1
|
Vukadinović A, Ognjanović M, Mijović M, Warren B, Erić S, Prijović Ž. Lignin-Based Nanocarrier for Simultaneous Delivery of 131I and SN-38 in the Combined Treatment of Solid Tumors by a Nanobrachytherapy Approach. Pharmaceuticals (Basel) 2025; 18:177. [PMID: 40005991 PMCID: PMC11859004 DOI: 10.3390/ph18020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The rapid rise in cancer incidence significantly augments efforts to improve cancer treatments. A multimodal approach in the nanobrachytherapy of solid tumors is one of the promising methods under investigation. This study presents a novel biocompatible lignin-based nanomaterial, loaded with cytostatic agent SN-38 and radionuclide 131I, for simultaneous radiation and chemotherapy of solid tumors by a nanobrachytherapy approach. Method: Nanoparticles of ~100 nm in size, composed of lignin alone or loaded with 10% (m/m) of SN-38 (SN-38@lignin), were synthesized using a bottom-up approach and characterized. Subsequent radiolabeling of the nanoparticles by 131I produced 131I-lignin and 131I-SN-38@lignin. Their antitumor efficiency was tested against luciferase-expressing 4T1 mouse breast cancer xenografts of ~100 mm3 size on Balb/c mice. Results: An intratumoral injection of 1.85 MBq of 131I-lignin was retained within the tumor and achieved a moderate twofold decrease in tumor size compared to the control group. Injecting SN-38@lignin containing 25 µg of SN-38 decreased tumor size 3.5-fold. The therapy using the same doses of 131I-SN-38@lignin produced the most potent antitumor effect, with tumors being 6-fold smaller and having extensive intratumoral necrosis, all of it without signs of systemic toxicity. Conclusions: These results support the intratumoral delivery of lignin-based nanomaterial carrying radioisotopes and camptothecins for effective multimodal anticancer therapy.
Collapse
Affiliation(s)
- Aleksandar Vukadinović
- “Vinča” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Miloš Ognjanović
- “Vinča” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Milica Mijović
- Institute of Pathology, Faculty of Medicine, University in Priština-Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Bryce Warren
- Natural State Science LLC, 415 N. McKinley Street, Little Rock, AR 72205, USA
| | - Slavica Erić
- Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Željko Prijović
- “Vinča” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| |
Collapse
|
2
|
Zeng Z, Zheng Y, Yan X, Tao J, Li L, Ding J, Sheng X, Zhu H, Yang Z. On the shoulder of ADC: The development of 124I-IMMU-132, an iodine-124-labelled Trop-2-targeting molecular probe for micro-PET imaging. Biomed Pharmacother 2024; 178:117151. [PMID: 39029403 DOI: 10.1016/j.biopha.2024.117151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Trop-2 is closely related to the development and progression of a variety of tumours and poor prognosis. This study aimed to construct an iodine-124 (124I)-labelled antibody-drug conjugate (ADC) positron emission tomography (PET) probe which could noninvasively image Trop-2 in vivo, providing an important method for the diagnosis of tumours with high Trop-2 expression in clinical practice and monitoring their treatment. METHODS In this study, a novel Trop-2-targeting molecular probe, 124I-IMMU-132, was constructed to better reveal the expression of Trop-2. The targeting and binding abilities of the probe to Trop-2-positive tumours were investigated in Capan-1/MDA-MB-468/Mcf-7 cells and their animal models. RESULTS The constructed 124I-IMMU-132 probe maintained both reliable radiochemical characteristics and binding affinity (Kd = 2.200 nmol/L). The uptake of the probe by Trop-2-positive Capan-1/MDA-MB-468 cells increased in a time-dependent manner. The probe bound specifically to Capan-1/MDA-MB-468 tumours in vivo. The SUVmax Tumour/muscle ratio gradually increased with time, from 4.30 ± 0.55-10.78 ± 1.80 (p < 0.01) in the Capan-1 model and from 8.84 ± 0.95-32.20 ± 2.9 (p < 0.001) in the MDA-MB-468 model. The biodistribution and pharmacokinetics of 124I-IMMU-132 in a mouse model were consistent with the imaging results, and the dosimetry estimation in humans was acceptable. CONCLUSIONS 124I-IMMU-132 PET is a promising imaging technique for delineating Trop-2-positive tumours. It has great potential in early diagnosis and targeted selection of patients that could benefit from its application.
Collapse
Affiliation(s)
- Ziqing Zeng
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yong Zheng
- Department of Proctology, Wuhan Traditional Chinese Medicine Hospital, Wuhan City, Hubei Province, China.
| | - Xieqiao Yan
- Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jinping Tao
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Liqiang Li
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Jin Ding
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xi'nan Sheng
- Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Hua Zhu
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Zhi Yang
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
3
|
Zhou DD, Zhai XT, Zhang LW, Xie ZH, Wang Y, Zhen YS, Gao RJ, Miao QF. A new TROP2-targeting antibody-drug conjugate shows potent antitumor efficacy in breast and lung cancers. NPJ Precis Oncol 2024; 8:94. [PMID: 38654141 DOI: 10.1038/s41698-024-00584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is considered to be an attractive therapeutic target in cancer treatments. We previously generated a new humanized anti-Trop2 antibody named hIMB1636, and designated it as an ideal targeting carrier for cancer therapy. Lidamycin (LDM) is a new antitumor antibiotic, containing an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). AE and LDP can be separated and reassembled, and the reassembled LDM possesses cytotoxicity similar to that of native LDM; this has made LDM attractive in the preparation of gene-engineering drugs. We herein firstly prepared a new fusion protein hIMB1636-LDP composed of hIMB1636 and LDP by genetic engineering. This construct showed potent binding activities to recombinant antigen with a KD value of 4.57 nM, exhibited binding to Trop2-positive cancer cells and internalization and transport to lysosomes, and demonstrated powerful tumor-targeting ability in vivo. We then obtained the antibody-drug conjugate (ADC) hIMB1636-LDP-AE by molecular reconstitution. In vitro, hIMB1636-LDP-AE inhibited the proliferation, migration, and tumorsphere formation of tumor cells with half-maximal inhibitory concentration (IC50) values at the sub-nanomolar level. Mechanistically, hIMB1636-LDP-AE induced apoptosis and cell-cycle arrest. In vivo, hIMB1636-LDP-AE also inhibited the growth of breast and lung cancers in xenograft models. Moreover, compared to sacituzumab govitecan, hIMB1636-LDP-AE showed more potent antitumor activity and significantly lower myelotoxicity in tumors with moderate Trop2 expression. This study fully revealed the potent antitumor efficacy of hIMB1636-LDP-AE, and also provided a new preparation method for LDM-based ADC, as well as a promising candidate for breast cancer and lung cancer therapeutics.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Tian Zhai
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zi-Hui Xie
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Wang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Xu X, Zhang J, Wang T, Li J, Rong Y, Wang Y, Bai C, Yan Q, Ran X, Wang Y, Zhang T, Sun J, Jiang Q. Emerging non-antibody‒drug conjugates (non-ADCs) therapeutics of toxins for cancer treatment. Acta Pharm Sin B 2024; 14:1542-1559. [PMID: 38572098 PMCID: PMC10985036 DOI: 10.1016/j.apsb.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 04/05/2024] Open
Abstract
The non-selective cytotoxicity of toxins limits the clinical relevance of the toxins. In recent years, toxins have been widely used as warheads for antibody‒drug conjugates (ADCs) due to their efficient killing activity against various cancer cells. Although ADCs confer certain targeting properties to the toxins, low drug loading capacity, possible immunogenicity, and other drawbacks also limit the potential application of ADCs. Recently, non-ADC delivery strategies for toxins have been extensively investigated. To further understand the application of toxins in anti-tumor, this paper provided an overview of prodrugs, nanodrug delivery systems, and biomimetic drug delivery systems. In addition, toxins and their combination strategies with other therapies were discussed. Finally, the prospect and challenge of toxins in cancer treatment were also summarized.
Collapse
Affiliation(s)
- Xiaolan Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaming Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tao Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yukang Rong
- School of Education, University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanfang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chenxia Bai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Yan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohua Ran
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingli Wang
- Department of Pharmacy, Linyi People's Hospital, Shandong University, Linyi 276000, China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Pang HL, Lu H, Liu P, Zhang YT, Zhang LT, Ren Q. A chondroitin sulfate purified from shark cartilage and bovine serum albumin interaction activity. Int J Biol Macromol 2024; 260:129499. [PMID: 38262829 DOI: 10.1016/j.ijbiomac.2024.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Chondroitin sulfate (CS) was extracted and purified from shark cartilage, and its interaction with bovine serum albumin (BSA) were studied. The content of chondroitin sulfate in shark cartilage was 29.97 % using the 1,9-dimethyl-methylene blue method. The molecular weight of CS was determined to be 62.464 kDa by high-performance gel permeation chromatography. UV and FT-IR spectroscopy identified the characteristics of CS and its functional group information. NMR spectroscopy and disaccharide derivatization revealed that CS was predominantly composed of disulfated disaccharides, specifically ΔDi4,6S. Fluorescence quenching experiments indicated that the interaction between CS and BSA exhibited static quenching, with a binding site number of 1. The binding process was primarily mediated by van der Waals forces and hydrogen bonds. Furthermore, synchronous and 3D fluorescence spectroscopy demonstrated that CS had minimal impact on the polarity and hydrophobicity of the microenvironment surrounding Tyr and Trp residues. UV-vis absorption and circular dichroism (CD) spectroscopy demonstrated the altered structure of BSA. The molecular docking analysis revealed that CS formed hydrogen bonds and salt bridges with BSA, predominantly binding to the IIA substructure domain of BSA. Investigating the interaction between CS and BSA holds the potential for enhancing its applications in drug delivery and tissue engineering endeavors.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Han Lu
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Peng Liu
- Rizhao Science and Technology Innovation Service Center, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Li-Tao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
6
|
Pal S, G BR, Mohny FP, Choudhury SG, Karmakar A, Gupta S, Ganguli M. Albumin Nanoparticles Surface Decorated with a Tumor-Homing Peptide Help in Selective Killing of Triple-Negative Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46721-46737. [PMID: 37756635 DOI: 10.1021/acsami.3c11561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
In this article, we describe a method of delivery of doxorubicin using a novel tumor-homing peptide-based albumin nanoparticle system to triple-negative breast cancer cells (TNBC). The absence and reduced expression of the hormone (estrogen, progesterone) and HER2 (human epidermal growth factor 2) receptors, respectively, render TNBC patients nonsusceptible to different available targeted therapies. These peptide-modified nanoparticles could be taken up by TNBC cells more effectively than their bare counterparts. The drug-loaded peptide-modified nanoparticles achieved an optimal but crucial balance between cell killing in cancerous cells and cell survival in the noncancerous ones. This appears to be because of different routes of entry and subsequent fate of the bare and peptide-modified nanoparticles in cancerous and noncancerous cells. In a TNBC mouse model, the peptide-modified system fared better than the free drug in mounting an antitumor response while not being toxic systemically.
Collapse
Affiliation(s)
- Simanti Pal
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Betsy Reshma G
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Franklin Pulikkottil Mohny
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | | - Sarika Gupta
- National Institute of Immunology, New Delhi 110067, India
| | - Munia Ganguli
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Yang J, Jia L, He Z, Wang Y. Recent advances in SN-38 drug delivery system. Int J Pharm 2023; 637:122886. [PMID: 36966982 DOI: 10.1016/j.ijpharm.2023.122886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
DNA topoisomerase I plays a key role in lubricatingthe wheels of DNA replication or RNA transcription through breaking and reconnecting DNA single-strand. It is widely known that camptothecin and its derivatives (CPTs) have inhibitory effects on topoisomerases I, and have obtained some clinical benefits in cancer treatment. The potent cytotoxicity makes 7-ethyl-10-hydroxycamptothecin (SN-38) become a brilliant star among these derivatives. However, some undesirable physical and chemical properties of this compound, including poor solubility and stability, seriously hinder its effective delivery to tumor sites. In recent years, strategies to alleviate these defects have aroused extensive research interest. By focusing on the loading mechanism, basic nanodrug delivery systems with SN-38 loaded, like nanoparticles, liposomes and micelles, are demonstrated here. Additionally, functionalized nanodrug delivery systems of SN-38 including prodrug and active targeted nanodrug delivery systems and delivery systems designed to overcome drug resistance are also reviewed. At last, challenges for future research in formulation development and clinical translation of SN-38 drug delivery system are discussed.
Collapse
|
8
|
Rout SK, Priya V, Vikas, Mehata AK, Muthu MS. Abciximab coated albumin nanoparticles of rutin for improved and targeted antithrombotic effect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Zhang S, Dong Y, Chen X, Tan CSH, Li M, Miao K, Lu JH. Toosendanin, a late-stage autophagy inhibitor, sensitizes triple-negative breast cancer to irinotecan chemotherapy. Chin Med 2022; 17:55. [PMID: 35524271 PMCID: PMC9074333 DOI: 10.1186/s13020-022-00605-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/07/2022] [Indexed: 01/18/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that develops resistance to chemotherapy frequently. Autophagy has been reported as a pro-survival response to chemotherapeutic drugs in TNBC, and suppression of autophagy can be a strategy to overcome drug resistance. Methods The efficacy of toosendanin (TSN) in blocking autophagy flux was measured by western blot analysis of autophagy markers, and the fluorescent imaging of RFP-GFP-LC3 probe. The co-localization of autophagosomes and lysosomes was analyzed by fluorescent imaging. Then, lysosome function was determined by measuring the lysosomal pH value and the activity of lysosomal hydrolytic proteases. For in vitro study, human triple-negative breast cancer MDA-MB-231 and MDA-MB-436 cell lines were used for evaluating the anti-proliferative effect. For in vivo study, the RFP-GFP-LC3 MDA-MB-231 xenograft nude mice received intraperitoneal injection of irinotecan (10 mg/kg), TSN (0.5 mg/kg) or a combination, and the autophagy activity and cell apoptosis were determined in tumor tissue. The degree of pathological injury of tissue was evaluated by liver index. Results The natural autophagy inhibitor TSN, a triterpenoid extracted from Melia toosenda Sieb. et Zucc, potently inhibited late-stage autophagy in TNBC cells. This effect was achieved via elevating lysosome pH rather than blocking the fusion of autophagosomes and lysosomes. We further investigated the effects of TSN on the in vitro and in vivo TNBC models, in combination with chemotherapeutic drug irinotecan (or its active metabolite 7-ethyl-10-hydroxycamptothecin), a topoisomerase I inhibitor showing therapeutic potential for TNBC. The data showed that TSN blocked 7-ethyl-10-hydroxycamptothecin (SN-38)/irinotecan-induced protective autophagy, and significantly induced apoptosis in TNBC cells and tumor xenograft models when compared to SN-38/irinotecan alone group. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00605-8.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, 999078, Macau SAR, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, 999078, Macau SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Chris Soon Heng Tan
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kai Miao
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China. .,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
10
|
Li Y, Xie M, Jones JB, Zhang Z, Wang Z, Dang T, Wang X, Lipowska M, Mao H. Targeted Delivery of DNA Topoisomerase Inhibitor SN38 to Intracranial Tumors of Glioblastoma Using Sub-5 Ultrafine Iron Oxide Nanoparticles. Adv Healthc Mater 2022; 11:e2102816. [PMID: 35481625 DOI: 10.1002/adhm.202102816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/07/2022] [Indexed: 11/09/2022]
Abstract
Effectively delivering therapeutics for treating brain tumors is hindered by the physical and biological barriers in the brain. Even with the compromised blood-brain barrier and highly angiogenic blood-tumor barrier seen in glioblastoma (GBM), most drugs, including nanomaterial-based formulations, hardly reach intracranial tumors. This work investigates sub-5 nm ultrafine iron oxide nanoparticles (uIONP) with 3.5 nm core diameter as a carrier for delivering DNA topoisomerase inhibitor 7-ethyl-10-hydroxyl camptothecin (SN38) to treat GBM. Given a higher surface-to-volume ratio, uIONP shows one- or three-folds higher SN38 loading efficiency (48.3 ± 6.1%, mg/mg Fe) than those with core sizes of 10 or 20 nm. SN38 encapsulated in the coating polymer exhibits pH sensitive release with <10% over 48 h at pH 7.4, but 86% at pH 5, thus being protected from converting to inactive glucuronide by UDP-glucuronosyltransferase 1A1. Conjugating αv β3 -integrin-targeted cyclo(Arg-Gly-Asp-D-Phe-Cys) (RGD) as ligands, RGD-uIONP/SN38 demonstrates targeted cytotoxicity to αv β3 -integrin-overexpressed U87MG GBM cells with a half-maximal inhibitory concentration (IC50 ) of 30.9 ± 2.2 nm. The efficacy study using an orthotopic mouse model of GBM reveals tumor-specific delivery of 11.5% injected RGD-uIONP/SN38 (10 mg Fe kg-1 ), significantly prolonging the survival in mice by 41%, comparing to those treated with SN38 alone (p < 0.001).
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
- 5M Biomed, LLC Atlanta GA 30303 USA
| | - Manman Xie
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Joshua B. Jones
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Zhaobin Zhang
- Department of Neurosurgery Emory University Atlanta GA 30329 USA
| | - Zi Wang
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Tu Dang
- Division of Research Philadelphia College of Osteopathic Medicine – Georgia Campus Suwanee GA 30024 USA
| | - Xinyu Wang
- Department of Pharmaceutical Sciences Philadelphia College of Osteopathic Medicine – Georgia Campus Suwanee GA 30024 USA
| | - Malgorzata Lipowska
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| |
Collapse
|
11
|
Yang SJ, Huang HT, Huang CH, Pai JA, Wang CH, Shieh MJ. The synergistic effect of chemo-photothermal therapies in SN-38-loaded gold-nanoshell-based colorectal cancer treatment. Nanomedicine (Lond) 2021; 17:23-40. [PMID: 34918941 DOI: 10.2217/nnm-2021-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: 7-Ethyl-10-hydroxycamptothecin (SN-38)-loaded gold nanoshells nanoparticles (HSP@Au NPs) were developed for combined chemo-photothermal therapy to treat colorectal cancer. Materials & methods: SN-38-loaded nanoparticles (HSP NPs) were prepared by the lyophilization-hydration method, and then developed into gold nanoshells. The nanoparticles were characterized and assessed for photothermal properties, cytotoxicity and hemocompatibility in vitro. In vivo anticancer activity was tested in a tumor mouse model. Results: The HSP@Au NPs (diameter 186.9 nm, zeta potential 33.4 mV) led to significant cytotoxicity in cancer cells exposed to a near-infrared laser. Moreover, the HSP@Au NP-mediated chemo-photothermal therapy displayed significant tumor growth suppression and disappearance (25% of tumor clearance rate) without adverse side effects in vivo. Conclusion: HSP@Au NPs may be promising in the treatment of colorectal cancer in the future.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Hsiao-Ting Huang
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Jui-An Pai
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Chung-Hao Wang
- Gene'e Tech Co. Ltd. 2F., No. 661, Bannan Rd., Zhonghe District, New Taipei City, 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan.,Department of Oncology, National Taiwan University Hospital & College of Medicine, Taipei, 100, Taiwan
| |
Collapse
|
12
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021; 610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
Cancer is the prime cause of mortality throughout the world. Although the conventional chemotherapeutic agents damage the cancerous cells, they exert prominent injury to the normal cells owing to their lack of specificity. With advances in science, many research studies have been established to boost the cytotoxic effect of the chemotherapeutic agents via innovating novel nano-formulations having different variables. In the current meta-analysis study, combined data from different research articles were gathered for the evidence-based proof of the superiority of drug loaded nanocarriers over their corresponding conventional solutions in boosting the cytotoxic effect of chemotherapy in terms of IC50 values. The meta-analysis was subdivided into three subgroups; nanoparticles versus nanofibers, surface functionalized nanocarriers versus naked ones, and protein versus non-protein-based platforms. The different subgroups interestingly showed distinct scoring outcome data paving the road for cytotoxicity enhancement of the anti-cancer drugs in an evidence-based manner.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt.
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
13
|
Suo J, Zhong X, He P, Zheng H, Tian T, Yan X, Luo T. A Retrospective Analysis of the Effect of Irinotecan-Based Regimens in Patients With Metastatic Breast Cancer Previously Treated With Anthracyclines and Taxanes. Front Oncol 2021; 11:654974. [PMID: 34881172 PMCID: PMC8645637 DOI: 10.3389/fonc.2021.654974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Background At present, patients with metastatic breast cancer (MBC) have few treatment options after receiving anthracyclines and taxanes. Studies have shown that irinotecan has modest systemic activity in some patients previously treated with anthracyclines and taxanes. This study aimed to evaluate the efficacy of irinotecan-based chemotherapy for breast cancer patients in a metastatic setting. Methods We retrospectively collected the clinical information and survival data of 51 patients with MBC who received irinotecan at West China Hospital of Sichuan University. The primary endpoints were the progression free survival (PFS) and overall survival (OS), and the secondary endpoint was the objective response rate (ORR). To minimize potential confounding factors, we matched 51 patients who received third-line chemotherapy without irinotecan through propensity score matching (PSM) based on age, hormone receptor (HR), and human epidermal growth factor receptor 2 (HER2), compared their OS and PFS rates to those treated with irinotecan. Results From July 2012 to October 2020, 51 patients were treated with an irinotecan-containing regimen. The median number of previous treatment lines was 4, and a median of two previous chemotherapy cycles (ranging from 1–14 cycles) were given in a salvage line setting. The ORR was 15.7%, and the disease control rate (DCR) was 37.3%. For the irinotecan group, the median PFS was 3.2 months (95% CI 2.7–3.7), while the median OS was 33.1 months (95% CI 27.9–38.3). Univariate analysis results suggested that irinotecan could improve PFS in patients with visceral metastasis (P=0.031), which was 0.7 months longer than patients without visceral metastasis (3.5 months vs. 2.8 months). Compared to the patients who received third-line non-irinotecan chemotherapy, the irinotecan group showed a longer trend of PFS without statistical significance (3.2 months vs 2.1 months, P = 0.052). Similarly, the OS of the irinotecan group was longer than the third-line survival without irinotecan, but it was not statistically significant (33.1 months vs 18.0 months, P = 0.072). Conclusions For MBC patients who were previously treated with anthracyclines and/or taxanes, an irinotecan-containing regimen achieved moderate objective response and showed a trend of survival benefit, which deserves further study.
Collapse
Affiliation(s)
- Jiaojiao Suo
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaorong Zhong
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Ping He
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zheng
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Tinglun Tian
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yan
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Luo
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Molecular Diagnosis of Cancer, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Oh JH, Kang RH, Kim J, Bang EK, Kim D. Thermally induced silane dehydrocoupling on porous silicon nanoparticles for ultra-long-acting drug release. NANOSCALE 2021; 13:15560-15568. [PMID: 34596178 DOI: 10.1039/d1nr03263a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report an ultra-long-acting drug release nano-formulation based on porous silicon nanoparticles (pSiNPs) that are prepared by thermally induced silane dehydrocoupling and lipid-coating. This robust formulation offers the ability to release an anticancer drug, for up to 2 weeks, in various biological environments; pH 7.4 buffer, cancer cells, and tumor xenograft model.
Collapse
Affiliation(s)
- Ji Hyeon Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jaehoon Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Eun-Kyoung Bang
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021; 337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Triple negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC) are amongst the most aggressive forms of solid tumors. TNBC is highlighted by absence of genetic components of progesterone receptor, HER2/neu and estrogen receptor in breast cancer. NSCLC is characterized by integration of malignant carcinoma into respiratory system. Both cancers are associated with poor median and overall survival rates with low progression free survival with high incidences of relapse. These cancers are characterized by tumor heterogeneity, genetic mutations, generation of cancer-stem cells, immune-resistance and chemoresistance. Further, these neoplasms have been reported for tumor cross-talk into second primary cancers for each other. Current chemotherapeutic regimens include usage of multiple agents in tandem to affect tumor cells through multiple mechanisms with various such combinations being clinically tested. However, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Consequently, passive targeted albumin bound paclitaxel and PEGylated liposomal doxorubicin have been clinically used and tested with newer drugs for improved therapeutic efficacy in these cancers. Active targeting of nanocarriers against surface overexpressed proteins in both neoplasms have been explored. However, use of single agent nanoparticulate formulations against both cancers have failed to elicit desired outcomes. This review aims to identify clinical unmet need in these cancers while establishing a correlation with tested nano-formulation approaches and issues with preclinical to clinical translation. Lipid and polymer-based drug-drug and drug-gene combinatorial nanocarriers delivering multiple chemotherapeutics simultaneously to desired site of action have been detailed. Finally, emerging opportunities such as pharmacological targets (immune check point and epigentic modulators) as well as gene-based modulation (siRNA/CRISPR/Cas9) and the nano-formulation challenges for effective treatment of both cancers have been explored.
Collapse
|
16
|
Park T, Lee S, Amatya R, Cheong H, Moon C, Kwak HD, Min KA, Shin MC. ICG-Loaded PEGylated BSA-Silver Nanoparticles for Effective Photothermal Cancer Therapy. Int J Nanomedicine 2020; 15:5459-5471. [PMID: 32801700 PMCID: PMC7406329 DOI: 10.2147/ijn.s255874] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Indocyanine green (ICG), a near infrared (NIR) dye clinically approved in medical diagnostics, possesses great heat conversion efficiency, which renders itself as an effective photosensitizer for photothermal therapy (PTT) of cancer. However, there remain bottleneck challenges for use in PTT, which are the poor photo and plasma stability of ICG. To address these problems, in this research, ICG-loaded silver nanoparticles were prepared and evaluated for the applicability as an effective agent for photothermal cancer therapy. Methods and Results PEGylated bovine serum albumin (BSA)-coated silver core/shell nanoparticles were synthesized with a high loading of ICG (“PEG-BSA-AgNP/ICG”). Physical characterization was carried out using size analyzer, transmission electron microscopy, and Fourier transform infrared spectrophotometry to identify successful preparation and size stability. ICG-loading content and the photothermal conversion efficiency of the particles were confirmed with inductively coupled plasma mass spectrometry and laser instruments. In vitro studies showed that the PEG-BSA-AgNP/ICG could provide great photostability for ICG, and their applicability for PTT was verified from the cellular study results. Furthermore, when the PEG-BSA-AgNP/ICG were tested in vivo, study results exhibited that ICG could stably remain in the blood circulation for a markedly long period (plasma half-life: 112 min), and about 1.7% ID/g tissue could be accumulated in the tumor tissue at 4 h post-injection. Such nanoparticle accumulation in the tumor enabled tumor surface temperature to be risen to 50°C (required for photo-ablation) by laser irradiation and led to successful inhibition of tumor growth in the B16F10 s.c. syngeneic nude mice model, with minimal systemic toxicity. Conclusion Our findings demonstrated that PEG-BSA-AgNPs could serve as effective carriers for delivering ICG to the tumor tissue with great stability and safety.
Collapse
Affiliation(s)
- Taehoon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sumi Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Heesun Cheong
- Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi-do 10408, Republic of Korea
| | - Cheol Moon
- College of Pharmacy, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Hyun Duck Kwak
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, Busanjin-gu, Busan 47392, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| |
Collapse
|
17
|
Zacheo A, Bizzarro L, Blasi L, Piccirillo C, Cardone A, Gigli G, Ragusa A, Quarta A. Lipid-Based Nanovesicles for Simultaneous Intracellular Delivery of Hydrophobic, Hydrophilic, and Amphiphilic Species. Front Bioeng Biotechnol 2020; 8:690. [PMID: 32719782 PMCID: PMC7350901 DOI: 10.3389/fbioe.2020.00690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid nanovesicles (NVs) are the first nanoformulation that entered the clinical use in oncology for the treatment of solid tumors. They are indeed versatile systems which can be loaded with either hydrophobic or hydrophilic molecules, for both imaging and drug delivery, and with high biocompatibility, and limited immunogenicity. In the present work, NVs with a lipid composition resembling that of natural vesicles were prepared using the ultrasonication method. The NVs were successfully loaded with fluorophores molecules (DOP-F-DS and a fluorescent protein), inorganic nanoparticles (quantum dots and magnetic nanoparticles), and anti-cancer drugs (SN-38 and doxorubicin). The encapsulation of such different molecules showed the versatility of the developed systems. The size of the vesicles varied from 100 up to 300 nm depending on the type of loaded species, which were accommodated either into the lipid bilayer or into the aqueous core according to their hydrophobic or hydrophilic nature. Viability assays were performed on cellular models of breast cancer (MCF-7 and MDA-MB-231). Results showed that NVs with encapsulated both drugs simultaneously led to a significant reduction of the cellular activity (up to 22%) compared to the free drugs or to the NVs encapsulated with only one drug. Lipidomic analysis suggested that the mechanism of action of the drugs is the same, whether they are free or encapsulated, but administration of the drugs by means of nanovesicles is more efficient in inducing cellular damage, likely because of a quicker internalization and a sustained release. This study confirms the versatility and the potential of lipid NVs for cancer treatment, as well as the validity of the ultrasound preparation method for their preparation.
Collapse
Affiliation(s)
- Antonella Zacheo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Luca Bizzarro
- Dipartimento di Scienze Biomolecolari (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Blasi
- CNR, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - Clara Piccirillo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Antonio Cardone
- Institute of Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Council of Research-CNR, Bari, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy.,Department of Mathematics and Physics E. de Giorgi, University of Salento, Campus Ecotekne, Lecce, Italy
| | - Andrea Ragusa
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy.,Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessandra Quarta
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| |
Collapse
|