
Galbiati A, Dorten P, Gilardoni E, Gierse F, Bocci M, Zana A, Mock J, Claesener M, Cufe J, Büther F, Schäfers K, Hermann S, Schäfers M, Neri D, Cazzamalli S, Backhaus P. Tumor-Targeted Interleukin 2 Boosts the Anticancer Activity of FAP-Directed Radioligand Therapeutics. J Nucl Med 2023; 64:1934-1940. [PMID: 37734838 PMCID: PMC10690118 DOI: 10.2967/jnumed.123.266007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
We studied the antitumor efficacy of a combination of 177Lu-labeled radioligand therapeutics targeting the fibroblast activation protein (FAP) (OncoFAP and BiOncoFAP) with the antibody-cytokine fusion protein L19-interleukin 2 (L19-IL2) providing targeted delivery of interleukin 2 to tumors. Methods: The biodistribution of 177Lu-OncoFAP and 177Lu-BiOncoFAP at different molar amounts (3 vs. 250 nmol/kg) of injected ligand was studied via SPECT/CT in mice bearing subcutaneous HT-1080.hFAP tumors, and self-absorbed tumor and organ doses were calculated. The in vivo anticancer effect of 5 MBq of the radiolabeled preparations was evaluated as monotherapy or in combination with L19-IL2 in subcutaneously implanted HT-1080.hFAP and SK-RC-52.hFAP tumors. Tumor samples from animals treated with 177Lu-BiOncoFAP, L19-IL2, or both were analyzed by mass spectrometry-based proteomics to identify therapeutic signatures on cellular and stromal markers of cancer and on immunomodulatory targets. Results: 177Lu-BiOncoFAP led to a significantly higher self-absorbed dose in FAP-positive tumors (0.293 ± 0.123 Gy/MBq) than did 177Lu-OncoFAP (0.157 ± 0.047 Gy/MBq, P = 0.01) and demonstrated favorable tumor-to-organ ratios at high molar amounts of injected ligand. Administration of L19-IL2 or 177Lu-BiOncoFAP as single agents led to cancer cures in only a limited number of treated animals. In 177Lu-BiOncoFAP-plus-L19-IL2 combination therapy, complete remissions were observed in all injected mice (7/7 complete remissions for the HT-1080.hFAP model, and 4/4 complete remissions for the SK-RC-52.hFAP model), suggesting therapeutic synergy. Proteomic studies revealed a mechanism of action based on the activation of natural killer cells, with a significant enhancement of the expression of granzymes and perforin 1 in the tumor microenvironment after combination treatment. Conclusion: The combination of OncoFAP-based radioligand therapeutics with concurrent targeting of interleukin 2 shows synergistic anticancer effects in the treatment of FAP-positive tumors. This experimental finding should be corroborated by future clinical studies.
Collapse
Affiliation(s)
- Andrea Galbiati
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Paulina Dorten
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Ettore Gilardoni
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Florian Gierse
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Matilde Bocci
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Aureliano Zana
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Jacqueline Mock
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Michael Claesener
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Juela Cufe
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Klaus Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and
- Philogen S.p.A., Siena, Italy
| | - Samuele Cazzamalli
- Research and Development Department, Philochem AG, Otelfingen, Switzerland;
| | - Philipp Backhaus
- European Institute for Molecular Imaging, University of Münster, Münster, Germany;
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| |
Collapse
|
14
|
Raitanen J, Barta B, Fuchs H, Hacker M, Balber T, Georg D, Mitterhauser M. Radiobiological Assessment of Targeted Radionuclide Therapy with [ 177Lu]Lu-PSMA-I&T in 2D vs. 3D Cell Culture Models. Int J Mol Sci 2023; 24:17015. [PMID: 38069337 PMCID: PMC10706939 DOI: 10.3390/ijms242317015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
In vitro therapeutic efficacy studies are commonly conducted in cell monolayers. However, three-dimensional (3D) tumor spheroids are known to better represent in vivo tumors. This study used [177Lu]Lu-PSMA-I&T, an already clinically applied radiopharmaceutical for targeted radionuclide therapy against metastatic castrate-resistant prostate cancer, to demonstrate the differences in the radiobiological response between 2D and 3D cell culture models of the prostate cancer cell lines PC-3 (PSMA negative) and LNCaP (PSMA positive). After assessing the target expression in both models via Western Blot, cell viability, reproductive ability, and growth inhibition were assessed. To investigate the geometric effects on dosimetry for the 2D vs. 3D models, Monte Carlo simulations were performed. Our results showed that PSMA expression in LNCaP spheroids was highly preserved, and target specificity was shown in both models. In monolayers of LNCaP, no short-term (48 h after treatment), but only long-term (14 days after treatment) radiobiological effects were evident, showing decreased viability and reproductive ability with the increasing activity. Further, LNCaP spheroid growth was inhibited with the increasing activity. Overall, treatment efficacy was higher in LNCaP spheroids compared to monolayers, which can be explained by the difference in the resulting dose, among others.
Collapse
Affiliation(s)
- Julia Raitanen
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School of Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Bernadette Barta
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
| | - Hermann Fuchs
- Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Balber
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, Medical University of Vienna, University of Vienna, 1090 Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, Medical University of Vienna, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Ritawidya R, Wongso H, Effendi N, Pujiyanto A, Lestari W, Setiawan H, Humani TS. Lutetium-177-Labeled Prostate-Specific Membrane Antigen-617 for Molecular Imaging and Targeted Radioligand Therapy of Prostate Cancer. Adv Pharm Bull 2023; 13:701-711. [PMID: 38022814 PMCID: PMC10676551 DOI: 10.34172/apb.2023.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/04/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) represents a promising target for PSMA-overexpressing diseases, especially prostate cancer-a common type of cancer among men worldwide. In response to the challenges in tackling prostate cancers, several promising PSMA inhibitors from a variety of molecular scaffolds (e.g., phosphorous-, thiol-, and urea-based molecules) have been developed. In addition, PSMA inhibitors bearing macrocyclic chelators have attracted interest due to their favorable pharmacokinetic properties. Recently, conjugating a small PSMA molecule inhibitor-bearing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator, as exemplified by [177Lu]Lu-PSMA-617 could serve as a molecular imaging probe and targeted radioligand therapy (TRT) of metastatic castration resistant prostate cancer (mCRPC). Hence, studies related to mCRPC have drawn global attention. In this review, the recent development of PSMA ligand-617-labeled with 177Lu for the management of mCRPC is presented. Its molecular mechanism of action, safety, efficacy, and future direction are also described.
Collapse
Affiliation(s)
- Rien Ritawidya
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Nurmaya Effendi
- Faculty of Pharmacy, University of Muslim Indonesia, Kampus II UMI, Jl. Urip Sumoharjo No.225, Panaikang, Panakkukang, Kota, Makassar, Sulawesi Selatan 90231
| | - Anung Pujiyanto
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Wening Lestari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Titis Sekar Humani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| |
Collapse
|
16
|
Fuscaldi LL, Sobral DV, Durante ACR, Mendonça FF, Miranda ACC, Salgueiro C, de Castiglia SG, Yamaga LYI, da Cunha ML, Malavolta L, de Barboza MF, Mejia J. Radiochemical and biological assessments of a PSMA-I&S cold kit for fast and inexpensive 99mTc-labeling for SPECT imaging and radioguided surgery in prostate cancer. Front Chem 2023; 11:1271176. [PMID: 37901160 PMCID: PMC10602725 DOI: 10.3389/fchem.2023.1271176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
The expression of prostate-specific membrane antigen (PSMA) is upregulated in prostate cancer (PCa) cells and PSMA-ligands have been radiolabeled and used as radiopharmaceuticals for targeted radionuclide therapy (TRT), single photon emission computed tomography (SPECT) or positron emission tomography (PET) molecular imaging, and radioguided surgery in PCa patients. Herein, we aimed at radiolabeling the PSMA-I&S cold kit with 99mTc, resulting in a radiopharmaceutical with high radiochemical yield (RCY) and stability for SPECT imaging and radioguided surgery in PCa malignancies. Various pre-clinical assays were conducted to evaluate the [99mTc]Tc-PSMA-I&S obtained by the cold kit. These assays included assessments of RCY, radiochemical stability in saline, lipophilicity, serum protein binding (SPB), affinity for LNCaP-PCa cells (binding and internalization studies), and ex vivo biodistribution profile in naive and LNCaP-PCa-bearing mice. The radiopharmaceutical was obtained with good RCY (92.05% ± 2.20%) and remained stable for 6 h. The lipophilicity was determined to be -2.41 ± 0.06, while the SPB was ∼97%. The binding percentages to LNCaP cells were 9.41% ± 0.57% (1 h) and 10.45% ± 0.45% (4 h), with 63.12 ± 0.93 (1 h) and 65.72% ± 1.28% (4 h) of the bound material being internalized. Blocking assays, employing an excess of unlabeled PSMA-I&S, resulted in a reduction in the binding percentage by 2.6 times. The ex vivo biodistribution profile confirmed high accumulation of [99mTc]Tc-PSMA-I&S in the tumor and the tumor-to-contralateral muscle ratio was ∼6.5. In conclusion, [99mTc]Tc-PSMA-I&S was successfully obtained by radiolabeling the cold kit using freshly eluted [99mTc]NaTcO4, exhibiting good RCY and radiochemical stability. The preclinical assays demonstrated that the radiopharmaceutical shows favorable characteristics for SPECT imaging and radioguided surgery in PCa patients.
Collapse
Affiliation(s)
- Leonardo Lima Fuscaldi
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Danielle Vieira Sobral
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | | | - Fernanda Ferreira Mendonça
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | | | - Carla Salgueiro
- Departamento de Química, Universidad Kennedy, Buenos Aires, Argentina
| | | | | | | | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | | | - Jorge Mejia
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| |
Collapse
|
17
|
Abouzayed A, Seitova K, Lundmark F, Bodenko V, Oroujeni M, Tolmachev V, Rosenström U, Orlova A. 177Lu-labeled PSMA targeting therapeutic with optimized linker for treatment of disseminated prostate cancer; evaluation of biodistribution and dosimetry. Front Oncol 2023; 13:1221103. [PMID: 37829345 PMCID: PMC10565663 DOI: 10.3389/fonc.2023.1221103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Prostate specific membrane antigen (PSMA), highly expressed in metastatic castration-resistant prostate cancer (mCRPC), is an established therapeutic target. Theranostic PSMA-targeting agents are widely used in patient management and has shown improved outcomes for mCRPC patients. Earlier, we optimized a urea-based probe for radionuclide visualization of PSMA-expression in vivo using computer modeling. With the purpose to develop a targeting agent equally suitable for radionuclide imaging and therapy, the agent containing DOTA chelator was designed (BQ7876). The aim of the study was to test the hypothesis that 177Lu-labeled BQ7876 possesses target binding and biodistribution properties potentially enabling its use for radiotherapy. Methods BQ7876 was synthesized and labeled with Lu-177. Specificity and affinity of [177Lu]Lu-BQ7876 to PSMA-expressing PC3-pip cells was evaluated and its processing after binding to cells was studied. Animal studies in mice were performed to assess its biodistribution in vivo, target specificity and dosimetry. [177Lu]Lu-PSMA-617 was simultaneously evaluated for comparison. Results BQ7876 was labeled with Lu-177 with radiochemical yield >99%. Its binding to PSMA was specific in vitro and in vivo when tested in antigen saturation conditions as well as in PSMA-negative PC-3 tumors. The binding of [177Lu]Lu-BQ7876 to living cells was characterized by rapid association, while the dissociation included a rapid and a slow phase with affinities KD1 = 3.8 nM and KD2 = 25 nM. The half-maximal inhibitory concentration for natLu-BQ7876 was 59 nM that is equal to 61 nM for natLu-PSMA-617. Cellular processing of [177Lu]Lu-BQ7876 was accompanied by slow internalization. [177Lu]Lu-BQ7876 was cleared from blood and normal tissues rapidly. Initial elevated uptake in kidneys decreased rapidly, and by 3 h post injection, the renal uptake (13 ± 3%ID/g) did not differ significantly from tumor uptake (9 ± 3%ID/g). Tumor uptake was stable between 1 and 3 h followed by a slow decline. The highest absorbed dose was in kidneys, followed by organs and tissues in abdomen. Discussion Biodistribution studies in mice demonstrated that targeting properties of [177Lu]Lu-BQ7876 are not inferior to properties of [177Lu]Lu-PSMA-617, but do not offer any decisive advantages.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Kamila Seitova
- Scientific and Research Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Vitalina Bodenko
- Scientific and Research Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Affibody AB, Solna, Sweden
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Yan L, Zhang Z, Wang T, Yuan L, Sun X, Su P. Application of targeted diagnosis of PSMA in the modality shift of prostate cancer diagnosis: a review. Front Oncol 2023; 13:1179595. [PMID: 37727211 PMCID: PMC10505927 DOI: 10.3389/fonc.2023.1179595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
Prostate cancer (PCa) is a serious threat to the health of men all over the world. The progression of PCa varies greatly among different individuals. In clinical practice, some patients often progress to advanced PCa. Therefore, accurate imaging for diagnosis and staging of PCa is particularly important for clinical management of patients. Conventional imaging examinations such as MRI and CT cannot accurately diagnose the pathological stages of advanced PCa, especially metastatic lymph node (LN) stages. As a result, developing an accurate molecular targeted diagnosis is crucial for advanced PCa. Prostate specific membrane antigen (PSMA) is of great value in the diagnosis of PCa because of its specific expression in PCa. At present, researchers have developed positron emission tomography (PET) targeting PSMA. A large number of studies have confirmed that it not only has a higher tumor detection rate, but also has a higher diagnostic efficacy in the pathological stage of advanced PCa compared with traditional imaging methods. This review summarizes recent studies on PSMA targeted PET in PCa diagnosis, analyzes its value in PCa diagnosis in detail, and provides new ideas for urological clinicians in PCa diagnosis and clinical management.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoke Sun
- Department of Urology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Pengxiao Su
- Department of Urology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
19
|
Parghane RV, Basu S. PSMA-targeted radioligand therapy in prostate cancer: current status and future prospects. Expert Rev Anticancer Ther 2023; 23:959-975. [PMID: 37565281 DOI: 10.1080/14737140.2023.2247562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/19/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION The prostate-specific membrane antigen (PSMA) targeted radioligand therapy (PRLT) for the treatment of metastatic castration-resistant prostate cancer (mCRPC) patients has generated significant interest among the oncologic community, with several publications documenting good response rates and survival benefits with low toxicity profiles. AREAS COVERED Indications, patient preparation, dose administration, post-treatment imaging, dosimetry, and side effect profiles of 177Lu-PSMA-617 are discussed in this article. We also discuss results from prospective studies, major retrospective studies, meta-analyses, clinical trials, and mentioned major ongoing clinical trials on PRLT. We have also portrayed our own experiences and future perspectives on PRLT. EXPERT OPINION For PRLT, PSMA-617 and PSMA-I&T molecules have revolutionized the theranostic approach in the management of advanced prostate cancer, with solid backing from several published articles showing favorable outcomes and an excellent safety profile of 177Lu-PSMA-617. Improvement in quality of life and survival was seen in the majority of mCRPC patients after 177Lu-PSMA-617 PRLT. Patients with good performance status, asymptomatic, only lymph node metastases, high PSMA expressing lesions, and no discordant FDG avid lesions have a longer survival after 177Lu-PSMA-617 PRLT than patients with poor performance status, symptomatic, hepatic, brain, and skeletal metastases, discordant PSMA, and FDG-avid lesions. Docetaxel and cabazitaxel are approved treatments for mCRPC patients. 177Lu-PSMA-617 is approved as a third-line systemic treatment for mCRPC patients with failure to respond to androgen receptor pathway inhibitors and docetaxel therapy. PRLT is a safe and effective alternative to cabazitaxel (third-line systemic treatment), but it has a higher cost. 177Lu-PSMA-617 could be a more efficient therapeutic option for mCRPC patients as first-line or combined therapy, and it may be a useful therapeutic option for the treatment of metastatic hormone-sensitive prostate cancer (mHSPC) patients. Several clinical studies and clinical trials on PRLT are currently underway. In the future, the results of these trials will be helpful in evolving treatment strategies for prostate cancer patients.
Collapse
Affiliation(s)
- Rahul V Parghane
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Mumbai, India
- Radiation Medicine Centre (BARC), Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Mumbai, India
- Radiation Medicine Centre (BARC), Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
20
|
Murce E, Beekman S, Spaan E, Handula M, Stuurman D, de Ridder C, Seimbille Y. Preclinical Evaluation of a PSMA-Targeting Homodimer with an Optimized Linker for Imaging of Prostate Cancer. Molecules 2023; 28:molecules28104022. [PMID: 37241763 DOI: 10.3390/molecules28104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) targeting radiopharmaceuticals have been successfully used for diagnosis and therapy of prostate cancer. Optimization of the available agents is desirable to improve tumor uptake and reduce side effects to non-target organs. This can be achieved, for instance, via linker modifications or multimerization approaches. In this study, we evaluated a small library of PSMA-targeting derivatives with modified linker residues, and selected the best candidate based on its binding affinity to PSMA. The lead compound was coupled to a chelator for radiolabeling, and subject to dimerization. The resulting molecules, 22 and 30, were highly PSMA specific (IC50 = 1.0-1.6 nM) and stable when radiolabeled with indium-111 (>90% stable in PBS and mouse serum up to 24 h). Moreover, [111In]In-30 presented a high uptake in PSMA expressing LS174T cells, with 92.6% internalization compared to 34.1% for PSMA-617. Biodistribution studies in LS174T mice xenograft models showed that [111In]In-30 had a higher tumor and kidney uptake compared to [111In]In-PSMA-617, but increasing T/K and T/M ratios at 24 h p.i. Tumors could be clearly visualized at 1 h p.i. by SPECT/CT after administration of [111In]In-22 and [111In]In-PSMA-617, while [111In]In-30 showed a clear signal at later time-points (e.g., 24 h p.i.).
Collapse
Affiliation(s)
- Erika Murce
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Savanne Beekman
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Evelien Spaan
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Maryana Handula
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Debra Stuurman
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Life Sciences Division, TRIUMF, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
21
|
Abdel Maguid MSE, Saad El Dine MTAG, Gabal SM, Abou Fandoud SM. Prostate-Specific Membrane Antigen (PSMA) Expression in The Neovasculature of High Grade Gliomas (Histopathological and Immunohistochemical Study). Asian Pac J Cancer Prev 2023; 24:1797-1808. [PMID: 37247303 PMCID: PMC10495893 DOI: 10.31557/apjcp.2023.24.5.1797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) was first noticed in prostate cancer cells, thereafter, It has been found in the endothelial cells of neovasculature in a variety of tumors, but not in normal vascular endothelium, This specificity makes PSMA an ideal molecule for vascular targeting in Cancer theranostics (i.e., combined diagnostic and therapeutic). OBJECTIVES The objective of this study was to evaluate the immunohistochemical (IHC) expression of PSMA in the neovasculature (identified by CD 31) of high-grade gliomas (HGGs) and to Correlate PSMA IHC expression in HGGs with clinicopathological features, to detect its possible role in tumor angiogenesis, where PSMA can be used as a future diagnostic and therapeutic target. MATERIALS AND METHODS This retrospective study included a total of 69 archived, formalin-fixed, paraffin-embedded tissue blocks of HGGs, including 52 cases classified as WHO grade IV (75.4%) and 17 cases as WHO grade III (24.6%). The samples were immunohistochemically analyzed for PSMA expression (in both TMV and parenchymal tumor cells) which was assessed using the composite PSMA immunostaining score. A score (0) was considered negative while scores 1-7 were considered positive (1-4, 5-6, or 7; weak, moderate, or strong respectively). RESULTS PSMA is expressed specifically and significantly in endothelial cells of tumor microvessels (TMV) of HGGs, A statistically significant relationship was detected between PSMA IHC expression in both TMV and in parenchymal tumor cells (TC) and various glioma subtypes (P-value < 0.05 and <0.001 respectively). Positive PSMA immunostaining in TMV was detected in all anaplastic ependymoma cases and in near all cases of classic GB and GB with oligodendroglial features more than other subtypes, with P-value specifically for PSMA positivity/negativity in TMV statistically significant (0.022). While for Tumor cells, Positive PSMA immunostaining was detected in all anaplastic ependymoma, most anaplastic astrocytoma and classic GB cases in contrary to other variants, with P-value statistically extremely significant (< 0.001). Comparing PSMA IHC expression in TMV and its expression in TC, it was significantly expressed in TMV of 82.7% versus TC of 51.9% of grade IV cases. Likewise, in GB with oligodendroglial features and gliosarcoma, the majority of cases showed positive staining in their TMV [8/8 (100%), 9/13 (69.2%) respectively], and, the reverse occurs in tumor cells where the majority of cases did NOT show staining in the tumor cells for PSMA (5/8 (62.5%), 11/13 (84.6%) of cases respectively), which was statistically significant (P-value ≤ 0.05) besides the significant difference in the pattern of staining according to composite PSMA scoring (P-value ≤ 0.05). CONCLUSION PSMA has a possible role in tumor angiogenesis, therefore it might be considered a potential promising endothelial target for Cancer theranostics with PSMA-based agents, in addition, PSMA was expressed significantly in TC of HGGs, thus, it appears to be involved in biologic behavior, carcinogenesis and tumor progression.
Collapse
|
22
|
Borbinha J, Ferreira P, Costa D, Vaz P, Di Maria S. Targeted radionuclide therapy directed to the tumor phenotypes: A dosimetric approach using MC simulations. Appl Radiat Isot 2023; 192:110569. [PMID: 36436229 DOI: 10.1016/j.apradiso.2022.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND In Targeted Radionuclide Therapy (TRT), the continuous technological effort in imaging tumor phenotypes (i.e. sub-volumes with different phenotypic characteristics) and in precise radiopharmaceutical tumor-targeting, is allowing for a better dosimetric optimization at the tumor phenotype level. The aim of this study was to evaluate the dosimetric efficiency (considering strategic absorbed dose delivery to the phenotypes) of personalized TRT directed to the tumor phenotypes. METHODS The dosimetric assessment was performed using a four-phenotype realistic tumor model implemented within the ICRP reference voxel phantom and simulations using the state-of-the-art Monte Carlo program PENELOPE. The dose assessment was performed for five radionuclides commonly used in therapy and/or diagnostic procedures: 125I, 99mTc, 177Lu, 161Tb and 67Ga. Two irradiation scenarios were considered: (i) the Whole Tumor Treatment Planning Scenario (WTTPS), i.e. the four phenotypes irradiated with the same radionuclide; (ii) the Phenotype Treatment Planning Scenario (PTPS), i.e. each phenotype irradiated by a single radionuclide. The optimal radionuclide configurations were studied considering the maximization of the absorbed dose delivered to the tumor and the minimization of dose to healthy tissues. RESULTS In WTTPS, 125I outperforms the other radionuclides in terms of the ratio of the maximum absorbed dose delivered to the tumor and the minimum absorbed dose delivered to healthy tissues. In the PTPS, the use of 161Tb in combination with the other radionuclides maximizes the absorbed dose in the tumor tissues while simultaneously minimizing dose to healthy tissue, compared to the WTTPS. In agreement with recent pre-clinical studies, our computational results confirm and indicate the beneficial additive dosimetric effects of Auger and conversion electrons of 161Tb with respect to 177Lu, when considering the same cumulated activity for both. Interestingly, in considering a realistic tumor model, the better dosimetric performances of 161Tb were confirmed also for tumor volumes ranging from 1.98 cm3 to 33.32 cm3. CONCLUSIONS Dose assessment in realistic non-homogeneous tumor models could provide more insights with respect to consider only homogenous water-spheres tumor models and should be taken into account in dosimetry-based TRT planning studies.
Collapse
Affiliation(s)
- Jorge Borbinha
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| | - Paulo Ferreira
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Avenida Brasília, 1400-038, Lisboa, Portugal.
| | - Durval Costa
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Avenida Brasília, 1400-038, Lisboa, Portugal.
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| |
Collapse
|
23
|
Milot MC, Bélissant-Benesty O, Dumulon-Perreault V, Ait-Mohand S, Geha S, Richard PO, Rousseau É, Guérin B. Theranostic 64Cu-DOTHA 2-PSMA allows low toxicity radioligand therapy in mice prostate cancer model. Front Oncol 2023; 13:1073491. [PMID: 36741017 PMCID: PMC9889868 DOI: 10.3389/fonc.2023.1073491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction We have previously shown that copper-64 (64Cu)-DOTHA2-PSMA can be used for positron emission tomography (PET) imaging of prostate cancer. Owing to the long-lasting, high tumoral uptake of 64Cu-DOTHA2-PSMA, the objective of the current study was to evaluate the therapeutic potential of 64Cu-DOTHA2-PSMA in vivo. Methods LNCaP tumor-bearing NOD-Rag1nullIL2rgnull (NRG) mice were treated with an intraveinous single-dose of 64Cu-DOTHA2-PSMA at maximal tolerated injected activity, natCu-DOTHA2-PSMA at equimolar amount (control) or lutetium-177 (177Lu)-PSMA-617 at 120 MBq to assess their impact on survival. Weight, well-being and tumor size were followed until mice reached 62 days post-injection or ethical limits. Toxicity was assessed through weight, red blood cells (RBCs) counts, pathology and dosimetry calculations. Results Survival was longer with 64Cu-DOTHA2-PSMA than with natCu-DOTHA2-PSMA (p < 0.001). Likewise, survival was also longer when compared to 177Lu-PSMA-617, although it did not reach statistical significance (p = 0.09). RBCs counts remained within normal range for the 64Cu-DOTHA2-PSMA group. 64Cu-DOTHA2-PSMA treated mice showed non-pathological fibrosis and no other signs of radiation injury. Human extrapolation of dosimetry yielded an effective dose of 3.14 × 10-2 mSv/MBq, with highest organs doses to gastrointestinal tract and liver. Discussion Collectively, our data showed that 64Cu-DOTHA2-PSMA-directed radioligand therapy was effective for the treatment of LNCaP tumor-bearing NRG mice with acceptable toxicity and dosimetry. The main potential challenge is the hepatic and gastrointestinal irradiation.
Collapse
Affiliation(s)
- Marie-Christine Milot
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ophélie Bélissant-Benesty
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Samia Ait-Mohand
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick O. Richard
- Department of Surgery, Division of urology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Rousseau
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada,Sherbrooke Molecular Imaging Center (CIMS), Centre de recherche du CHUS, Sherbrooke, QC, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada,Sherbrooke Molecular Imaging Center (CIMS), Centre de recherche du CHUS, Sherbrooke, QC, Canada,*Correspondence: Brigitte Guérin,
| |
Collapse
|
24
|
Emmett L, John N, Pathmanandavel S, Counter W, Ayers M, Sharma S, Agrawal S, Poole A, Hovey E, Pranavan G, Gedye C, Mallesara G, Guminski A, Lee A, Stockler MR, Hickey A, Eu P, Joshua AM, Crumbaker M, Nguyen A. Patient outcomes following a response biomarker-guided approach to treatment using 177Lu-PSMA-I&T in men with metastatic castrate-resistant prostate cancer (Re-SPECT). Ther Adv Med Oncol 2023; 15:17588359231156392. [PMID: 36872949 PMCID: PMC9983078 DOI: 10.1177/17588359231156392] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/25/2023] [Indexed: 03/06/2023] Open
Abstract
Background 177LuPSMA is an effective treatment in metastatic castrate-resistant prostate cancer with trials adopting a standardised dose interval. Adjusting treatment intervals utilising early response biomarkers may improve patient outcomes. Objective This study evaluated progression-free survival (PFS) and overall survival (OS) based on treatment interval adjustment utilising 177LuPSMA 24-h SPECT/CT (177Lu-SPECT) and early prostate-specific antigen (PSA) response. Design Retrospective analysis of a clinical 177Lu-PSMA-I&T treatment programme. Methods In all, 125 men were treated with 6-weekly 177LuPSMA-I&T [median 3 cycles, interquartile range (IQR): 2-4], median dose 8.0 GBq [95% confidence interval (CI): 7.5-8.0]. Imaging screening involved 68GaPSMA-11 PET/diagnostic CT. 177Lu-SPECT/diagnostic CT was acquired following each therapy, and clinical assessments 3-weekly. Following dose 2 (week 6), a composite PSA and 177Lu-SPECT/CT imaging response [partial response (PR), stable disease (SD), and progressive disease (PD)] determined ongoing management. Response group (RG) 1 (marked reduction in PSA/imaging PR) break in treatment until subsequent PSA rise, then re-treatment. RG 2 (stable or reduced PSA and/or imaging SD) 6-weekly treatments until six doses, or no longer clinically benefitting. RG 3 (rise in PSA and/or imaging PD) recommended for an alternative treatment. Results Overall PSA50% response rate (PSARR) was 60% (75/125), median PSA-PFS 6.1 months (95%CI: 5.5-6.7), and median OS 16.8 months (95%CI: 13.5-20.1). 35% (41/116) were classified as RG 1, 34% (39/116) RG 2, and 31% (36/116) RG 3. PSARRs by RG were 95% (38/41), 74% (29/39), and 8% (3/36); median PSA-PFS rates were 12.1 months (95%CI: 9.3-17.4), 6.1 months (95%CI: 5.8-9.0), and 2.6 months (95%CI: 1.6-3.1); and OS rates were 19.2 months (95%CI: 16.8-20.7), 13.2 months (95%CI: 12.0-18.8), and 11.2 months (95%CI: 8.7-15.6) for RG 1, 2, and 3, respectively. The median months of 'treatment holiday' for RG 1 was 6.1 months (IQR: 3.4-8.7). Nine men had received prior 177LuPSMA-617 and were retreated with 177LuPSMA-I&T, with a PSARR of 56% on re-treatment. Conclusion Personalising dosing regimens using early response biomarkers with 177LuPSMA has the potential to achieve similar treatment responses to continuous dosing while allowing treatment breaks or intensification. Further evaluation of early response biomarker-guided treatment regimens in prospective trials is warranted. Plain Language Summary Lutetium-PSMA therapy is a new therapy for metastatic prostate cancer that is well tolerated and effective. However, not all men respond equally, with some responding very well and others progressing early. Personalising treatments require tools that can accurately measure treatment responses, preferably early in the treatment course, so adjustments to treatment can be made. Lutetium-PSMA can measure tumour sites after each therapy by taking whole body 3D images at 24 h using a small radiation wave from the treatment itself. This is called a SPECT scan. Previous work has shown that both prostate-specific antigen (PSA) response and changes in tumour volume on a SPECT scan can predict how patients will respond to treatment as early as dose 2. This study demonstrates that stratifying how men are treated based on the results of the 6-week SPECT scan and PSA response potentially allows a third of men to have break in treatment and that these men have both longer time to disease progression and OS. Men with an increase in tumour volume and increase in PSA early in treatment (6 weeks) had shorter time to disease progression and OS. Men with early biomarker disease progression were offered alternative treatments early in an attempt to allow the opportunity to allow a more effective potential therapy, if one was available. The study is an analysis of a clinical programme, and was not a prospective trial. As such, there are potential biases that could influence results. Hence, while the study is encouraging for the use of early response biomarkers to guide better treatment decisions, this must be validated in a well-designed clinical trial.
Collapse
Affiliation(s)
- Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia.,Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia.,Garvan Institute of Medical Research, Sydney, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Nikeith John
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia
| | - Sarennya Pathmanandavel
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia.,Garvan Institute of Medical Research, Sydney, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - William Counter
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia
| | - Maria Ayers
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia
| | - Shikha Sharma
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia
| | - Shikha Agrawal
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia
| | - Aron Poole
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia
| | - Elizabeth Hovey
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ganes Pranavan
- Department of Medical Oncology, The Canberra Hospital, Garran, ACT, Australia
| | - Craig Gedye
- Calvary Mater Hospital, Newcastle, NSW, Australia
| | | | - Alex Guminski
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Adrian Lee
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Martin R Stockler
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Adam Hickey
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia
| | - Peter Eu
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia
| | - Anthony M Joshua
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
| | - Megan Crumbaker
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.,The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
| | - Andrew Nguyen
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Nemtsova ER, Pankratov AA, Morozova NB, Tischenko VK, Petriev VM, Krylov VV, Shegay PV, Ivanov SA, Kaprin AD. Radioligand Therapy of Patients with Metastatic Castrate-Resistant Prostate Cancer. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
26
|
van der Gaag S, Bartelink IH, Vis AN, Burchell GL, Oprea-Lager DE, Hendrikse H. Pharmacological Optimization of PSMA-Based Radioligand Therapy. Biomedicines 2022; 10:3020. [PMID: 36551776 PMCID: PMC9775864 DOI: 10.3390/biomedicines10123020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men of middle and older age. The standard treatment strategy for PCa ranges from active surveillance in low-grade, localized PCa to radical prostatectomy, external beam radiation therapy, hormonal treatment and chemotherapy. Recently, the use of prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) for metastatic castration-resistant PCa has been approved. PSMA is predominantly, but not exclusively, expressed on PCa cells. Because of its high expression in PCa, PSMA is a promising target for diagnostics and therapy. To understand the currently used RLT, knowledge about pharmacokinetics (PK) and pharmacodynamics (PD) of the PSMA ligand and the PSMA protein itself is crucial. PK and PD properties of the ligand and its target determine the duration and extent of the effect. Knowledge on the concentration-time profile, the target affinity and target abundance may help to predict the effect of RLT. Increased specific binding of radioligands to PSMA on PCa cells may be associated with better treatment response, where nonspecific binding may increase the risk of toxicity in healthy organs. Optimization of the radioligand, as well as synergistic effects of concomitant agents and an improved dosing strategy, may lead to more individualized treatment and better overall survival.
Collapse
Affiliation(s)
- Suzanne van der Gaag
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - André N. Vis
- Department of Urology, Prostate Cancer Network Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - George L. Burchell
- Medical Library, VU University, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
27
|
Ling SW, de Blois E, Hooijman E, van der Veldt A, Brabander T. Advances in 177Lu-PSMA and 225Ac-PSMA Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Pharmaceutics 2022; 14:2166. [PMID: 36297601 PMCID: PMC9607057 DOI: 10.3390/pharmaceutics14102166] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 08/26/2023] Open
Abstract
For patients with metastatic castration-resistant prostate cancer (mCRPC), the survival benefit of classic treatment options with chemotherapy and drugs targeting androgen signaling is limited. Therefore, beta and alpha radionuclide therapy (RNT) have emerged as novel treatment options for patients with mCRPC. Radioligands target the prostate-specific membrane antigen (PSMA) epitopes, which are upregulated up to a thousand times more in prostate cancer cells compared to the cells in normal tissues. For this reason, PSMA is an excellent target for both imaging and therapy. Over the past years, many studies have investigated the treatment effects of lutetium-177 labeled PSMA (177Lu-PSMA) and actinium-225 labeled PSMA (225Ac-PSMA) RNT in patients with mCRPC. While promising results have been achieved, this field is still in development. In this review, we have summarized and discussed the clinical data of 177Lu-PSMA and 225Ac-PSMA RNT in patients with mCRPC.
Collapse
Affiliation(s)
- Sui Wai Ling
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Eline Hooijman
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Astrid van der Veldt
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
28
|
Sheehan B, Guo C, Neeb A, Paschalis A, Sandhu S, de Bono JS. Prostate-specific Membrane Antigen Biology in Lethal Prostate Cancer and its Therapeutic Implications. Eur Urol Focus 2022; 8:1157-1168. [PMID: 34167925 DOI: 10.1016/j.euf.2021.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Prostate-specific membrane antigen (PSMA) is a promising, novel theranostic target in advanced prostate cancer (PCa). Multiple PSMA-targeted therapies are currently in clinical development, with some agents showing impressive antitumour activity, although optimal patient selection and therapeutic resistance remain ongoing challenges. OBJECTIVE To review the biology of PSMA and recent advances in PSMA-targeted therapies in PCa, and to discuss potential strategies for patient selection and further therapeutic development. EVIDENCE ACQUISITION A comprehensive literature search was performed using PubMed and review of American Society of Clinical Oncology and European Society of Medical Oncology annual meeting abstracts up to April 2021. EVIDENCE SYNTHESIS PSMA is a largely extracellular protein that is frequently, but heterogeneously, expressed by PCa cells. PSMA expression is associated with disease progression, worse clinical outcomes and the presence of tumour defects in DNA damage repair (DDR). PSMA is also expressed by other cancer cell types and is implicated in glutamate and folate metabolism. It may confer a tumour survival advantage in conditions of cellular stress. PSMA regulation is complex, and recent studies have shed light on interactions with androgen receptor, PI3K/Akt, and DDR signalling. A phase 2 clinical trial has shown that 177Lu-PSMA-617 causes tumour shrinkage and delays disease progression in a significant subset of patients with metastatic castration-resistant PCa in comparison to second-line chemotherapy. Numerous novel PSMA-targeting immunotherapies, small molecules, and antibody therapies are currently in clinical development, including in earlier stages of PCa, with emerging evidence of antitumour activity. To date, the regulation and function of PSMA in PCa cells remain poorly understood. CONCLUSIONS There has been rapid recent progress in PSMA-targeted therapies for the management of advanced PCa. Dissection of PSMA biology will help to identify biomarkers for and resistance mechanisms to these therapies and facilitate further therapeutic development to improve PCa patient outcomes. PATIENT SUMMARY There have been major advances in the development of therapies targeting a molecule, PSMA, in PCa. Radioactive molecules targeting PSMA can cause tumour shrinkage and delay progression in some patients with lethal disease. Future studies are needed to determine which patients are most likely to respond, and how other treatments can be combined with therapies targeting PSMA so that more patients may benefit.
Collapse
Affiliation(s)
| | - Christina Guo
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | - Alec Paschalis
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
29
|
Searching for a Paradigm Shift in Auger-Electron Cancer Therapy with Tumor-Specific Radiopeptides Targeting the Mitochondria and/or the Cell Nucleus. Int J Mol Sci 2022; 23:ijms23137238. [PMID: 35806239 PMCID: PMC9266350 DOI: 10.3390/ijms23137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
Although 99mTc is not an ideal Auger electron (AE) emitter for Targeted Radionuclide Therapy (TRT) due to its relatively low Auger electron yield, it can be considered a readily available “model” radionuclide useful to validate the design of new classes of AE-emitting radioconjugates. With this in mind, we performed a detailed study of the radiobiological effects and mechanisms of cell death induced by the dual-targeted radioconjugates 99mTc-TPP-BBN and 99mTc-AO-BBN (TPP = triphenylphosphonium; AO = acridine orange; BBN = bombesin derivative) in human prostate cancer PC3 cells. 99mTc-TPP-BBN and 99mTc-AO-BBN caused a remarkably high reduction of the survival of PC3 cells when compared with the single-targeted congener 99mTc-BBN, leading to an augmented formation of γH2AX foci and micronuclei. 99mTc-TPP-BBN also caused a reduction of the mtDNA copy number, although it enhanced the ATP production by PC3 cells. These differences can be attributed to the augmented uptake of 99mTc-TPP-BBN in the mitochondria and enhanced uptake of 99mTc-AO-BBN in the nucleus, allowing the irradiation of these radiosensitive organelles with the short path-length AEs emitted by 99mTc. In particular, the results obtained for 99mTc-TPP-BBN reinforce the relevance of targeting the mitochondria to promote stronger radiobiological effects by AE-emitting radioconjugates.
Collapse
|
30
|
In vitro dose effect relationships of actinium-225- and lutetium-177-labeled PSMA-I&T. Eur J Nucl Med Mol Imaging 2022; 49:3627-3638. [PMID: 35556158 PMCID: PMC9399067 DOI: 10.1007/s00259-022-05821-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/25/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Targeting the prostate-specific membrane antigen (PSMA) using lutetium-177-labeled PSMA-specific tracers has become a very promising novel therapy option for prostate cancer (PCa). The efficacy of this therapy might be further improved by replacing the β-emitting lutetium-177 with the α-emitting actinium-225. Actinium-225 is thought to have a higher therapeutic efficacy due to the high linear energy transfer (LET) of the emitted α-particles, which can increase the amount and complexity of the therapy induced DNA double strand breaks (DSBs). Here we evaluated the relative biological effectiveness of [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T by assessing in vitro binding characteristics, dosimetry, and therapeutic efficacy. METHODS AND RESULTS The PSMA-expressing PCa cell line PC3-PIP was used for all in vitro assays. First, binding and displacement assays were performed, which revealed similar binding characteristics between [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T. Next, the assessment of the number of 53BP1 foci, a marker for the number of DNA double strand breaks (DSBs), showed that cells treated with [225Ac]Ac-PSMA-I&T had slower DSB repair kinetics compared to cells treated with [177Lu]Lu-PSMA-I&T. Additionally, clonogenic survival assays showed that specific targeting with [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T caused a dose-dependent decrease in survival. Lastly, after dosimetric assessment, the relative biological effectiveness (RBE) of [225Ac]Ac-PSMA-I&T was found to be 4.2 times higher compared to [177Lu]Lu-PSMA-I&T. CONCLUSION We found that labeling of PSMA-I&T with lutetium-177 or actinium-225 resulted in similar in vitro binding characteristics, indicating that the distinct biological effects observed in this study are not caused by a difference in uptake of the two tracers. The slower repair kinetics of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T correlates to the assumption that irradiation with actinium-225 causes more complex, more difficult to repair DSBs compared to lutetium-177 irradiation. Furthermore, the higher RBE of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T underlines the therapeutic potential for the treatment of PCa.
Collapse
|
31
|
Kaewput C, Vinjamuri S. Update of PSMA Theranostics in Prostate Cancer: Current Applications and Future Trends. J Clin Med 2022; 11:jcm11102738. [PMID: 35628867 PMCID: PMC9144463 DOI: 10.3390/jcm11102738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/02/2023] Open
Abstract
There is now an increasing trend for targeting cancers to go beyond early diagnosis and actually improve Progression-Free Survival and Overall Survival. Identifying patients who might benefit from a particular targeted treatment is the main focus for Precision Medicine. Radiolabeled ligands can be used as predictive biomarkers which can confirm target expression by cancers using positron emission tomography (PET). The same ligand can subsequently be labeled with a therapeutic radionuclide for targeted radionuclide therapy. This combined approach is termed “Theranostics”. The prostate-specific membrane antigen (PSMA) has emerged as an attractive diagnostic and therapeutic target for small molecule ligands in prostate cancer. It can be labeled with either positron emitters for PET-based imaging or beta and alpha emitters for targeted radionuclide therapy. This review article summarizes the important concepts for Precision Medicine contributing to improved diagnosis and targeted therapy of patients with prostate cancer and we identify some key learning points and areas for further research.
Collapse
Affiliation(s)
- Chalermrat Kaewput
- Department of Radiology, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence:
| | - Sobhan Vinjamuri
- Department of Nuclear Medicine, Royal Liverpool University Hospital, Liverpool L7 8XP, UK;
| |
Collapse
|
32
|
Comparison of [ 18F]PSMA-1007 with [ 68Ga]Ga-PSMA-11 PET/CT in Restaging of Prostate Cancer Patients with PSA Relapse. Cancers (Basel) 2022; 14:cancers14061479. [PMID: 35326629 PMCID: PMC8946234 DOI: 10.3390/cancers14061479] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 12/31/2022] Open
Abstract
This study aimed to compare the diagnostic performance of [18F]PSMA-1007 positron emission tomography/computed tomography (PET/CT) (18F-PSMA) and [68Ga]Ga-PSMA-11 PET/CT (68Ga-PSMA) by identifying prostate-specific antigen (PSA) threshold levels for optimal detecting recurrent prostate cancer (PC) and to compare both methods. Retrospectively, the study included 264 patients. The performances of 18F-PSMA and 68Ga-PSMA in relation to the pre-scan PSA were assessed by receiver operating characteristic (ROC) curve. 18F-PSMA showed PC-lesions in 87.5% (112/128 patients), while 68Ga-PSMA identified them in 88.9% (121/136). For 18F-PSMA biochemical recurrent (BCR) patients treated with radical prostatectomy (78/128, patient group: F-RP), a PSA of 1.08 ng/mL was found to be the optimal cut-off level for predicting positive and negative scans (AUC = 0.821; 95%, CI: 0.710−0.932), while for prostatectomized 68Ga-PSMA BCR-patients (89/136, patient group: Ga-RP), the cut-off was 1.84 ng/mL (AUC = 0.588; 95%, CI: 0.410−0.766). In patients with PSA < 1.08 ng/mL (F-RP) 76.3% and <1.84 ng/mL (Ga-RP) 78.6% scans were positive, whereas patients with PSA ≥ 1.08 ng/mL (F-RP) or 1.84 ng/mL (Ga-RP) had positive scan results in 100% and 91.5% (p < 0.001/p = 0.085). The identified PSA thresholds for PSMA-mappable PC lesions in BCR-patients (RP) showed a better separation for 18F-PSMA with regard to the distinguishing of positive and negative PC-lesions compared to 68Ga-PSMA. However, the two PSMA PET/CT tracers gave similar overall findings.
Collapse
|
33
|
Impact of the mouse model and molar amount of injected ligand on the tissue distribution profile of PSMA radioligands. Eur J Nucl Med Mol Imaging 2021; 49:470-480. [PMID: 34402925 PMCID: PMC8803738 DOI: 10.1007/s00259-021-05446-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022]
Abstract
Purpose Various preclinical study designs are described in the literature for the evaluation of PSMA radioligands. In this study, [177Lu]Lu-Ibu-DAB-PSMA, an albumin-binding radioligand, and [177Lu]Lu-PSMA-617 were investigated and compared under variable experimental conditions. Methods In vitro cell uptake studies were performed with PC-3 PIP and LNCaP tumor cells using a range of molar concentrations (0.75–500 nM) of both radioligands. Biodistribution and SPECT/CT imaging studies were carried out with the respective tumor mouse models using 0.05 nmol and 1.0 nmol injected ligand per mouse. Results In both tumor cell lines, the uptake of the radioligands was increased when using low molar concentrations of the respective ligand. The observed saturation effect at high ligand concentrations was more pronounced for LNCaP cells that express PSMA at lower levels than for PC-3 PIP cells. At all investigated timepoints, the in vivo uptake of both radioligands was higher in PC-3 PIP tumors than in LNCaP tumors. A low molar amount of injected ligand increased the PC-3 PIP tumor uptake mainly for [177Lu]Lu-Ibu-DAB-PSMA; however, the molar amount of ligand was relevant for both radioligands when using LNCaP tumors. Renal retention of both radioligands was, however, up to fourfold higher during the first hours after application of a low ligand amount compared to the high ligand amount. Conclusion The results of this preclinical study underline the relevance of the tumor model and applied ligand amount for the characterization of PSMA radioligands. The application of equal preclinical study designs is crucial to allow the comparison of novel radioligands with existing ones and, thus, predict potential advantages of new radioligands in view of a clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05446-5.
Collapse
|
34
|
Sandhu S, Guo C, Hofman MS. Radionuclide Therapy in Prostate Cancer: from standalone to combination PSMA theranostics. J Nucl Med 2021; 62:jnumed.120.243295. [PMID: 34385339 PMCID: PMC8612178 DOI: 10.2967/jnumed.120.243295] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Despite significant advances in prostate cancer therapeutic development over the last two decades, metastatic prostate cancer remains a lethal disease. Prostate-specific membrane antigen (PSMA), which is markedly overexpressed by prostate cancer cells, including at metastatic sites, but have low normal tissue expression, has emerged as an important theranostic target for these diseases. Both beta-emitting and alpha-emitting PSMA-targeted radionuclide therapy (RNT) are in clinical development. Several of these agents have already shown promising activity, however, a significant subset of patients have primary resistant disease and secondary resistance invariably occurs. Further, the effect of these therapies on healthy organs limit their therapeutic window. Elucidating the biology of PSMA as well as characterising the pharmacokinetic and pharmacodynamic properties of PSMA-targeted RNT will facilitate therapeutic approaches aimed at improving efficacy and safety. In this review, we provide an overview of existing PSMA-targeting RNT and an update on novel combinatorial approaches.
Collapse
Affiliation(s)
- Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Christina Guo
- Royal Marsden NHS Foundation Trust, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom; and
| | - Michael S. Hofman
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
El Fakiri M, Geis NM, Ayada N, Eder M, Eder AC. PSMA-Targeting Radiopharmaceuticals for Prostate Cancer Therapy: Recent Developments and Future Perspectives. Cancers (Basel) 2021; 13:cancers13163967. [PMID: 34439121 PMCID: PMC8393521 DOI: 10.3390/cancers13163967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary One of the most frequently diagnosed cancer in men is adenocarcinoma of the prostate. Once the disease is metastatic, only very limited treatment options are available, resulting in a very short median survival time of 13 months; however, this reality is gradually changing due to the discovery of prostate-specific membrane antigen (PSMA), a protein that is present in cancerous prostate tissue. Researchers have developed pharmaceuticals specific for PSMA, ranging from antibodies (mAb) to low-molecular weight molecules coupled to beta minus and alpha-emitting radionuclides for their use in targeted radionuclide therapy (TRT). TRT offers the possibility of selectively removing cancer tissue via the emission of radiation or radioactive particles within the tumour. In this article, the major milestones in PSMA ligand research and the therapeutic developments are summarised, together with a future perspective on the enhancement of current therapeutic approaches. Abstract Prostate cancer (PC) is the second most common cancer among men, with 1.3 million yearly cases worldwide. Among those cancer-afflicted men, 30% will develop metastases and some will progress into metastatic castration-resistant prostate cancer (mCRPC), which is associated with a poor prognosis and median survival time that ranges from nine to 13 months. Nevertheless, the discovery of prostate specific membrane antigen (PSMA), a marker overexpressed in the majority of prostatic cancerous tissue, revolutionised PC care. Ever since, PSMA-targeted radionuclide therapy has gained remarkable international visibility in translational oncology. Furthermore, on first clinical application, it has shown significant influence on therapeutic management and patient care in metastatic and hormone-refractory prostate cancer, a disease that previously had remained immedicable. In this article, we provide a general overview of the main milestones in the development of ligands for PSMA-targeted radionuclide therapy, ranging from the firstly developed monoclonal antibodies to the current state-of-the-art low molecular weight entities conjugated with various radionuclides, as well as potential future efforts related to PSMA-targeted radionuclide therapy.
Collapse
Affiliation(s)
- Mohamed El Fakiri
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nicolas M. Geis
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nawal Ayada
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-761-270-74220
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Hammer S, Schlicker A, Zitzmann-Kolbe S, Baumgart S, Hagemann UB, Scholz A, Haendler B, Lejeune P, Karlsson J, Ellingsen C, Hennekes H, Nielsen CH, Juul MU, Mumberg D, Schatz CA. Darolutamide Potentiates the Antitumor Efficacy of a PSMA-targeted Thorium-227 Conjugate by a Dual Mode of Action in Prostate Cancer Models. Clin Cancer Res 2021; 27:4367-4378. [PMID: 34035067 PMCID: PMC9401501 DOI: 10.1158/1078-0432.ccr-21-0342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Androgen receptor (AR) inhibitors are well established in the treatment of castration-resistant prostate cancer and have recently shown efficacy also in castration-sensitive prostate cancer. Although most patients respond well to initial therapy, resistance eventually develops, and thus, more effective therapeutic approaches are needed. Prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer and presents an attractive target for radionuclide therapy. Here, we evaluated the efficacy and explored the mode of action of the PSMA-targeted thorium-227 conjugate (PSMA-TTC) BAY 2315497, an antibody-based targeted alpha-therapy, in combination with the AR inhibitor darolutamide. EXPERIMENTAL DESIGN The in vitro and in vivo antitumor efficacy and mode of action of the combination treatment were investigated in preclinical cell line-derived and patient-derived prostate cancer xenograft models with different levels of PSMA expression. RESULTS Darolutamide induced the expression of PSMA in androgen-sensitive VCaP and LNCaP cells in vitro, and the efficacy of darolutamide in combination with PSMA-TTC was synergistic in these cells. In vivo, the combination treatment showed synergistic antitumor efficacy in the low PSMA-expressing VCaP and in the high PSMA-expressing ST1273 prostate cancer models, and enhanced efficacy in the enzalutamide-resistant KUCaP-1 model. The treatments were well tolerated. Mode-of-action studies revealed that darolutamide induced PSMA expression, resulting in higher tumor uptake of PSMA-TTC, and consequently, higher antitumor efficacy, and impaired PSMA-TTC-mediated induction of DNA damage repair genes, potentially contributing to increased DNA damage. CONCLUSIONS These results provide a strong rationale to investigate PSMA-TTC in combination with AR inhibitors in patients with prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Simon Baumgart
- Bayer U.S. LLC, Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cao J, Chen Y, Hu M, Zhang W. 177Lu-PSMA-RLT of metastatic castration-resistant prostate cancer: limitations and improvements. Ann Nucl Med 2021; 35:861-870. [PMID: 34176105 DOI: 10.1007/s12149-021-01649-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
The prevalence of metastatic castration-resistant prostate cancer (mCRPC) is increasing, and its prognosis is often poor. As a highly expressed target in mCRPC, prostate-specific membrane antigen (PSMA) is very attractive for its diagnosis and treatment. When the efficacy of chemical therapy is limited, radioligand therapy (RLT)-based on Lutetium-177 (177Lu)-PSMA has received more research as an emerging treatment. To date, most published related studies have proven this method is effective and safe. However, about 1/3 of mCRPC patients have not benefited from 177Lu-PSMA-RLT. The underlying mechanism of this phenomenon remains unclear. So based on the comprehensive research in recent years, this article proposes the possible reasons, including tumor lesions, PSMA heterogeneity, differences in DNA repair defects, and accelerated repopulation. Combining with the existing experience to give suggestions to improve the treatment efficacy, benefit more mCRPC patients.
Collapse
Affiliation(s)
- Jianpeng Cao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Mei Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Wei Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Academy of Medical Sciences/Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
38
|
Target Heterogeneity in Oncology: The Best Predictor for Differential Response to Radioligand Therapy in Neuroendocrine Tumors and Prostate Cancer. Cancers (Basel) 2021; 13:cancers13143607. [PMID: 34298822 PMCID: PMC8304541 DOI: 10.3390/cancers13143607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In the era of precision medicine, novel targets have emerged on the surface of cancer cells, which have been exploited for the purpose of radioligand therapy. However, there have been variations in the way these receptors are expressed, especially in prostate cancers and neuroendocrine tumors. This variable expression of receptors across the grades of cancers led to the concept of ‘target heterogeneity’, which has not just impacted therapeutic decisions but also their outcomes. Radiopharmaceuticals targeting receptors need to be used when there are specific indicators—either clinical, radiological, or at molecular level—warranting their use. In addition, response to these radioligands can be assessed using different techniques, whereby we can prognosticate further outcomes. We shall also discuss, in this review, the conventional as well as novel approaches of detecting heterogeneity in prostate cancers and neuroendocrine tumors. Abstract Tumor or target heterogeneity (TH) implies presence of variable cellular populations having different genomic characteristics within the same tumor, or in different tumor sites of the same patient. The challenge is to identify this heterogeneity, as it has emerged as the most common cause of ‘treatment resistance’, to current therapeutic agents. We have focused our discussion on ‘Prostate Cancer’ and ‘Neuroendocrine Tumors’, and looked at the established methods for demonstrating heterogeneity, each with its advantages and drawbacks. Also, the available theranostic radiotracers targeting PSMA and somatostatin receptors combined with targeted systemic agents, have been described. Lu-177 labeled PSMA and DOTATATE are the ‘standard of care’ radionuclide therapeutic tracers for management of progressive treatment-resistant prostate cancer and NET. These approved therapies have shown reasonable benefit in treatment outcome, with improvement in quality of life parameters. Various biomarkers and predictors of response to radionuclide therapies targeting TH which are currently available and those which can be explored have been elaborated in details. Imaging-based features using artificial intelligence (AI) need to be developed to further predict the presence of TH. Also, novel theranostic tools binding to newer targets on surface of cancer cell should be explored to overcome the treatment resistance to current treatment regimens.
Collapse
|
39
|
Mohan V, Vogel WV, Valk GD, de Boer JP, Lam MGEH, de Keizer B. PSMA PET/CT Identifies Intrapatient Variation in Salivary Gland Toxicity From Iodine-131 Therapy. Mol Imaging 2021; 19:1536012120934992. [PMID: 32619138 PMCID: PMC7493237 DOI: 10.1177/1536012120934992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Introduction: Xerostomia is a well-known complication after iodine-131 (131I) therapy for thyroid carcinoma. It is currently insufficiently understood how the dose and biodistribution of 131I relates to salivary gland toxicity, and whether this is consistent for all salivary glands within a single patient. Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) was recently introduced as a new tool to evaluate the relative loss of vital acinar cells in individual salivary glands. We aimed to assess gland-specific salivary gland toxicity after 131I-therapy using PSMA PET/CT. Methods: Five patients with differentiated thyroid cancer underwent [68Ga]Ga-PSMA-11 PET/CT to evaluate their eligibility for peptide radioligand therapy with [177Lu]Lu-PSMA-617. Uptake patterns in salivary glands were evaluated visually and quantitatively as an indicator of vital acinar cell loss after prior 131I-therapy. Results: Four of 5 patients demonstrated significant lowered uptake in at least one salivary gland, after receiving at least 2 131I-treatments. Asymmetric loss of vital acinar cells occurred by gland type (parotid/submandibular) and location (right/left). The other salivary glands in these patients and all salivary glands in the fifth patient showed normal uptake, demonstrating high intrapatient and interpatient variability. Conclusions: 131I-therapy can induce salivary gland toxicity with high inter- but also high intrapatient variation among separate gland locations, which can be assessed with PSMA PET/CT. This new technique offers potential to guide further development and evaluation of protective measures in patients receiving 131I-therapy.
Collapse
Affiliation(s)
- Vineet Mohan
- Department of Nuclear Medicine, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Radiation Oncology, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wouter V Vogel
- Department of Nuclear Medicine, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Radiation Oncology, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan P de Boer
- Department of Medical Oncology, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marnix G E H Lam
- Department of Nuclear Medicine and Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart de Keizer
- Department of Nuclear Medicine and Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
40
|
Heynickx N, Herrmann K, Vermeulen K, Baatout S, Aerts A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl Med Biol 2021; 98-99:30-39. [PMID: 34020337 DOI: 10.1016/j.nucmedbio.2021.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
At present, prostate cancer remains the second most occurring cancer in men, in Europe. Treatment efficacy for therapy of advanced metastatic disease, and metastatic castration-resistant prostate cancer in particular is limited. Prostate-specific membrane antigen (PSMA) is a promising therapeutic target in prostate cancer, seeing the high amount of overexpression on prostate cancer cells. Clinical investigation of PSMA-targeted radionuclide therapy has shown good clinical efficacy. However, adverse effects are observed of which salivary gland hypofunction and xerostomia are among the most prominent. Salivary gland toxicity is currently the dose-limiting side effect for PSMA-targeted radionuclide therapy, and more specifically for PSMA-targeted alpha therapy. To date, mechanisms underlying the salivary gland uptake of PSMA-targeting compounds and the subsequent damage to the salivary glands remain largely unknown. Furthermore, preventive strategies for salivary gland uptake or strategies for treatment of salivary gland toxicity are needed. This review focuses on the current knowledge on uptake mechanisms of PSMA-targeting compounds in the salivary glands and the research performed to investigate different strategies to prevent or treat salivary gland toxicity.
Collapse
Affiliation(s)
- Nathalie Heynickx
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America; Department of Nuclear Medicine, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Koen Vermeulen
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.
| | - An Aerts
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
41
|
Suman SK, Subramanian S, Mukherjee A. Combination radionuclide therapy: A new paradigm. Nucl Med Biol 2021; 98-99:40-58. [PMID: 34029984 DOI: 10.1016/j.nucmedbio.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
Targeted molecular radionuclide therapy (MRT) has shown its potential for the treatment of cancers of multiple origins. A combination therapy strategy employing two or more distinct therapeutic approaches in cancer management is aimed at circumventing tumor resistance by simultaneously targeting compensatory signaling pathways or bypassing survival selection mutations acquired in response to individual monotherapies. Combination radionuclide therapy (CRT) is a newer application of the concept, utilizing a combination of radiolabeled molecular targeting agents with chemotherapy and beam radiation therapy for enhanced therapeutic index. Encouraging results are reported with chemotherapeutic agents in combination with radiolabeled targeting molecules for cancer therapy. With increasing awareness of the various survival and stress response pathways activated after radionuclide therapy, different holistic combinations of MRT agents with radiosensitizers targeting such pathways have also been explored. MRT has also been studied in combination with beam radiotherapy modalities such as external beam radiation therapy and carbon ion radiation therapy to enhance the anti-tumor response. Nanotechnology aids in CRT by bringing together multiple monotherapies on a single nanostructure platform for treating cancers in a more precise or personalized way. CRT will be a key player in managing cancers if correctly tailored to the individual patient profile. The success of CRT lies in an in-depth understanding of the radiobiological principles and pathways activated in response.
Collapse
Affiliation(s)
- Shishu Kant Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai 400094, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai 400094, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
42
|
Parsi M, Desai MH, Desai D, Singhal S, Khandwala PM, Potdar RR. PSMA: a game changer in the diagnosis and treatment of advanced prostate cancer. Med Oncol 2021; 38:89. [PMID: 34181109 DOI: 10.1007/s12032-021-01537-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Although management of advanced prostate cancer is evolving, a lot of work remains to be done for patients who have exhausted all options. Molecular targeting of prostate specific membrane antigen (PSMA) is valuable not only for diagnostic but also for therapeutic reasons. PSMA is thus considered to be useful in a theranostic approach. PSMA scans are upcoming diagnostic modalities which detect metastatic lesions that are missed by conventional imaging modalities. PSMA ligand therapy is also an upcoming treatment modality that has been proven to be beneficial with minimal toxicity in patients with advanced prostate cancer that have progressed on prior therapy. In this review article, we summarize the current knowledge regarding PSMA diagnostics and PSMA ligand therapies and discuss their implication in the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Meghana Parsi
- Dept of Internal Medicine, Crozer-Chester Medical Center, 1 Medical Center Blvd, Upland, PA, USA.
| | - Milap H Desai
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Devashish Desai
- Dept of Internal Medicine, Crozer-Chester Medical Center, 1 Medical Center Blvd, Upland, PA, USA
| | - Sachi Singhal
- Dept of Internal Medicine, Crozer-Chester Medical Center, 1 Medical Center Blvd, Upland, PA, USA
| | - Pushti M Khandwala
- Dept of Internal Medicine, Crozer-Chester Medical Center, 1 Medical Center Blvd, Upland, PA, USA
| | - Rashmika R Potdar
- Dept of Hematology Oncology, Crozer-Chester Medical Center, Upland, PA, USA
| |
Collapse
|
43
|
Baudhuin H, Van Bockstal PJ, De Beer T, Vaneycken I, Bridoux J, Raes G, Caveliers V, Keyaerts M, Devoogdt N, Lahoutte T, Xavier C. Lyophilization of NOTA-sdAbs: First step towards a cold diagnostic kit for 68Ga-labeling. Eur J Pharm Biopharm 2021; 166:194-204. [PMID: 34186190 DOI: 10.1016/j.ejpb.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
Lyophilization is commonly used in the production of pharmaceutical compounds to increase the stability of the Active Pharmaceutical Ingredient (API) by removing solvents. This study investigates the possibility to lyophilize an anti-HER2 and an anti-MMR single-domain antibody fragment (sdAb)-based precursor as a first step in the development of a diagnostic kit for PET imaging. METHODS NOTA-sdAb precursors have been lyophilized with the following formulation: 100 µg NOTA-sdAb in 0.1 M NaOAc (NaOAc), 5% (w/v%) mannitol-sucrose mix at a 2:1 ratio and 0.1 mg/mL polysorbate 80. During development of the formulation and drying cycle, factors such as cake appearance, glass transition temperature and residual moisture were analyzed to ensure qualitative and stable lyophilized samples. Stability studies of lyophilized precursor were conducted up to 18 months after storage at 2-8 °C by evaluating the precursor integrity, aggregation, functionality and 68Ga-labeling efficiency. A comparative biodistribution study (lyophilized vs non-lyophilized precursor) was conducted in wild type mice (n = 3) and in tumor bearing mice (n = 6). RESULTS The lyophilized NOTA-anti-HER2 precursor shows consistent stability data in vitro for up to 12 months at 2-8 °C in three separate batches, with results indicating stability even for up to T18m. No aggregation, degradation or activity loss was observed. Radiochemical purity after 68Ga-labeling is consistent over a period of 12 months (RCP ≥ 95% at T12m). In vivo biodistribution analyses show a typical [68Ga]Ga-NOTA-anti-HER2 sdAb distribution profile and a comparable tumor uptake for the lyophilized compound vs non-lyophilized (5.5% vs 5.7 %IA/g, respectively). In vitro results of lyophilized NOTA-anti-MMR precursor indicates stability for up to 18 months, while in vivo data show a comparable tumor uptake (2.5% vs 2.8 %IA/g, respectively) and no significant difference in kidney retention (49.4% vs 47.5 %IA/g, respectively). CONCLUSION A formulation and specific freeze-drying cycle were successfully developed to lyophilize NOTA-sdAb precursors for long-term storage at 2-8 °C. In vivo data show no negative impact of the lyophilization process on the in vivo behavior or functionality of the lyophilized precursor. These results highlight the potential to develop a kit for the preparation of 68Ga-sdAb-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Henri Baudhuin
- Department of Medical Imaging (MIMA), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Pieter-Jan Van Bockstal
- Laboratory of Pharmaceutical Process Analytical Technology (LPPAT), Universiteit Gent, Ghent, Belgium.
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology (LPPAT), Universiteit Gent, Ghent, Belgium.
| | - Ilse Vaneycken
- Department of Medical Imaging (MIMA), Vrije Universiteit Brussel, Brussels, Belgium; Nuclear Medicine Department (NUCG), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - Jessica Bridoux
- Department of Medical Imaging (MIMA), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium.
| | - Vicky Caveliers
- Department of Medical Imaging (MIMA), Vrije Universiteit Brussel, Brussels, Belgium; Nuclear Medicine Department (NUCG), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - Marleen Keyaerts
- Department of Medical Imaging (MIMA), Vrije Universiteit Brussel, Brussels, Belgium; Nuclear Medicine Department (NUCG), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - Nick Devoogdt
- Department of Medical Imaging (MIMA), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Tony Lahoutte
- Department of Medical Imaging (MIMA), Vrije Universiteit Brussel, Brussels, Belgium; Nuclear Medicine Department (NUCG), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - Catarina Xavier
- Department of Medical Imaging (MIMA), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
44
|
Westaby D, Viscuse PV, Ravilla R, de la Maza MDLDF, Hahn A, Sharp A, de Bono J, Aparicio A, Fleming MT. Beyond the Androgen Receptor: The Sequence, the Mutants, and New Avengers in the Treatment of Castrate-Resistant Metastatic Prostate Cancer. Am Soc Clin Oncol Educ Book 2021; 41:e190-e202. [PMID: 34061561 DOI: 10.1200/edbk_321209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeting the androgen receptor by depriving testosterone with gonadotropin-releasing hormone agonists or antagonists, or surgical castration, has been the backbone of metastatic prostate cancer treatment. Although most prostate cancers initially respond to androgen deprivation, metastatic castration-resistant prostate cancer evolves into a heterogeneous disease with diverse drivers of progression and mechanisms of therapeutic resistance. Development of castrate resistance phenotype is associated with lethality despite the recent noteworthy strides gained via increase in therapeutic options. Identification of novel therapeutics to further improve survival and achieve durable responses in metastatic castration-resistant prostate cancer is a clinical necessity. In this review, we outline the existing avengers for treatment of metastatic castration-resistant prostate cancer by clinical presentation, placing into context the clinical state of the patient, such as burden of disease and symptoms. Doing so might aid in the ability to optimize the sequence of agents and allow for maximal exposure to life-prolonging therapeutics. Realizing the limitations of the androgen signaling inhibition, we explore the androgen-indifferent prostate cancer: the mutants. Classically, these subtypes have been associated with variant histology, but androgen-indifferent prostate cancer features are now frequently observed in association with heterogeneous morphologies, including double-negative prostate cancers, lacking both androgen receptor and neuroendocrine features, or clinicopathologic criteria, such as the aggressive variant prostate cancer criteria. The framework of new avengers against metastatic castration-resistant prostate cancer based on mechanism, including DNA repair, immune checkpoint inhibition, PTEN/PI3K/AKT pathway, prostate-specific membrane antigen targets, bispecific T-cell engagers, and radionuclide therapies, is summarized in this review.
Collapse
Affiliation(s)
- Daniel Westaby
- The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| | - Paul V Viscuse
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rahul Ravilla
- US Oncology Research, New York Oncology Hematology, Albany, NY
| | | | - Andrew Hahn
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Sharp
- The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| | - Johann de Bono
- The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mark T Fleming
- US Oncology Research, Virginia Oncology Associates, Norfolk, VA
| |
Collapse
|
45
|
Kovács A. Theoretical Study of Actinide(III)-DOTA Complexes. ACS OMEGA 2021; 6:13321-13330. [PMID: 34056480 PMCID: PMC8158830 DOI: 10.1021/acsomega.1c01292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
1,4,7,10-Tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA) is a prominent chelating ligand used in imaging contrast agents and radiopharmaceuticals. The present study explores the stabilities, structures, and bonding properties of its complexes with trivalent actinides (Ac, U, Np, Pu, Am, Cm, Cf) using density functional theory and relativistic multireference calculations. For reference purposes, the La- and Lu-DOTA complexes are also included. Similar to La3+, the large An3+ ions prefer the TSAP conformer of the ligand. The An-ligand bonding is mainly electrostatic, with minor charge transfer contributions to the An 6d orbitals. For the assessment of the thermodynamic stabilities in aqueous solution, PCM radii to use in conjunction with the SMD solvation model were developed. Basically, the thermodynamic stability of the DOTA complexes increases along the An row but with notable counteracting of spin-orbit coupling.
Collapse
Affiliation(s)
- Attila Kovács
- European Commission Joint
Research Centre, P. O. Box 2340, Karlsruhe D-76125, Germany
| |
Collapse
|
46
|
Hooijman EL, Chalashkan Y, Ling SW, Kahyargil FF, Segbers M, Bruchertseifer F, Morgenstern A, Seimbille Y, Koolen SLW, Brabander T, de Blois E. Development of [ 225Ac]Ac-PSMA-I&T for Targeted Alpha Therapy According to GMP Guidelines for Treatment of mCRPC. Pharmaceutics 2021; 13:pharmaceutics13050715. [PMID: 34068206 PMCID: PMC8153125 DOI: 10.3390/pharmaceutics13050715] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, promising results of the antitumor effects were observed in patients with metastatic castration-resistant prostate cancer treated with 177Lu-labeled PSMA-ligands. Radionuclide therapy efficacy may even be improved by using the alpha emitter Ac-225. Higher efficacy is claimed due to high linear energy transfer specifically towards PSMA positive cells, causing more double-strand breaks. This study aims to manufacture [225Ac]Ac-PSMA-I&T according to good manufacturing practice guidelines for the translation of [225Ac]Ac-PSMA-I&T into a clinical phase 1 dose escalation study. Quencher addition during labeling was investigated. Quality control of [225Ac]Ac-PSMA-I&T was based on measurement of Fr-221 (218 keV), in equilibrium with Ac-225 in approximately six half-lives of Fr-221 (T½ = 4.8 min). Radio-(i)TLC methods were utilized for identification of the different radiochemical forms, gamma counter for concentration determination, and HPGe-detector for the detection of the radiochemical yield. Radiochemical purity was determined by HPLC. The final patient dose was prepared and diluted with an optimized concentration of quenchers as during labeling, with an activity of 8–12 MBq (±5%), pH > 5.5, 100 ± 20 μg/dose, PSMA-I&T, radiochemical yield >95%, radiochemical purity >90% (up to 3 h), endotoxin levels of <5 EU/mL, osmolarity of 2100 mOsmol, and is produced according to current guidelines. The start of the phase I dose escalation study is planned in the near future.
Collapse
Affiliation(s)
- Eline L. Hooijman
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Erasmus Medical Centre, Department of Pharmacy, 3015 CN Rotterdam, The Netherlands
| | - Yozlem Chalashkan
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
| | - Sui Wai Ling
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
| | - Figen F. Kahyargil
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Erasmus Medical Centre, Department of Pharmacy, 3015 CN Rotterdam, The Netherlands
| | - Marcel Segbers
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
| | - Frank Bruchertseifer
- Joint Research Centre, European Commission, 76344 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Alfred Morgenstern
- Joint Research Centre, European Commission, 76344 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Yann Seimbille
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Division of Life Sciences, TRIUMF, Vancouver, BC V6T 2A3, Canada
| | - Stijn L. W. Koolen
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Erasmus Medical Centre, Department of Pharmacy, 3015 CN Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, The Netherlands
| | - Tessa Brabander
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
| | - Erik de Blois
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, 3015 CN Rotterdam, The Netherlands; (E.L.H.); (Y.C.); (S.W.L.); (F.F.K.); (M.S.); (Y.S.); (S.L.W.K.); (T.B.)
- Correspondence: ; Tel.: +31-107035317
| |
Collapse
|
47
|
Ruigrok EAM, van Vliet N, Dalm SU, de Blois E, van Gent DC, Haeck J, de Ridder C, Stuurman D, Konijnenberg MW, van Weerden WM, de Jong M, Nonnekens J. Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy. Eur J Nucl Med Mol Imaging 2021; 48:1339-1350. [PMID: 33094433 PMCID: PMC8113296 DOI: 10.1007/s00259-020-05057-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Various radiolabeled prostate-specific membrane antigen (PSMA)-targeting tracers are clinically applied for prostate cancer (PCa) imaging and targeted radionuclide therapy. The PSMA binding affinities, biodistribution, and DNA-damaging capacities of these radiotracers have not yet been compared in detail. A major concern of PSMA-targeting radiotracers is the toxicity in other PSMA-expressing organs, such as the salivary glands, thus demanding careful evaluation of the most optimal and safest radiotracer. In this extensive preclinical study, we evaluated the clinically applied PSMA-targeting small molecule inhibitors DOTA-PSMA-617 (PSMA-617) and DOTAGA-PSMA-I&T (PSMA-I&T) and the PSMA nanobody DOTA-JVZ-007 (JVZ-007) using PSMA-expressing cell lines, a unique set of PCa patient-derived xenografts (PDX) and healthy human tissues. METHODS AND RESULTS In vitro displacement studies on PSMA-expressing cells and cryosections of a PSMA-positive PDX revealed high and specific binding affinity for all three tracers labeled with lutetium-177 with IC50 values in the nanomolar range. Interestingly, [177Lu]Lu-JVZ-007 could not be displaced by PSMA-617 or PSMA-I&T, suggesting that this tracer targets an alternative binding site. Autoradiography assays on cryosections of human salivary and renal tissues revealed [177Lu]Lu-PSMA-617 to have the lowest binding to these healthy organs compared with [177Lu]Lu-PSMA-I&T. In vivo biodistribution assays confirmed the in vitro results with comparable tumor uptake of [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T at all timepoints, resulting in induction of similar levels of DNA double-strand breaks in the tumors. However, [177Lu]Lu-PSMA-I&T demonstrated approximately 40× higher renal uptake at 4 and 8 h post injection resulting in an unfavorable tumor-to-kidney ratio. CONCLUSION [177Lu]Lu-PSMA-617 has the most favorable biodistribution in mice as well as more favorable binding characteristics in vitro in PSMA-positive cells and human kidney and salivary gland specimens compared with [177Lu]Lu-PSMA-I&T and [177Lu]Lu-JVZ-007. Based on our preclinical evaluation, [177Lu]Lu-PSMA-617 is the best performing tracer to be taken further into clinical evaluation for PSMA-targeted radiotherapeutic development although with careful evaluation of the tracer binding to PSMA-expressing organs.
Collapse
Affiliation(s)
- Eline A M Ruigrok
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Simone U Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Joost Haeck
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Debra Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands.
- Erasmus MC, Room Ee757R, PO box 2040, 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Standardization of the [ 68Ga]Ga-PSMA-11 Radiolabeling Protocol in an Automatic Synthesis Module: Assessments for PET Imaging of Prostate Cancer. Pharmaceuticals (Basel) 2021; 14:ph14050385. [PMID: 33918987 PMCID: PMC8142994 DOI: 10.3390/ph14050385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a glycoprotein present in the prostate, that is overexpressed in prostate cancer (PCa). Recently, PSMA-directed radiopharmaceuticals have been developed, allowing the pinpointing of tumors with the Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) imaging techniques. The aim of the present work was to standardize and validate an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11, as well as to produce a radiopharmaceutical for PET imaging of PCa malignancies. [68Ga]Ga-PSMA-11 was evaluated to determine the radiochemical purity (RCP), stability in saline solution and serum, lipophilicity, affinity to serum proteins, binding and internalization to lymph node carcinoma of the prostate (LNCaP) cells, and ex vivo biodistribution in mice. The radiopharmaceutical was produced with an RCP of 99.06 ± 0.10%, which was assessed with reversed-phase high-performance liquid chromatography (RP-HPLC). The product was stable in saline solution for up to 4 h (RCP > 98%) and in serum for up to 1 h (RCP > 95%). The lipophilicity was determined as -3.80 ± 0.15, while the serum protein binding (SPB) was <17%. The percentages of binding to LNCaP cells were 4.07 ± 0.51% (30 min) and 4.56 ± 0.46% (60 min), while 19.22 ± 2.73% (30 min) and 16.85 ± 1.34% (60 min) of bound material was internalized. High accumulation of [68Ga]Ga-PSMA-11 was observed in the kidneys, spleen, and tumor, with a tumor-to-contralateral-muscle ratio of >8.5 and a tumor-to-blood ratio of >3.5. In conclusion, an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11 was standardized and the product was evaluated, thus verifying its characteristics for PET imaging of PCa tumors in a clinical environment.
Collapse
|
49
|
Mohan V, Bruin NM, Tesselaar MET, de Boer JP, Vegt E, Hendrikx JJMA, Al-Mamgani A, van de Kamer JB, Sonke JJ, Vogel WV. Muscarinic inhibition of salivary glands with glycopyrronium bromide does not reduce the uptake of PSMA-ligands or radioiodine. EJNMMI Res 2021; 11:25. [PMID: 33710423 PMCID: PMC7953192 DOI: 10.1186/s13550-021-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
RATIONALE Salivary glands are highly perfused and express the prostate-specific membrane antigen (PSMA) receptor as well as the sodium-iodide symporter. As a consequence, treatment with 177Lu/225Ac-PSMA for prostate cancer or 131I for thyroid cancer leads to a high radiation dose in the salivary glands, and patients can be confronted with persistent xerostomia and reduced quality of life. Salivation can be inhibited using an antimuscarinic pharmaceutical, such as glycopyrronium bromide (GPB), which may also reduce perfusion. The primary objective of this work was to determine if inhibition with GPB could provide a considerable (> 30%) reduction in the accumulation of administered 123I or 68Ga-PSMA-11 in salivary glands. METHODS Ten patients who already received a whole-body 68Ga-PSMA-11 PET/CT scan for (re)staging of prostate cancer underwent a repeat PET/CT scan with tracer administration at 90 min after intravenous injection of 0.2 mg GPB. Four patients in follow-up after thyroid cancer, who had been treated with one round of ablative 131I therapy with curative intent and had no signs of recurrence, received 123I planar scintigraphy at 4 h after tracer administration without GPB and a repeated scan at least one week later, with tracer administration at 30 min after intramuscular injection of 0.4 mg GPB. Tracer uptake in the salivary glands was quantified on PET and scintigraphy, respectively, and values with and without GPB were compared. RESULTS No significant difference in PSMA uptake in the salivary glands was seen without or with GPB (Mean SULmean parotid glands control 5.57, intervention 5.72, p = 0.50. Mean SULmean submandibular glands control 6.25, intervention 5.89, p = 0.12). Three out of 4 patients showed increased 123I uptake in the salivary glands after GPB (Mean counts per pixel control 8.60, intervention 11.46). CONCLUSION Muscarinic inhibition of salivation with GPB did not significantly reduce the uptake of PSMA-ligands or radioiodine in salivary glands, and can be dismissed as a potential strategy to reduce toxicity from radionuclide therapies.
Collapse
Affiliation(s)
- V Mohan
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - N M Bruin
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M E T Tesselaar
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J P de Boer
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E Vegt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J J M A Hendrikx
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Al-Mamgani
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - J B van de Kamer
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - J-J Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - W V Vogel
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands. .,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Brady L, Kriner M, Coleman I, Morrissey C, Roudier M, True LD, Gulati R, Plymate SR, Zhou Z, Birditt B, Meredith R, Geiss G, Hoang M, Beechem J, Nelson PS. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat Commun 2021; 12:1426. [PMID: 33658518 PMCID: PMC7930198 DOI: 10.1038/s41467-021-21615-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/04/2021] [Indexed: 02/08/2023] Open
Abstract
Metastatic prostate cancer (mPC) comprises a spectrum of diverse phenotypes. However, the extent of inter- and intra-tumor heterogeneity is not established. Here we use digital spatial profiling (DSP) technology to quantitate transcript and protein abundance in spatially-distinct regions of mPCs. By assessing multiple discrete areas across multiple metastases, we find a high level of intra-patient homogeneity with respect to tumor phenotype. However, there are notable exceptions including tumors comprised of regions with high and low androgen receptor (AR) and neuroendocrine activity. While the vast majority of metastases examined are devoid of significant inflammatory infiltrates and lack PD1, PD-L1 and CTLA4, the B7-H3/CD276 immune checkpoint protein is highly expressed, particularly in mPCs with high AR activity. Our results demonstrate the utility of DSP for accurately classifying tumor phenotype, assessing tumor heterogeneity, and identifying aspects of tumor biology involving the immunological composition of metastases. The inter- and intra-tumor heterogeneity of metastatic prostate cancer (mPC) is underexplored. Here the authors use Digital Spatial Profiling to study gene and protein expression heterogeneity in 27 mPC patients, finding variation in associated pathways and potential immunotherapy targets.
Collapse
Affiliation(s)
- Lauren Brady
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | - Roman Gulati
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen R Plymate
- University of Washington, Seattle, WA, USA.,VAPSHCS-GRECC, Seattle, WA, USA
| | - Zoey Zhou
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | | | - Gary Geiss
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | | | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,University of Washington, Seattle, WA, USA.
| |
Collapse
|