1
|
Ohki S, Fukuda M, Baba T, Wakayama N, Morio H, Ito S, Ohtsuki S, Yamaura Y, Komori T, Furihata T. Functional assessment of immortalized human brain microvascular endothelial cells with different passage numbers: A case study for a prospective proposal on variability management of in vitro blood-brain barrier models. Drug Metab Pharmacokinet 2025; 62:101058. [PMID: 40184994 DOI: 10.1016/j.dmpk.2025.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/07/2025]
Abstract
In vitro blood-brain barrier (BBB) models, primarily consisting of brain microvascular endothelial cells (BMEC), are expected to play pivotal roles in evaluating drug permeability into the brain. However, these models often exhibit functional variability due to various factors, raising practical concerns that can hinder their use in drug development studies. By investigating cell passage numbers as one such factor, we aim to assess how BBB model functionality is affected and to propose a practical strategy for managing this variability. In transwell-BBB models - but not in spheroidal-BBB models - the intercellular barrier integrity was somewhat compromised when higher-passage human immortalized BMEC (HBMEC/ci18) were used. Nonetheless, a clear in vitro-in vivo correlation (IVIVC) curve could still be obtained with these transwell-BBB models, similar to those with lower passage number HBMEC/ci18, presumably allowing for reasonable estimation of in vivo drug permeability. Therefore, changes in functional levels of BBB models do not always significantly diminish their practical value in drug BBB permeability studies. Additionally, the IVIVC curve integrity may serve as an indicator for assessing acceptable BBB model functionality. These findings provide valuable insights for the future application of in vitro human BBB models in drug development studies.
Collapse
Affiliation(s)
- Seiya Ohki
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Mei Fukuda
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Tomoyo Baba
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Naomi Wakayama
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, 300-2635, Japan
| | - Hanae Morio
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yoshiyuki Yamaura
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, 618-8585, Japan
| | - Takafumi Komori
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co. Ltd., Ibaraki, 300-2635, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy & Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan; Laboratory of Advanced Drug Development Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan.
| |
Collapse
|
2
|
Qiu H, Zhang M, Chen C, Wang H, Yue X. Decreasing β-Catenin Leads to Altered Endothelial Morphology, Increased Barrier Permeability and Cognitive Impairment During Chronic Methamphetamine Exposure. Int J Mol Sci 2025; 26:1514. [PMID: 40003980 PMCID: PMC11854931 DOI: 10.3390/ijms26041514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Cognitive impairment induced by chronic methamphetamine (METH) exposure exhibits similarities to neurodegenerative disorders and is associated with blood-brain barrier (BBB) dysfunction. However, the potential involvement of β-catenin in maintaining BBB integrity during METH exposure remains unexplored. In this study, Y-maze and novel object recognition tests were conducted to assess cognitive impairment in mice exposed chronically to methamphetamine for 2 and 4 weeks. Gd-DTPA and Evans blue leakage tests revealed disruption of the BBB in the hippocampus, while chronic METH exposure for 2 and 4 weeks significantly decreased β-catenin levels along with its transcriptionally regulated protein, claudin5. Additionally, various neural injury-related proteins, such as APP, Aβ1-42, p-tau (Thr181) and p-tau (Ser396), as well as neuroinflammation-related proteins, such as IL-6, IL-1β, and TNF-α, exhibited increased levels following chronic METH exposure. Furthermore, plasma analysis indicated elevated levels of p-Tau (total), neurofilament light chain, and GFAP. In vitro experiments demonstrated that exposure to METH resulted in dose-dependent and time-dependent reductions in cellular activity and connectivity of bEnd.3 and hcmec/D3 cells. Furthermore, β-catenin exhibited decreased levels and altered subcellular localization, transitioning from the cell membrane to the cytoplasm and nucleus upon METH exposure. Overexpression of β-catenin was found to alleviate endothelial toxicity and attenuate junctional weakening induced by METH. The aforementioned findings underscore the crucial involvement of β-catenin in endothelial cells during chronic METH exposure-induced disruption of the BBB, thereby presenting a potential novel target for addressing METH-associated cerebrovascular dysfunction and cognitive impairment.
Collapse
Affiliation(s)
| | | | | | - Huijun Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
| |
Collapse
|
3
|
Youssef JR, Boraie NA, Ismail FA, Bakr BA, Allam EA, El-Moslemany RM. Brain targeted lactoferrin coated lipid nanocapsules for the combined effects of apocynin and lavender essential oil in PTZ induced seizures. Drug Deliv Transl Res 2025; 15:534-555. [PMID: 38819768 PMCID: PMC11683025 DOI: 10.1007/s13346-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
Apocynin (APO) is a plant derived antioxidant exerting specific NADPH oxidase inhibitory action substantiating its neuroprotective effects in various CNS disorders, including epilepsy. Due to rapid elimination and poor bioavailability, treatment with APO is challenging. Correspondingly, novel APO-loaded lipid nanocapsules (APO-LNC) were formulated and coated with lactoferrin (LF-APO-LNC) to improve br ain targetability and prolong residence time. Lavender oil (LAV) was incorporated into LNC as a bioactive ingredient to act synergistically with APO in alleviating pentylenetetrazol (PTZ)-induced seizures. The optimized LF-APO-LAV/LNC showed a particle size 59.7 ± 4.5 nm with narrow distribution and 6.07 ± 1.6mV zeta potential) with high entrapment efficiency 92 ± 2.4% and sustained release (35% in 72 h). Following subcutaneous administration, LF-APO-LAV/LNC brought about ⁓twofold increase in plasma AUC and MRT compared to APO. A Log BB value of 0.2 ± 0.14 at 90 min reflects increased brain accumulation. In a PTZ-induced seizures rat model, LF-APO-LAV/LNC showed a Modified Racine score of 0.67 ± 0.47 with a significant increase in seizures latency and decrease in duration. Moreover, oxidant/antioxidant capacity and inflammatory markers levels in brain tissue were significantly improved. Histopathological and immunohistochemical assessment of brain tissue sections further supported these findings. The results suggest APO/LAV combination in LF-coated LNC as a promising approach to counteract seizures.
Collapse
Affiliation(s)
- Julie R Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Nabila A Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Fatma A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21523, Egypt
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
4
|
Wasielewska JM, Szostak K, McInnes LE, Quek H, Chaves JCS, Liddell JR, Koistinaho J, Oikari LE, Donnelly PS, White AR. Patient-Derived Blood-Brain Barrier Model for Screening Copper Bis(thiosemicarbazone) Complexes as Potential Therapeutics in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1432-1455. [PMID: 38477556 DOI: 10.1021/acschemneuro.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Kathryn Szostak
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan E McInnes
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hazel Quek
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jari Koistinaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki 00014,Finland
- Neuroscience Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Paul S Donnelly
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| |
Collapse
|
5
|
Singh S, Agrawal M, Vashist R, Patel RK, Sangave SD, Alexander A. Recent advancements on in vitro blood-brain barrier model: A reliable and efficient screening approach for preclinical and clinical investigation. Expert Opin Drug Deliv 2023; 20:1839-1857. [PMID: 38100459 DOI: 10.1080/17425247.2023.2295940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION The efficiency of brain therapeutics is greatly hindered by the blood-brain barrier (BBB). BBB's protective function, selective permeability, and dynamic functionality maintain the harmony between the brain and peripheral region. Thus, the design of any novel drug carrier system requires the complete study and investigation of BBB permeability, efflux transport, and the effect of associated cellular and non-vascular unit trafficking on BBB penetrability. The in vitro BBB models offer a most promising, and reliable mode of initial investigation of BBB permeability and associated factors as strong evidence for further preclinical and clinical investigation. AREA COVERED This review work covers the structure and functions of BBB components and different types of in vitro BBB models along with factors affecting BBB model development and model selection criteria. EXPERT OPINION In vivo models assume to reciprocate the physiological environment to the maximum extent. However, the interspecies variability, NVUs trafficking, dynamic behavior of BBB, etc., lead to non-reproducible results. The in vitro models are comparatively less complex, and flexible, as per the study design, could generate substantial evidence and help identify suitable in vivo animal model selection.
Collapse
Affiliation(s)
- Snigdha Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Mukta Agrawal
- School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies, Mahbubnagar, India
| | - Rajat Vashist
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Rohit K Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | | | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| |
Collapse
|
6
|
Petrovskaya AV, Barykin EP, Tverskoi AM, Varshavskaya KB, Mitkevich VA, Petrushanko IY, Makarov AA. Blood–Brain Barrier Transwell Modeling. Mol Biol 2022. [DOI: 10.1134/s0026893322060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Nicolicht-Amorim P, Delgado-Garcia LM, Nakamura TKE, Courbassier NR, Mosini AC, Porcionatto MA. Simple and efficient protocol to isolate and culture brain microvascular endothelial cells from newborn mice. Front Cell Neurosci 2022; 16:949412. [PMID: 36313615 PMCID: PMC9606660 DOI: 10.3389/fncel.2022.949412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 10/09/2023] Open
Abstract
The neurovascular unit (NVU) is a multicellular structure comprising of neurons, glial cells, and non-neural cells, and it is supported by a specialized extracellular matrix, the basal lamina. Astrocytes, brain microvascular endothelial cells (BMECs), pericytes, and smooth muscle cells constitute the blood-brain barrier (BBB). BMECs have a mesodermal origin and invade the nervous system early in neural tube development, forming the BBB anatomical core. BMECs are connected by adherent junction complexes composed of integral membrane and cytoplasmic proteins. In vivo and in vitro studies have shown that, given the proximity and relationship with neural cells, BMECs acquire a unique gene expression profile, proteome, and specific mechanical and physical properties compared to endothelial cells from the general vasculature. BMECs are fundamental in maintaining brain homeostasis by regulating transcellular and paracellular transport of fluids, molecules, and cells. Therefore, it is essential to gain in-depth knowledge of the dynamic cellular structure of the cells in the NVU and their interactions with health and disease. Here we describe a significantly improved and simplified protocol using C57BL/6 newborn mice at postnatal day 1 (PND1) to isolate, purify, and culture BMECs monolayers in two different substrates (glass coverslips and transwell culture inserts). In vitro characterization and validation of the BMEC primary culture monolayers seeded on glass or insert included light microscopy, immunolabeling, and gene expression profile. Transendothelial electrical resistance (TEER) measurement and diffusion test were used as functional assays for adherent junction complexes and integrity and permeability of BMECs monolayers. The protocol presented here for the isolation and culture of BMECs is more straightforward than previously published protocols and yields a high number of purified cells. Finally, we tested BMECs function using the oxygen-glucose deprivation (OGD) model of hypoxia. This protocol may be suitable as a bioscaffold for secondary cell seeding allowing the study and better understanding of the NVU.
Collapse
Affiliation(s)
- Priscila Nicolicht-Amorim
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lina M. Delgado-Garcia
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Natália Rodrigues Courbassier
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda Cristina Mosini
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marimelia A. Porcionatto
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Zhong C, Wanasathop A, Shi Z, Ananthapadmanabhan K, Li SK. Evaluation of in vitro cornea models for quantifying destructive effects of chemicals. Toxicol In Vitro 2022; 85:105462. [PMID: 36031007 DOI: 10.1016/j.tiv.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
Abstract
In vitro models are available as alternatives for the Draize eye irritation test. However, most of the alternative models are not quantitative nor designed to evaluate the effects of chemicals on the corneal barrier such as those encountered in pharmaceutical and cosmetic products. The objective of the present study was to investigate tissue electrical resistance to provide sensitive in vitro testing of tissue alteration caused by chemicals in pharmaceutical and cosmetic formulations as a potential eye irritation testing approach. The experimental protocols for effective tissue resistance measurements were examined using two in vitro eye models: porcine cornea and EpiCorneal. In these models, a test chemical was applied to the cornea or EpiCorneal tissue for 1 min, and tissue resistances/conductances were measured at 1-60 min after the application. The changes in conductance of the tissues after exposure to the chemicals were shown to provide quantitative evaluations to the influence of the chemicals. A correlation was found between the two in vitro models. The results suggest that these models can provide quantitative in vitro assessments of chemical formulations such as those prepared by eye-irritating chemicals.
Collapse
Affiliation(s)
- Cheng Zhong
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - Apipa Wanasathop
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - Kavssery Ananthapadmanabhan
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - S Kevin Li
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America.
| |
Collapse
|
9
|
Schreiner TG, Creangă-Murariu I, Tamba BI, Lucanu N, Popescu BO. In Vitro Modeling of the Blood–Brain Barrier for the Study of Physiological Conditions and Alzheimer’s Disease. Biomolecules 2022; 12:biom12081136. [PMID: 36009030 PMCID: PMC9405874 DOI: 10.3390/biom12081136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential structure for the maintenance of brain homeostasis. Alterations to the BBB are linked with a myriad of pathological conditions and play a significant role in the onset and evolution of neurodegenerative diseases, including Alzheimer’s disease. Thus, a deeper understanding of the BBB’s structure and function is mandatory for a better knowledge of neurodegenerative disorders and the development of effective therapies. Because studying the BBB in vivo imposes overwhelming difficulties, the in vitro approach remains the main possible way of research. With many in vitro BBB models having been developed over the last years, the main aim of this review is to systematically present the most relevant designs used in neurological research. In the first part of the article, the physiological and structural–functional parameters of the human BBB are detailed. Subsequently, available BBB models are presented in a comparative approach, highlighting their advantages and limitations. Finally, the new perspectives related to the study of Alzheimer’s disease with the help of novel devices that mimic the in vivo human BBB milieu gives the paper significant originality.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
- Correspondence:
| | - Ioana Creangă-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Nicolae Lucanu
- Department of Applied Electronics and Intelligent Systems, Faculty of Electronics, Telecommunications and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
10
|
Gagliardi S, Truffi M, Tinelli V, Garofalo M, Pandini C, Cotta Ramusino M, Perini G, Costa A, Negri S, Mazzucchelli S, Bonizzi A, Sitia L, Busacca M, Sevieri M, Mocchi M, Ricciardi A, Prosperi D, Corsi F, Cereda C, Morasso C. Bisdemethoxycurcumin (BDC)-Loaded H-Ferritin-Nanocages Mediate the Regulation of Inflammation in Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:9237. [PMID: 36012501 PMCID: PMC9409287 DOI: 10.3390/ijms23169237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bisdemethoxycurcumin (BDC) might be an inflammation inhibitor in Alzheimer's Disease (AD). However, BDC is almost insoluble in water, poorly absorbed by the organism, and degrades rapidly. We thus developed a new nanoformulation of BDC based on H-Ferritin nanocages (BDC-HFn). METHODS We tested the BDC-HFn solubility, stability, and ability to cross a blood-brain barrier (BBB) model. We tested the effect of BDC-HFn on AD and control (CTR) PBMCs to evaluate the transcriptomic profile by RNA-seq. RESULTS We developed a nanoformulation with a diameter of 12 nm to improve the solubility and stability. The comparison of the transcriptomics analyses between AD patients before and after BDC-HFn treatment showed a major number of DEG (2517). The pathway analysis showed that chemokines and macrophages activation differed between AD patients and controls after BDC-HFn treatment. BDC-HFn binds endothelial cells from the cerebral cortex and crosses through a BBB in vitro model. CONCLUSIONS Our data showed how BDC-Hfn could improve the stability of BDC. Significant differences in genes associated with inflammation between the same patients before and after BDC-Hfn treatment have been found. Inflammatory genes that are upregulated between AD and CTR after BDC-HFn treatment are converted and downregulated, suggesting a possible therapeutic approach.
Collapse
Affiliation(s)
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
| | - Veronica Tinelli
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, Italy
| | | | | | | | | | - Alfredo Costa
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sara Negri
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | - Arianna Bonizzi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | - Leopoldo Sitia
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | | | - Marta Sevieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | - Michela Mocchi
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
| | | | - Davide Prosperi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | | | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
| |
Collapse
|
11
|
Sun J, Ou W, Han D, Paganini-Hill A, Fisher MJ, Sumbria RK. Comparative studies between the murine immortalized brain endothelial cell line (bEnd.3) and induced pluripotent stem cell-derived human brain endothelial cells for paracellular transport. PLoS One 2022; 17:e0268860. [PMID: 35613139 PMCID: PMC9132315 DOI: 10.1371/journal.pone.0268860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023] Open
Abstract
Brain microvascular endothelial cells, forming the anatomical site of the blood-brain barrier (BBB), are widely used as in vitro complements to in vivo BBB studies. Among the immortalized cells used as in vitro BBB models, the murine-derived bEnd.3 cells offer culturing consistency and low cost and are well characterized for functional and transport assays, but result in low transendothelial electrical resistance (TEER). Human-induced pluripotent stem cells differentiated into brain microvascular endothelial cells (ihBMECs) have superior barrier properties, but the process of differentiation is time-consuming and can result in mixed endothelial-epithelial gene expression. Here we performed a side-by-side comparison of the ihBMECs and bEnd.3 cells for key paracellular diffusional transport characteristics. The TEER across the ihBMECs was 45- to 68-fold higher than the bEnd.3 monolayer. The ihBMECs had significantly lower tracer permeability than the bEnd.3 cells. Both, however, could discriminate between the paracellular permeabilities of two tracers: sodium fluorescein (MW: 376 Da) and fluorescein isothiocyanate (FITC)-dextran (MW: 70 kDa). FITC-dextran permeability was a strong inverse-correlate of TEER in the bEnd.3 cells, whereas sodium fluorescein permeability was a strong inverse-correlate of TEER in the ihBMECs. Both bEnd.3 cells and ihBMECs showed the typical cobblestone morphology with robust uptake of acetylated LDL and strong immuno-positivity for vWF. Both models showed strong claudin-5 expression, albeit with differences in expression location. We further confirmed the vascular endothelial- (CD31 and tube-like formation) and erythrophagocytic-phenotypes and the response to inflammatory stimuli of ihBMECs. Overall, both bEnd.3 cells and ihBMECs express key brain endothelial phenotypic markers, and despite differential TEER measurements, these in vitro models can discriminate between the passage of different molecular weight tracers. Our results highlight the need to corroborate TEER measurements with different molecular weight tracers and that the bEnd.3 cells may be suitable for large molecule transport studies despite their low TEER.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
| | - Weijun Ou
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
| | - Derick Han
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States of America
| | - Annlia Paganini-Hill
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
| | - Mark J. Fisher
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Charoensaensuk V, Chen YC, Lin YH, Ou KL, Yang LY, Lu DY. Porphyromonas gingivalis Induces Proinflammatory Cytokine Expression Leading to Apoptotic Death through the Oxidative Stress/NF-κB Pathway in Brain Endothelial Cells. Cells 2021; 10:3033. [PMID: 34831265 PMCID: PMC8616253 DOI: 10.3390/cells10113033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, has been proposed to cause blood vessel injury leading to cerebrovascular diseases such as stroke. Brain endothelial cells compose the blood-brain barrier that protects homeostasis of the central nervous system. However, whether P. gingivalis causes the death of endothelial cells and the underlying mechanisms remain unclear. This study aimed to investigate the impact and regulatory mechanisms of P. gingivalis infection in brain endothelial cells. We used bEnd.3 cells and primary mouse endothelial cells to assess the effects of P. gingivalis on endothelial cells. Our results showed that infection with live P. gingivalis, unlike heat-killed P. gingivalis, triggers brain endothelial cell death by inducing cell apoptosis. Moreover, P. gingivalis infection increased intracellular reactive oxygen species (ROS) production, activated NF-κB, and up-regulated the expression of IL-1β and TNF-α. Furthermore, N-acetyl-L-cysteine (NAC), a most frequently used antioxidant, treatment significantly reduced P. gingivalis-induced cell apoptosis and brain endothelial cell death. The enhancement of ROS production, NF-κB p65 activation, and proinflammatory cytokine expression was also attenuated by NAC treatment. The impact of P. gingivalis on brain endothelial cells was also confirmed using adult primary mouse brain endothelial cells (MBECs). In summary, our results showed that P. gingivalis up-regulates IL-1β and TNF-α protein expression, which consequently causes cell death of brain endothelial cells through the ROS/NF-κB pathway. Our results, together with the results of previous case-control studies and epidemiologic reports, strongly support the hypothesis that periodontal infection increases the risk of developing cerebrovascular disease.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (V.C.); (Y.-H.L.)
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yun-Ho Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (V.C.); (Y.-H.L.)
| | - Keng-Liang Ou
- 3D Global Biotech Inc., New Taipei City 22175, Taiwan;
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 40447, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
13
|
Amiri P, DeCastro J, Littig J, Lu H, Liu C, Conboy I, Aran K. Erythrocytes, a New Contributor to Age-Associated Loss of Blood-Brain Barrier Integrity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101912. [PMID: 34396716 PMCID: PMC8529433 DOI: 10.1002/advs.202101912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Indexed: 05/06/2023]
Abstract
Blood exchanges between young and old partners demonstrate old blood has a detrimental effect on brain health of young animals. Previous studies primarily investigate soluble blood factors, such as transforming growth factor-beta, on the brain and the blood-brain barrier (BBB). However, the role of blood cellular components, particularly erythrocytes, has not been defined. Erythrocyte morphology and rigidity change as mammals age, altering their transport within the capillary bed. This impacts downstream biological events, such as the release of reactive oxygen species and hemoglobin, potentially compromising the BBB. Here, a micro electrical BBB (µE-BBB), with cocultured endothelial and astrocytic cells, and a built-in trans-endothelial electrical resistance (TEER) system is described to monitor the effect of capillary shear stress on erythrocytes derived from young and old mice and people and the subsequent effects of these cells on BBB integrity. This is monitored by the passage of fluorescein isothiocyanate-dextran and real-time profiling of TEER across the BBB after old and young erythrocyte exposure. Compared to young erythrocytes, old erythrocytes induce an increased permeability by 42% and diminished TEER by 2.9% of the µE-BBB. These results suggest that changes in circulating erythrocytes are a biomarker of aging in the context of BBB integrity.
Collapse
Affiliation(s)
- Payam Amiri
- Henry E. Riggs School of Applied Life SciencesKeck Graduate InstituteClaremontCA91711USA
| | - Jonalyn DeCastro
- Henry E. Riggs School of Applied Life SciencesKeck Graduate InstituteClaremontCA91711USA
| | - Joshua Littig
- Henry E. Riggs School of Applied Life SciencesKeck Graduate InstituteClaremontCA91711USA
| | - Hsiang‐Wei Lu
- Henry E. Riggs School of Applied Life SciencesKeck Graduate InstituteClaremontCA91711USA
| | - Chao Liu
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Irina Conboy
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Kiana Aran
- Henry E. Riggs School of Applied Life SciencesKeck Graduate InstituteClaremontCA91711USA
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyCA94720USA
| |
Collapse
|
14
|
Kim MH, Kim D, Sung JH. A Gut-Brain Axis-on-a-Chip for studying transport across epithelial and endothelial barriers. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
de Castro RR, do Carmo FA, Martins C, Simon A, de Sousa VP, Rodrigues CR, Cabral LM, Sarmento B. Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. Int J Pharm 2021; 602:120655. [PMID: 33915184 DOI: 10.1016/j.ijpharm.2021.120655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Central nervous system tuberculosis (CNS-TB) is the most severe form of the disease especially due to the inability of therapeutics to cross the blood-brain barrier (BBB). Clofazimine (CFZ) stands out for presenting high in vitro activity against multi-drug resistant strains of Mycobacterium tuberculosis, however, CFZ physicochemical and pharmacokinetics properties limit drug penetration into the CNS and, consequently, its clinical use. The aim of this work was to develop polymeric nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) loaded with CFZ and functionalized with a transferrin receptor (TfR)-binding peptide, aiming brain drug delivery for CNS-TB treatment by the intravenous route. The poor water solubility and high lipophilicity of CFZ was overcome through its entrapment into PLGA-PEG NPs manufactured by both conventional and microfluidic techniques using the nanoprecipitation principle. In vitro studies in brain endothelial hCMEC/D3 cells demonstrated that CFZ incorporation into the NPs was advantageous to reduce drug cytotoxicity. The TfR-binding peptide-functionalized NPs showed superior cell interaction and higher CFZ permeability across hCMEC/D3 cell monolayers compared to the non-functionalized NP control, thus indicating the efficacy of the functionalization strategy on providing CFZ transport through the BBB in vitro. The functionalized NPs demonstrate suitability for CFZ biological administration, suggested with low plasma protein binding, off-target biodistribution and precise delivery of CFZ towards the brain parenchyma.
Collapse
Affiliation(s)
- Renata Ribeiro de Castro
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil; Laboratory of Molecular Pharmacology, Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation, Rua Sizenando Nabuco 100, 21041-250 Rio de Janeiro, Brazil
| | - Flavia Almada do Carmo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Cláudia Martins
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Carlos Rangel Rodrigues
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
16
|
Lin Q, Wang W, Yang L, Duan X. 4-Methoxybenzylalcohol protects brain microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced injury via activation of the PI3K/AKT signaling pathway. Exp Ther Med 2021; 21:252. [PMID: 33613705 PMCID: PMC7856387 DOI: 10.3892/etm.2021.9684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 11/07/2022] Open
Abstract
Damage to the blood-brain barrier (BBB) during the process of cerebral ischemic injury is a key factor that affects the treatment of this condition. The present study aimed to assess the potential effects of 4-methoxybenzyl alcohol (4-MA) on brain microvascular endothelial cells (bEnd.3) against oxygen-glucose deprivation/reperfusion (OGD/Rep) using an in vitro model that mimics in vivo ischemia/reperfusion injury. In addition, the present study aimed to explore whether this underlying mechanism was associated with the inhibition of pro-inflammatory factors and the activation status of the PI3K/Akt signaling pathway. bEnd.3 cells were subjected to OGD/Rep-induced injury before being treated with 4-MA, following which cell viability, lactate dehydrogenase (LDH) release and levels of nitric oxidase (NO) were detected by colorimetry, pro-inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were detected by ELISA. The expression levels of occluding and claudin-5were evaluated by immunofluorescence staining. The expression levels of AKT, phosphorylated (p)-Akt, endothelial nitric oxide synthase (eNOS) and p-eNOS were also measured by western blot analysis. After bEnd.3 cells were subjected to OGD/Rep-induced injury, cell viability and NO levels were significantly decreased, whilst LDH leakage and inflammatory factor (TNF-α, IL-1β and IL-6) levels were significantly increased. Treatment with 4-MA significantly ameliorated cell viability, LDH release and the levels of NO and pro-inflammatory factors TNF-α, IL-1β and IL-6 as a result of OGD/Rep. Furthermore, treatment with 4-MA upregulated the expression of occludin, claudin-5, Akt and eNOS, in addition to increasing eNOS and AKT phosphorylation in bEnd.3 cells. These results suggest that 4-MA can alleviate OGD/Rep-induced injury in bEnd.3 cells by inhibiting inflammation and by activating the PI3K/AKT signaling pathway as a possible mechanism. Therefore, 4-MA can serve as a potential candidate for treating OGD/Rep-induced injury.
Collapse
Affiliation(s)
- Qing Lin
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Weili Wang
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicine, University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicine, University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
17
|
Pardridge WM. Treatment of Alzheimer's Disease and Blood-Brain Barrier Drug Delivery. Pharmaceuticals (Basel) 2020; 13:E394. [PMID: 33207605 PMCID: PMC7697739 DOI: 10.3390/ph13110394] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the enormity of the societal and health burdens caused by Alzheimer's disease (AD), there have been no FDA approvals for new therapeutics for AD since 2003. This profound lack of progress in treatment of AD is due to dual problems, both related to the blood-brain barrier (BBB). First, 98% of small molecule drugs do not cross the BBB, and ~100% of biologic drugs do not cross the BBB, so BBB drug delivery technology is needed in AD drug development. Second, the pharmaceutical industry has not developed BBB drug delivery technology, which would enable industry to invent new therapeutics for AD that actually penetrate into brain parenchyma from blood. In 2020, less than 1% of all AD drug development projects use a BBB drug delivery technology. The pathogenesis of AD involves chronic neuro-inflammation, the progressive deposition of insoluble amyloid-beta or tau aggregates, and neural degeneration. New drugs that both attack these multiple sites in AD, and that have been coupled with BBB drug delivery technology, can lead to new and effective treatments of this serious disorder.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
18
|
Andjelkovic AV, Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids Barriers CNS 2020; 17:44. [PMID: 32677965 PMCID: PMC7367394 DOI: 10.1186/s12987-020-00202-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The complexity of the blood-brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a "gatekeeper" and guardian of brain homeostasis and it also acts as a "sensor" of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| | - Svetlana M Stamatovic
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Chelsea M Phillips
- Graduate Program in Neuroscience, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriela Martinez-Revollar
- Department of Pathology, University of Michigan Medical School, 7520 MSRB I, 1150 West Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Puscas I, Bernard-Patrzynski F, Jutras M, Lécuyer MA, Bourbonnière L, Prat A, Leclair G, Roullin VG. Erratum: Puscas, I.; et al. IVIVC Assessment of Two Mouse Brain Endothelial Cell Models for Drug Screening. Pharmaceutics 2019, 11, 587. Pharmaceutics 2020; 12:pharmaceutics12060514. [PMID: 32512770 PMCID: PMC7356357 DOI: 10.3390/pharmaceutics12060514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
The authors wish to make the following corrections to this paper [...].
Collapse
Affiliation(s)
- Ina Puscas
- Faculty of Pharmacy, Université de Montréal, CP6128 Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; (I.P.); (F.B.-P.); (M.J.)
| | - Florian Bernard-Patrzynski
- Faculty of Pharmacy, Université de Montréal, CP6128 Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; (I.P.); (F.B.-P.); (M.J.)
| | - Martin Jutras
- Faculty of Pharmacy, Université de Montréal, CP6128 Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; (I.P.); (F.B.-P.); (M.J.)
| | - Marc-André Lécuyer
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Centre de Recherc and du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (M.-A.L.); (L.B.); (A.P.)
- Centre for Biostructural Imaging of Neurodegeneration, Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Lyne Bourbonnière
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Centre de Recherc and du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (M.-A.L.); (L.B.); (A.P.)
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Centre de Recherc and du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (M.-A.L.); (L.B.); (A.P.)
| | - Grégoire Leclair
- Faculty of Pharmacy, Université de Montréal, CP6128 Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; (I.P.); (F.B.-P.); (M.J.)
- Correspondence: (G.L.); (V.G.R.)
| | - V. Gaëlle Roullin
- Faculty of Pharmacy, Université de Montréal, CP6128 Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; (I.P.); (F.B.-P.); (M.J.)
- Correspondence: (G.L.); (V.G.R.)
| |
Collapse
|