1
|
Alfaifi MY, Shati AA, Elbehairi SEI, Fahmy UA, Alhakamy NA, Md S. Retraction Note to: Anti-tumor effect of PEG-coated PLGA nanoparticles of febuxostat on A549 non-small cell lung cancer cells. 3 Biotech 2024; 14:167. [PMID: 38828097 PMCID: PMC11139804 DOI: 10.1007/s13205-024-04007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
[This retracts the article DOI: 10.1007/s13205-020-2077-x.].
Collapse
Affiliation(s)
- Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha, 9004 Saudi Arabia
| | - Ali A. Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha, 9004 Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha, 9004 Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
2
|
Alhakamy NA, Fahmy UA, Ahmed OAA. RETRACTED: Alhakamy et al. Attenuation of Benign Prostatic Hyperplasia by Optimized Tadalafil Loaded Pumpkin Seed Oil-Based Self Nanoemulsion: In Vitro and In Vivo Evaluation. Pharmaceutics 2019, 11, 640. Pharmaceutics 2023; 15:2654. [PMID: 38140136 PMCID: PMC10748284 DOI: 10.3390/pharmaceutics15122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
The journal retracts the article, "Attenuation of Benign Prostatic Hyperplasia by Optimized Tadalafil Loaded Pumpkin Seed Oil-Based Self Nanoemulsion: In Vitro and In Vivo Evaluation" [...].
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
3
|
Elbardisy B, Boraie N, Galal S. Tadalafil Nanoemulsion Mists for Treatment of Pediatric Pulmonary Hypertension via Nebulization. Pharmaceutics 2022; 14:pharmaceutics14122717. [PMID: 36559211 PMCID: PMC9784672 DOI: 10.3390/pharmaceutics14122717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral tadalafil (TD) proved promising in treating pediatric pulmonary arterial hypertension (PAH). However, to ensure higher efficacy and reduce the systemic side effects, targeted delivery to the lungs through nebulization was proposed as an alternative approach. This poorly soluble drug was previously dissolved in nanoemulsions (NEs). However, the formulations could not resist aqueous dilution, which precluded its dilution with saline for nebulization. Thus, the current study aimed to modify the previous systems into dilutable TD-NEs and assess their suitability for a pulmonary application. In this regard, screening of various excipients was conducted to optimize the former systems; different formulations were selected and characterized in terms of physicochemical properties, nebulization performance, stability following sterilization, and biocompatibility. Results showed that the optimal system comprised of Capmul-MCM-EP:Labrafac-lipophile (1:1) (w/w) as oil, Labrasol:Poloxamer-407 (2:1) (w/w) as surfactant mixture (Smix) and water. The optimum formulation P2TD resisted aqueous dilution, exhibited reasonable drug loading (2.45 mg/mL) and globule size (25.04 nm), acceptable pH and viscosity for pulmonary administration, and could be aerosolized using a jet nebulizer. Moreover, P2TD demonstrated stability following sterilization and a favorable safety profile confirmed by both in-vitro and in-vivo toxicity studies. These favorable findings make P2TD promising for the treatment of pediatric PAH.
Collapse
Affiliation(s)
- Bassant Elbardisy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
- Correspondence: or
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally Galal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
4
|
Bakhaidar RB, Hosny KM, Mahier IM, Rizq WY, Safhi AY, Bukhary DM, Sultan MH, Bukhary HA, Madkhali OA, Sabei FY. Development and optimization of a tamsulosin nanostructured lipid carrier loaded with saw palmetto oil and pumpkin seed oil for treatment of benign prostatic hyperplasia. Drug Deliv 2022; 29:2579-2591. [PMID: 35915055 PMCID: PMC9477485 DOI: 10.1080/10717544.2022.2105448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a nonmalignant growth of the prostate tissue and causes urinary tract symptoms. To provide effective treatment, tamsulosin (TM), saw palmetto oil (SP), and pumpkin seed oil (PSO) were combined and fabricated a nanostructured lipid carrier (NLC) as TM-S/P-NLC using experimental design. The purpose was to enhance the permeation and therapeutic activity of TM; combining TM with SP and PSO in an NLC generates a synergistic activity. An optimized TM-S/P-NLC was obtained after statistical analysis, and it had a particle size, percentage of entrapment efficiency, and steady-state flux of 102 nm, 65%, and 4.5 μg/cm2.min, respectively. Additionally, the optimized TM-S/P-NLC had spherical particles with a more or less uniform size and a stability score of 95%, indicating a high level of stability. The in vitro release studies exhibited the optimized TM-S/P-NLC had the maximum release profile for TM (81 ± 4%) as compared to the TM-NLCs prepared without the addition of S/P oil (59 ± 3%) or the TM aqueous suspension (30 ± 5%). The plasma TM concentration–time profile for the TM-S/P-NLC and the marketed TM tablets indicated that when TM was supplied in a TM-S/P-NLC, the pharmacokinetic profile of the drug was improved. Simultaneously, in vivo therapeutic efficacy studies also showed favorable results for the TM-S/P-NLC in terms of the prostate weight and prostate index following treatment of BPH. Based on the findings of present study, we suggest that in the future, the TM-S/P-NLC could be a novel drug delivery system for treating BPH.
Collapse
Affiliation(s)
- Rana B Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imman M Mahier
- Department of Biotechnology, Cairo Clinical Laboratory Center, Cairo, Egypt
| | - Waleed Y Rizq
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Deena M Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Haitham A Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
5
|
Šamec D, Loizzo MR, Gortzi O, Çankaya İT, Tundis R, Suntar İ, Shirooie S, Zengin G, Devkota HP, Reboredo-Rodríguez P, Hassan STS, Manayi A, Kashani HRK, Nabavi SM. The potential of pumpkin seed oil as a functional food-A comprehensive review of chemical composition, health benefits, and safety. Compr Rev Food Sci Food Saf 2022; 21:4422-4446. [PMID: 35904246 DOI: 10.1111/1541-4337.13013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
The growing interest in foods that can be beneficial to human health is bringing into focus some products that have been used locally for centuries but have recently gained worldwide attention. One of these foods is pumpkin seed oil, which has been used in culinary and traditional medicine, but recent data also show its use in the pharmaceutical and cosmetic industries. In addition, some sources refer to it as a potential functional food, mainly because it is obtained from pumpkin seeds, which contain many functional components. However, the production process of the oil may affect the content of these components and consequently the biological activity of the oil. In this review, we have focused on summarizing scientific data that explore the potential of pumpkin seed oil as a functional food ingredient. We provide a comprehensive overview of pumpkin seed oil chemical composition, phytochemical content, biological activity, and safety, as well as the overview of production processes and contemporary use. The main phytochemicals in pumpkin seed oil with health-related properties are polyphenols, phytoestrogens, and fatty acids, but carotenoids, squalene, tocopherols, and minerals may also contribute to health benefits. Most studies have been conducted in vitro and support the claim that pumpkin seed oil has antioxidant and antimicrobial activities. Clinical studies have shown that pumpkin seed oil may be beneficial in the treatment of cardiovascular problems of menopausal women and ailments associated with imbalance of sex hormones.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, Koprivnica, Croatia
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Olga Gortzi
- School of Agricultural Sciences, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - İrem Tatlı Çankaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - İpek Suntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | | | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Azadeh Manayi
- Medicinal Plants Research Centre, Faculty of Pharmacy, University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Effect of Fermented Camel Milk Containing Pumpkin Seed Milk on the Oxidative Stress Induced by Carbon Tetrachloride in Experimental Rats. FERMENTATION 2022. [DOI: 10.3390/fermentation8050223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress can lead to chronic inflammation, nephrotoxicity, and renal damage. The consumption of plant-based dairy alternatives has increased rapidly worldwide due to their health effects. Bioactive components from natural sources, such as plants, are effective in protecting against oxidative stress. The present study evaluated the physicochemical and sensory properties of fermented camel milk made from camel milk mixed with pumpkin seed milk. Fermented camel milk consists of camel milk mixed with 25% and 50% pumpkin seed milk. This blend (fermented camel milk containing 50% pumpkin seed milk) was evaluated as an antioxidant agent in oxidative stress induced rats. A total of thirty-two male adult albino rats of Sprague Dawley® Rat strain weighing 150–180 g were randomly divided into four groups (n = 8). The first group was solely administered the standard diet and served as the negative control. The other rats (n = 24), received a basal diet, including being intraperitoneally injected with carbon tetrachloride, with a single dose at a rate of 2 mL/kg body weight) as a model for oxidative stress. The oxidative stress rats were divided into three groups; the first group did not receive any treatment and served as the positive control. The second and third groups were administered 10 g/day fermented camel milk and fermented camel milk containing 50% pumpkin seed milk. The results revealed that mixing the camel milk with pumpkin seed milk was more effective in increasing the total solids, protein, ash, fiber, acidity, viscosity, phenolic content, and antioxidant activity. These enhancements were proportional to the mixing ratio. Fermented camel milk containing 50% pumpkin seed milk exhibited the highest scores for sensory properties compared with the other fermented camel milk treatments. The group of rats with oxidative stress treated with fermented camel milk containing 50% pumpkin seed milk showed a significant decrease (p ≤ 0.05) in the levels of malondialdehyde (MDA), low-density lipoprotein (LDL), cholesterol (CL), triglycerides (TGs), AST, ALT, creatinine, and urea, and increased (p ≤ 0.05) high-density lipoprotein (HDL) and total protein and albumin compared with rats with oxidative stress. Consumption of fermented camel milk containing 50% pumpkin seed milk by the oxidative stress rat groups caused significant improvement in all of these factors compared with the positive control group. This study revealed that the administration of fermented camel milk containing 50% pumpkin seed milk to rats with oxidative stress prevented disorders related to oxidative stress compared with the untreated oxidative stress group. Thus, incorporating fermented camel milk might play a beneficial role in patients with oxidative stress.
Collapse
|
7
|
Csikós E, Horváth A, Ács K, Papp N, Balázs VL, Dolenc MS, Kenda M, Kočevar Glavač N, Nagy M, Protti M, Mercolini L, Horváth G, Farkas Á. Treatment of Benign Prostatic Hyperplasia by Natural Drugs. Molecules 2021; 26:7141. [PMID: 34885733 PMCID: PMC8659259 DOI: 10.3390/molecules26237141] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/08/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common urinary diseases affecting men, generally after the age of 50. The prevalence of this multifactorial disease increases with age. With aging, the plasma level of testosterone decreases, as well as the testosterone/estrogen ratio, resulting in increased estrogen activity, which may facilitate the hyperplasia of the prostate cells. Another theory focuses on dihydrotestosterone (DHT) and the activity of the enzyme 5α-reductase, which converts testosterone to DHT. In older men, the activity of this enzyme increases, leading to a decreased testosterone/DHT ratio. DHT may promote prostate cell growth, resulting in hyperplasia. Some medicinal plants and their compounds act by modulating this enzyme, and have the above-mentioned targets. This review focuses on herbal drugs that are most widely used in the treatment of BPH, including pumpkin seed, willow herb, tomato, maritime pine bark, Pygeum africanum bark, rye pollen, saw palmetto fruit, and nettle root, highlighting the latest results of preclinical and clinical studies, as well as safety issues. In addition, the pharmaceutical care and other therapeutic options of BPH, including pharmacotherapy and surgical options, are discussed, summarizing and comparing the advantages and disadvantages of each therapy.
Collapse
Affiliation(s)
- Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Adrienn Horváth
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| | - Kamilla Ács
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Nóra Papp
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Viktória Lilla Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Marija Sollner Dolenc
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (M.S.D.); (M.K.)
| | - Maša Kenda
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (M.S.D.); (M.K.)
| | - Nina Kočevar Glavač
- University of Ljubljana, Department of Pharmaceutical Biology, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia;
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, SK-832-32 Bratislava, Slovakia;
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.P.); (L.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.P.); (L.M.)
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | | |
Collapse
|
8
|
Cui J, Cao D, Bai Y, Wang J, Yin S, Wei W, Xiao Y, Wang J, Wei Q. Efficacy and Safety of 12-week Monotherapy With Once Daily 5 mg Tadalafil for Lower Urinary Tract Symptoms of Benign Prostatic Hyperplasia: Evidence-based Analysis. Front Med (Lausanne) 2021; 8:744012. [PMID: 34712682 PMCID: PMC8545998 DOI: 10.3389/fmed.2021.744012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Tadalafil has been approved for the treatment of benign prostatic hyperplasia (BPH) for nearly 10 years. However, there are insufficient evidence-based studies of the efficacy and safety of tadalafil in treating lower urinary tract symptoms of BPH (LUTS/BPH). Objective: To evaluate the therapeutic effect and clinical safety of tadalafil monotherapy (5 mg once daily for 12 weeks) for LUTS/BPH. Methods: A total of 13 studies (15 randomized clinical trials [RCTs]) were extracted from the following databases: PubMed, Cochrane Central Register of Controlled Trials, Embase, and Web of Science for the period up to July 2021. The quality of the included RCTs was evaluated independently by two authors, who, respectively, extracted data according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses principles. Conflicts were settled by a discussion with two-third of senior authors. All data analyses were conducted by the Review Manager, version 5.4. Results: Regarding efficacy, 12-week trials indicated that 5 mg once daily tadalafil showed a significantly lower and, consequently, better total International Prostate Symptom Score (IPSS) than the placebo did (mean difference [MD]: -1.97, 95% CI: -2.24 to -1.70; P < 0.00001). In addition, significant differences were found between the tadalafil regimen and the placebo in the IPSS voiding subscore (MD: -1.30, 95% CI: -1.48 to -1.11; P < 0.00001), the IPSS storage subscore (MD: -0.70, 95% CI: -0.82 to -0.58; P < 0.00001), the IPSS quality of life (MD: -0.29, 95% CI: -0.35 to -0.22; P < 0.00001), and BPH impact index (MD: -0.58, 95% CI: -0.76 to -0.40; P < 0.00001). The safety analysis did not show a significant difference in serious adverse events between the two groups (risk ratio: 1.27, 95% CI: 0.80-2.01; P = 0.31), although the adverse events occurred at a higher incidence in the tadalafil group than in the placebo. Conclusions: This study demonstrates that once daily 5 mg tadalafil is a potentially effective and safe treatment choice with excellent tolerability for patients with LUTS/BPH. Systematic Review Registration: Identifier (CRD42021228840).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
9
|
El-Sherbiny M, El-Shafey M, El-Din El-Agawy MS, Mohamed AS, Eisa NH, Elsherbiny NM. Diacerein ameliorates testosterone-induced benign prostatic hyperplasia in rats: Effect on oxidative stress, inflammation and apoptosis. Int Immunopharmacol 2021; 100:108082. [PMID: 34450401 DOI: 10.1016/j.intimp.2021.108082] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Benign prostatic hypertrophy (BPH) is a serious medical condition among elderly male population. BPH pathogenesis has been linked to inflammation, cellular proliferation, oxidative stress and apoptosis. Diacerein (DIA) is a FDA approved anthraquinone drug that is used to treat joint diseases such as osteoarthritis. DIA has been studied for its potent anti-inflammatory and antioxidant effects, yet its role in managing BPH has not been investigated. In this study, DIA administration for two weeks at 50 mg/kg in testosterone-induced BPH rats significantly reduced prostate weight and index. Moreover, prostatic biochemical and structural features in BPH rats were significantly improved upon DIA treatment. Mechanistically, DIA treatment associated prostatic anti-hyperplastic effects were linked to downregulation of Nrf-2/HO-1 axis, downregulation of inflammatory TNF-a, IL-1β, IL-6, downregulation of the cell proliferative marker PCNA and upregulation of caspase-3 levels. In addition, DIA treatment upregulated prostatic antioxidant GSH, the enzymatic SOD and CAT activities and reduced prostatic lipid peroxidation levels. Altogether, the present study provides evidence that DIA treatment might limit BPH progression via its potent anti-oxidant, anti-inflammatory, anti-proliferative and apoptosis inducing effects.
Collapse
Affiliation(s)
- Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | | | - Abdelaty Shawky Mohamed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nada H Eisa
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Nehal M Elsherbiny
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
10
|
Srivastava S, Haider MF, Ahmad A, Ahmad U, Arif M, Ali A. Exploring Nanoemulsions for Prostate Cancer Therapy. Drug Res (Stuttg) 2021; 71:417-428. [PMID: 34157752 DOI: 10.1055/a-1518-6606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Prostate carcinoma is typical cancer. It is the second most common cancer globally. The estimated new cases in 2020 was 191 930 and estimated deaths was 33 330. Age, family history, & genetic factors are major factors that drive prostate cancer. Although, for treating metastatic disease, the major therapies available are radiation,bisphosphonate, and palliative chemotherapy. But the major drawback is therapy is disease-driven and later becomes metastatic and requires treatment. The ability to revolutionize cancer treatment by major targeting vehicles via the exploration of nanoemulsion suggests a potential for cancer treatment. The unique property of a biphasic liquid dosage form called nanoemulsion to reach leaky tumor vasculature is due to its nano-meter oil-droplet size of 20-200 nm. Recent reporting on nanoemulsions disclose their embracing and lay alternative for re-purposing herbal and synthetic drugs and their combination especially for targeting prostate cancer formulating an obtainable nanomedicine. So, this article emphasizes the use of nanoemulsions incorporating therapeutic agents for successful and targeted delivery for prostate cancer.
Collapse
Affiliation(s)
| | | | - Afroz Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Muhammad Arif
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Asad Ali
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
11
|
The Influence of Ripeness on the Phenolic Content, Antioxidant and Antimicrobial Activities of Pumpkins ( Cucurbita moschata Duchesne). Molecules 2021; 26:molecules26123623. [PMID: 34199320 PMCID: PMC8231950 DOI: 10.3390/molecules26123623] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Cucurbita moschata Duchesne (Cucurbitaceae) is a plant food highly appreciated for the content of nutrients and bioactive compounds, including polyphenols and carotenoids, which contribute to its antioxidant and antimicrobial capacities. The purpose of this study was to identify phenolic acids and flavonoids of Cucurbita moschata Duchesne using high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI-MS) at different ripening stages (young, mature, ripened) and determine its antioxidant and antimicrobial activities. According to the results, phenolic acids and flavonoids were dependent on the maturity stage. The mature fruits contain the highest total phenolic and flavonoids contents (97.4 mg GAE. 100 g−1 and 28.6 mg QE. 100 g−1).A total of 33 compounds were identified. Syringic acid was the most abundant compound (37%), followed by cinnamic acid (12%) and protocatechuic acid (11%). Polyphenol extract of the mature fruits showed the highest antioxidant activity when measured by DPPH (0.065 μmol TE/g) and ABTS (0.074 μmol TE/g) assays. In the antimicrobial assay, the second stage of ripening had the highest antibacterial activity. Staphylococcus aureus was the most sensitive strain with an inhibition zone of 12 mm and a MIC of 0.75 mg L−1. The lowest inhibition zone was obtained with Salmonella typhimurium (5 mm), and the MIC value was 10 mg L−1.
Collapse
|
12
|
Radwan MF, El-Moselhy MA, Alarif WM, Orif M, Alruwaili NK, Alhakamy NA. Optimization of Thymoquinone-Loaded Self-Nanoemulsion for Management of Indomethacin-Induced Ulcer. Dose Response 2021; 19:15593258211013655. [PMID: 33994890 PMCID: PMC8113367 DOI: 10.1177/15593258211013655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
To improve the water solubility of thymoquinone (TQ), a major constituent of Nigella sativa seed oil, a TQ-loaded self-nanoemulsifying drug delivery system (SNEDDS) was prepared. The SNEDDS formulation was optimized using almond oil (AO) (Oil; X1), tween 80 (surfactant; X2) and polyethylene glycol 200 (PEG 200) (cosurfactant; X3) compounds as independent variables. The results showed that the globule size ranged from 65 to 320 nm. In addition, a strong agreement was reached between the system estimation and the experimental values of globule size. To evaluate the gastroprotective effect of optimized TQ-loaded SNEDDS against indomethacin (Indo.)-induced gastric ulcers in comparison with non-emulsified TQ, the ulcer index and histopathological changes were estimated. Optimized TQ-loaded SNEDDS showed improved gastroprotective activity against Indo.-induced ulcers relative to the non-emulsified TQ. In addition, the gastroprotective index was improved by 2-fold in TQ-loaded SNEDDS as compared to non-emulsified TQ. This is attributed to the strong antioxidant and the cytoprotective activities of the TQ. These results demonstrate enhancement of the efficacy of TQ through the optimized SNEDDS.
Collapse
Affiliation(s)
- Mohamed F Radwan
- Department of Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A El-Moselhy
- Department of Pharmacology, School of Pharmacy, Ibn Sina National College, Jeddah, Saudi Arabia
| | - Walied M Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Jouf University, Sakaka, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
González-Fernández FM, Bianchera A, Gasco P, Nicoli S, Pescina S. Lipid-Based Nanocarriers for Ophthalmic Administration: Towards Experimental Design Implementation. Pharmaceutics 2021; 13:447. [PMID: 33810399 PMCID: PMC8067198 DOI: 10.3390/pharmaceutics13040447] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Nanotherapeutics based on biocompatible lipid matrices allow for enhanced solubility of poorly soluble compounds in the treatment of ophthalmic diseases, overcoming the anatomical and physiological barriers present in the eye, which, despite the ease of access, remains strongly protected. Micro-/nanoemulsions, solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) combine liquid and/or solid lipids with surfactants, improving drug stability and ocular bioavailability. Current research and development approaches based on try-and-error methodologies are unable to easily fine-tune nanoparticle populations in order to overcome the numerous constraints of ocular administration routes, which is believed to hamper easy approval from regulatory agencies for these systems. The predictable quality and specifications of the product can be achieved through quality-by-design (QbD) implementation in both research and industrial environments, in contrast to the current quality-by-testing (QbT) framework. Mathematical modelling of the expected final nanoparticle characteristics by variation of operator-controllable variables of the process can be achieved through adequate statistical design-of-experiments (DoE) application. This multivariate approach allows for optimisation of drug delivery platforms, reducing research costs and time, while maximising the understanding of the production process. This review aims to highlight the latest efforts in implementing the design of experiments to produce optimised lipid-based nanocarriers intended for ophthalmic administration. A useful background and an overview of the different possible approaches are presented, serving as a starting point to introduce the design of experiments in current nanoparticle research.
Collapse
Affiliation(s)
- Felipe M. González-Fernández
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy;
| | - Annalisa Bianchera
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| | - Paolo Gasco
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy;
| | - Sara Nicoli
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| | - Silvia Pescina
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| |
Collapse
|
14
|
Ahmed OAA, El-Bassossy HM, El-Sayed HM, El-Hay SSA. Rp-HPLC Determination of Quercetin in a Novel D-α-Tocopherol Polyethylene Glycol 1000 Succinate Based SNEDDS Formulation: Pharmacokinetics in Rat Plasma. Molecules 2021; 26:1435. [PMID: 33800848 PMCID: PMC7961457 DOI: 10.3390/molecules26051435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Despite its proven efficacy in diverse metabolic disorders, quercetin (QU) for clinical use is still limited because of its low bioavailability. D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) is approved as a safe pharmaceutical adjuvant with marked antioxidant and anti-inflammatory activities. In the current study, several QU-loaded self-nanoemulsifying drug delivery systems (SNEDDS) were investigated to improve QU bioavailability. A reversed phase high performance liquid chromatography (RP-HPLC) method was developed, for the first time, as a simple and sensitive technique for pharmacokinetic studies of QU in the presence of TPGS SNEDDS formula in rat plasma. The analyses were performed on a Xterra C18 column (4.6 × 100 mm, 5 µm) and UV detection at 280 nm. The analytes were separated by a gradient system of methanol and phosphate buffer of pH 3. The developed RP-HPLC method showed low limit of detection (LODs) of 7.65 and 22.09 ng/mL and LOQs of 23.19 and 66.96 ng/mL for QU and TPGS, respectively, which allowed their determination in real rat plasma samples. The method was linear over a wide range, (30-10,000) and (100-10,000) ng/mL for QU and TPGS, respectively. The selected SNEDDS formula, containing 50% w/w TPGS, 30% polyethylene glycol 200 (PEG 200), and 20% w/w pumpkin seed oil (PSO), showed a globule size of 320 nm and -28.6 mV zeta potential. Results of the pharmacokinetic studies showed 149.8% improvement in bioavailability of QU in SNEDDS relative to its suspension. The developed HPLC method proved to be simple and sensitive for QU and TPGS simultaneous determination in rat plasma after oral administration of the new SNEDDS formula.
Collapse
Affiliation(s)
- Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hany M. El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Heba M. El-Sayed
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-S.); (S.S.A.E.-H.)
| | - Soad S. Abd El-Hay
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-S.); (S.S.A.E.-H.)
| |
Collapse
|
15
|
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG, Yang XL, He X, Zhang CF. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug Des Devel Ther 2021; 15:557-576. [PMID: 33603345 PMCID: PMC7886095 DOI: 10.2147/dddt.s292417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The aim of the present study was to develop an optimized Genkwanin (GKA)-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation to enhance the solubility, intestinal permeability, oral bioavailability and anti-colitis-associated colorectal cancer (CAC) activity of GKA. METHODS We designed a SNEDDS comprised oil phase, surfactants and co-surfactants for oral administration of GKA, the best of which were selected by investigating the saturation solubility, constructing pseudo-ternary phase diagrams, followed by optimizing thermodynamic stability, emulsification efficacy, self-nanoemulsification time, droplet size, transmission electron microscopy (TEM), drug release and intestinal permeability. In addition, the physicochemical properties and pharmacokinetics of GKA-SNEDDS were characterized, and its anti-colitis-associated colorectal cancer (CAC) activity and potential mechanisms were evaluated in AOM/DSS-induced C57BL/6J mice model. RESULTS The optimized nanoemulsion formula (OF) consists of Maisine CC, Labrasol ALF and Transcutol HP in a weight ratio of 20:60:20 (w/w/w), in which ratio the OF shows multiple improvements, specifically small mean droplet size, excellent stability, fast release properties as well as enhanced solubility and permeability. Pharmacokinetic studies demonstrated that compared with GKA suspension, the relative bioavailability of GKA-SNEDDS was increased by 353.28%. Moreover, GKA-SNEDDS not only significantly prevents weight loss and improves disease activity index (DAI) but also reduces the histological scores of inflammatory cytokine levels as well as inhibiting the formation of colon tumors via inducing tumor cell apoptosis in the AOM/DSS-induced CAC mice model. CONCLUSION Our results show that the developed GKA-SNEDDS exhibited enhanced oral bioavailability and excellent anti-CAC efficacy. In summary, GKA-SNEDDS, using lipid nanoparticles as the drug delivery carrier, can be applied as a potential drug delivery system for improving the clinical application of GKA.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Colitis/drug therapy
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Daphne/chemistry
- Dose-Response Relationship, Drug
- Drug Compounding
- Drug Delivery Systems
- Emulsions
- Flavones/administration & dosage
- Flavones/chemistry
- Flavones/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Rats
- Rats, Sprague-Dawley
- Solubility
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Hua-Feng Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
- Jiangxi QingFeng Pharmaceutical Co., Ltd, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Chun-Ming Yin
- Emergency Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Ting Ouyang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shu-Ding Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Wei-Guo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Xiao-Lin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| |
Collapse
|
16
|
Mishra V, Nayak P, Yadav N, Singh M, Tambuwala MM, Aljabali AAA. Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Expert Opin Drug Deliv 2020; 18:315-332. [PMID: 33232184 DOI: 10.1080/17425247.2021.1856073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Oral administration of a drug is the most common, ideal and preferred route of administration. The main problem of oral drug formulations is their low bioavailability arises from poor aqueous solubility of drug. Aqueous solubility of lipophilic drugs can be improved by various techniques like salt formation, complexation, addition of co-solvent etc. but self-emulsifying drug-delivery system (SEDDS) is getting more attention for increasing the solubility of such drugs. The SEDDS is an isotropic mixture of drug, lipids, and emulsifiers, usually with one or more hydrophilic co-solvents/co-emulsifiers. This system is having ability to generate oil-in-water (o/w) emulsions or microemulsions upon gentle agitation followed by dilution with aqueous phase. The SEDDSs are relatively newer, lipid-based technological innovations possessing unparalleled potential in improving oral bioavailability of poorly water-soluble drugs.Areas covered: This review provides updated information regarding the types of SEDDS, their preparation techniques, drug delivery and related recent patents along with marketed formulations.Expert opinion: The SEDDS has been explored for improving bioavailability, rising intra-subject heterogeneity, and increasing solubility. SEDDS offers the benefit of a protective effect against the hostile environment in the gut. The unique fabrication techniques provide specific strategy to overcome the low bioavailability and poor solubility problems.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nishika Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Manvendra Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
17
|
Zhao Z, Cui X, Ma X, Wang Z. Preparation, characterization, and evaluation of antioxidant activity and bioavailability of a self-nanoemulsifying drug delivery system (SNEDDS) for buckwheat flavonoids. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1265-1274. [PMID: 33216131 PMCID: PMC7731523 DOI: 10.1093/abbs/gmaa124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The self-nanoemulsifying drug delivery system has shown many advantages in drug delivery. In this study, a self-nanoemulsifying drug delivery system of buckwheat flavonoids was prepared for enhancing its antioxidant activity and oral bioavailability. A nanoemulsion of buckwheat flavonoids was developed and characterized, and its antioxidant, in vitro release, and in vivo bioavailability were determined. The nanoemulsion was optimized by the central composite design response surface experiment, and its particle size, polymer dispersity index (PDI), zeta potential, morphology, encapsulation efficiency, and stability were evaluated. The antioxidant activity was tested by measuring its 2,2-diphenyl-1-picrylhydrazyl scavenging activity, hydroxyl radical scavenging activity, and superoxide anion scavenging ability. In vitro release of buckwheat flavonoids nanoemulsion showed a higher cumulative release than the suspension, and the release fitting model followed the Ritger-Peppas and Weibull models. The effective concentration of the nanoemulsion was evaluated in vivo using a Wistar rat model, and the area under the plasma concentration-time curve of the buckwheat flavonoids nanoemulsion was 2.2-fold higher than that of the buckwheat flavonoid suspension. The Cmax of the nanoemulsion was 2.6-fold greater than that of the suspension. These results indicate that the nanoemulsion is a promising oral drug delivery system that can improve the oral bioavailability to satisfy the clinical requirements.
Collapse
Affiliation(s)
- Zhijuan Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Xiaoli Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
18
|
Dotto JM, Chacha JS. The potential of pumpkin seeds as a functional food ingredient: A review. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00575] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
19
|
Akhtar N, Mohammed SA, Khan RA, Yusuf M, Singh V, Mohammed HA, Al-Omar MS, Abdellatif AA, Naz M, Khadri H. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|