1
|
Polati D, Neerati P. Synergistic effects of curcumin and piperine in cocrystal form: a breakthrough in bladder cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-28. [PMID: 40270345 DOI: 10.1080/09205063.2025.2491606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Curcumin (CUR) is a promising anticancer agent for urinary bladder cancer (UBC) but is hindered by poor oral bioavailability. This study investigates the role of cocrystal technology in overcoming these limitations through the formation of curcumin-piperine (CUR-PIP) cocrystals (CoCry). The CUR-PIP CoCry was evaluated for its ability to suppress IGF2 over expression in UBC. Molecular interactions were predicted via Auto Dock simulations, and the co crystals were characterized using FTIR, DSC, PXRD, SEM, and ssNMR. Saturation solubility, dissolution, permeability, and in vivo pharmacokinetic studies were conducted. The therapeutic efficacy of CUR-PIP CoCry was tested in a bladder cancer rat model induced by N-Methyl Nitrosourea; with IGF2 expression quantified using qRT-PCR and flow cytometry. The CUR-PIP CoCry demonstrated enhanced drug release and permeability compared to CUR alone. Pharmacokinetic analysis revealed a 5.7-fold increase in Cmax and a 7.9-fold increase in AUC0-12 hr compared to CUR alone. In vivo studies using an MNU-induced bladder cancer rat model demonstrated that CUR-PIP CoCry significantly suppressed IGF2 expression (p < 0.001) and enhanced anticancer efficacy. This study underscores the potential of cocrystallization as a novel approach to enhance bioavailability and therapeutic effectiveness in cancer treatment.
Collapse
Affiliation(s)
- Durga Polati
- DMPK Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Center for Drug Research, Kakatiya University, Warangal, India
| | - Prasad Neerati
- DMPK Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Center for Drug Research, Kakatiya University, Warangal, India
| |
Collapse
|
2
|
Marques SM, Salwa, Lewis CR, Devi V, Kumar L. Formulation and evaluation of HPMC and pullulan-based rapidly dissolving films containing cilnidipine nanosuspension. Int J Biol Macromol 2025; 310:143329. [PMID: 40254208 DOI: 10.1016/j.ijbiomac.2025.143329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cilnidipine is used to treat hypertension. However, it has poor solubility and undergoes extensive first-pass metabolism, which leads to poor bioavailability. This work aimed to prepare rapidly dissolving films (RDFs) containing nanosuspension of CLD with HPMC and pullulan as film-formers. These RDFs deliver the drugs through the buccal mucosa and bypass the first-pass metabolism, thereby increasing bioavailability. The nanosuspension was prepared using the nanoprecipitation technique and was optimized using the CCD. The optimized formulation had an average size and zeta potential of 362.23 nm and -39.1 mV, respectively. FT-IR studies indicated no interaction between CLD and stabilizers. DSC and XRD studies confirmed reduced crystallinity of CLD. SEM revealed the capsular morphology of nanoparticles. The optimized RDFs had a 2.83 ± 0.24 N/mm2 tensile strength, 11.61 ± 2.87 % elongation, 17.21 ± 1.06 s disintegration time, and in-vitro release of 91.77 ± 6.22 % in 60 min. A more than two-fold increase in drug permeation was recorded from the CLD NS-RDF as compared to the CLD CS-RDF. The CLD NS-RDF exhibited a significant increase in AUC0-24h, Cmax, and a decrease in Tmax and MRT as compared to the CLD CS-RDF. The CLD NS-RDF also had a superior effect to control the blood pressure in rats as compared to the CLD CS-RDF.
Collapse
Affiliation(s)
- Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Cheryl Rhea Lewis
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, 844 102 Vaishali, Bihar, India.
| |
Collapse
|
3
|
Jeong JS, Ha ES, Park H, Lee SK, Kang HT, Kim MS. Effect of Citric Acid and Tromethamine on the Stability of Eyedrops Containing Lifitegrast. Pharmaceuticals (Basel) 2024; 17:1415. [PMID: 39598327 PMCID: PMC11597827 DOI: 10.3390/ph17111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Lifitegrast is an effective treatment for dry eye disease, reducing inflammation and improving the ocular surface condition. Owing to its high sensitivity to oxidation and hydrolysis, formulation studies are required to maintain the physicochemical stability of lifitegrast. This study aimed to overcome the instability of lifitegrast by developing a more stable eyedrop formulation by using citric acid and tromethamine to prevent the degradation of lifitegrast. METHODS Based on the Design of Experiment (DoE) approach, formulations were prepared at various concentrations of two stabilizers, citric acid and tromethamine. The stabilizers were carefully controlled to reduce the generation of degradation products. The eyedrops were stored under accelerated test conditions, and parameters such as appearance, pH, drug content, and impurities were evaluated. RESULTS The results showed that all critical quality attributes (CQAs) including appearance, pH, drug content, and impurities were maintained at stable levels under accelerated conditions, meeting established criteria. In addition, it was suggested that citric acid provided protection against oxidative stress, while tromethamine prevented hydrolysis caused by pH fluctuations. CONCLUSIONS Consequently, it was concluded that the developed lifitegrast-containing eyedrop formulation exhibited improved physicochemical stability, validated through statistical analyses. These findings contribute to the development of stable eyedrops and provide a foundation for commercial production and clinical applications.
Collapse
Affiliation(s)
- Ji-Su Jeong
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| | - Heejun Park
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea;
| | - Seon-Kwang Lee
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| | - Hui-Taek Kang
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| |
Collapse
|
4
|
Guo Y, Patel HJ, Patel AS, Squillante E, Patel K. Albendazole nanosuspension coated granules for the rapid localized release and treatment of colorectal cancer. Colloids Surf B Biointerfaces 2024; 245:114320. [PMID: 39423765 DOI: 10.1016/j.colsurfb.2024.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Albendazole (ABZ), an anthelmintic drug, has been repurposed to treat various types of cancers. However, poor solubility of ABZ, resulting in low bioavailability, limits its application. Nanosuspension is a versatile method for enhancing the dissolution of hydrophobic molecules, but a successful drying has been the biggest challenge in the field. The objective of this research is to formulate and optimize ABZ nanosuspension (NS) coated granules for rapid delivery of ABZ for the treatment of colorectal cancer. ABZ NS was prepared by dual centrifugation method using Kollidon® VA64 and sodium lauryl sulphate (SLS) as stabilizers. The processing method was optimized to obtain a stable nanosuspension with particle size < 300 nm. The optimized ABZ NS was coated on microcrystalline cellulose (MCC) to form the nano-coated granules (NCG) and filled in EUDRACAP® for colon targeted delivery. The ABZ NS and NCG achieved ∼ 60 % and ∼55 % drug release, respectively, in presence of bile salt at colonic pH. Half-maximal inhibitory concentration (IC50) of ABZ NS was found to be 1.18 ± 0.081 µM and 3.59 ± 0.080 µM in two colorectal cancer cell lines: HCT 116 and HT-29, respectively. In addition, In vitro 3D tumor assay revealed that ABZ NS has superior tumor growth inhibition activity compared to the control and pure ABZ. The preparation of ABZ NCG in EUDRACAP® could be a promising approach to achieve colon targeted delivery and to repurpose ABZ for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yi Guo
- College of Pharmacy and Health Sciences, St. John's University, NY, USA
| | - Henis J Patel
- College of Pharmacy and Health Sciences, St. John's University, NY, USA
| | - Akanksha S Patel
- College of Pharmacy and Health Sciences, St. John's University, NY, USA
| | - Emilio Squillante
- College of Pharmacy and Health Sciences, St. John's University, NY, USA.
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, NY, USA.
| |
Collapse
|
5
|
Ibnidris A, Liaskos N, Eldem E, Gunn A, Streffer J, Gold M, Rea M, Teipel S, Gardiol A, Boccardi M. Facilitating the use of the target product profile in academic research: a systematic review. J Transl Med 2024; 22:693. [PMID: 39075460 PMCID: PMC11288132 DOI: 10.1186/s12967-024-05476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The Target Product Profile (TPP) is a tool used in industry to guide development strategies by addressing user needs and fostering effective communication among stakeholders. However, they are not frequently used in academic research, where they may be equally useful. This systematic review aims to extract the features of accessible TPPs, to identify commonalities and facilitate their integration in academic research methodology. METHODS We searched peer-reviewed papers published in English developing TPPs for different products and health conditions in four biomedical databases. Interrater agreement, computed on random abstract and paper sets (Cohen's Kappa; percentage agreement with zero tolerance) was > 0.91. We interviewed experts from industry contexts to gain insight on the process of TPP development, and extracted general and specific features on TPP use and structure. RESULTS 138 papers were eligible for data extraction. Of them, 92% (n = 128) developed a new TPP, with 41.3% (n = 57) focusing on therapeutics. The addressed disease categories were diverse; the largest (47.1%, n = 65) was infectious diseases. Only one TPP was identified for several fields, including global priorities like dementia. Our analyses found that 56.5% of papers (n = 78) was authored by academics, and 57.8% of TPPs (n = 80) featured one threshold level of product performance. The number of TPP features varied widely across and within product types (n = 3-44). Common features included purpose/context of use, shelf life for drug stability and validation aspects. Most papers did not describe the methods used to develop the TPP. We identified aspects to be taken into account to build and report TPPs, as a starting point for more focused initiatives guiding use by academics. DISCUSSION TPPs are used in academic research mostly for infectious diseases and have heterogeneous features. Our extraction of key features and common structures helps to understand the tool and widen its use in academia. This is of particular relevance for areas of notable unmet needs, like dementia. Collaboration between stakeholders is key for innovation. Tools to streamline communication such as TPPs would support the development of products and services in academia as well as industry.
Collapse
Affiliation(s)
- Aliaa Ibnidris
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nektarios Liaskos
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
| | - Ece Eldem
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | | | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Michael Gold
- AriLex Life Sciences LLC, 780 Elysian Way, Deerfield, IL, 60015, USA
| | | | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany
| | - Alejandra Gardiol
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
- Queen Mary University of London, London, UK
| | - Marina Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany.
| |
Collapse
|
6
|
Elzanaty KA, Omran GA, Elmahallawy EK, Albrakati A, Saleh AA, Dahran N, Alhegaili AS, Salahuddin A, Abd-El-Azim H, Noreldin A, Okda TM. Design and Optimization of Sesamol Nanosuspensions to Potentiate the Anti-Tumor Activity of Epirubicin against Ehrlich Solid Carcinoma-Bearing Mice. Pharmaceutics 2024; 16:937. [PMID: 39065634 PMCID: PMC11279961 DOI: 10.3390/pharmaceutics16070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
There is a growing interest in discovering natural sources of anti-cancer drugs. Sesamol (SES) is a phenolic compound with antitumor effects. The present study aimed to investigate the anticancer properties of SES and its nano-suspensions (SES-NS) combined with Epirubicin (EPI) in breast cancer (BC) using mice bearing a solid Ehrlich tumor. The study involved 35 female albino mice and investigated the effects of SES and EPI on tumor growth, proliferation, apoptosis, autophagy, angiogenesis, and oxidative stress. Methods including ELISA, qRT-PCR, and immunohistochemistry were utilized. The findings revealed reductions in tumor growth and proliferation using SES either alone or combined and evidenced by decreased AKT (AKT Serine/Threonine kinase1) levels, angiogenesis indicated by lower levels of VEGFR (vascular endothelial growth factor), and apoptosis demonstrated by elevated caspase3 and BAX levels. Furthermore, autophagy increased and was indicated by increased levels of beclin1 and lc3, along with decreased oxidative stress as evidenced by elevated TAC (total antioxidant capacity) and reduced MDA (malondialdehyde) levels. Interestingly, SES-NS demonstrated more significant effects at lower doses. In summary, this study underscores the potential of SES as a promising agent for BC treatment. Moreover, SES-NS potentiated the beneficial effects of EPI while mitigating its adverse effects.
Collapse
Affiliation(s)
- Kholoud A. Elzanaty
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Gamal A. Omran
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Ehab Kotb Elmahallawy
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, 14071 Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman A. Saleh
- Department of Pathology, College of Medicine, University of Hail, Hail 55428, Saudi Arabia;
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Alaa S. Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
- Department of Biochemistry, College of Pharmacy, Al-Ayen Iraqi University, Nasiriyah 64001, Iraq
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek M. Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| |
Collapse
|
7
|
Tomas M, Wen Y, Liao W, Zhang L, Zhao C, McClements DJ, Nemli E, Bener M, Apak R, Capanoglu E. Recent progress in promoting the bioavailability of polyphenols in plant-based foods. Crit Rev Food Sci Nutr 2024; 65:2343-2364. [PMID: 38590257 DOI: 10.1080/10408398.2024.2336051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyphenols are important constituents of plant-based foods, exhibiting a range of beneficial effects. However, many phenolic compounds have low bioavailability because of their low water solubility, chemical instability, food matrix effects, and interactions with other nutrients. This article reviews various methods of improving the bioavailability of polyphenols in plant-based foods, including fermentation, natural deep eutectic solvents, encapsulation technologies, co-crystallization and amorphous solid dispersion systems, and exosome complexes. Several innovative technologies have recently been deployed to improve the bioavailability of phenolic compounds. These technologies may be utilized to increase the healthiness of plant-based foods. Further research is required to better understand the mechanisms of action of these novel approaches and their potential to be used in food production.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Elifsu Nemli
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Mustafa Bener
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
- Turkish Academy of Sciences (TUBA), Ankara, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
8
|
Roldan TL, Li S, Guillon C, Heindel ND, Laskin JD, Lee IH, Gao D, Sinko PJ. Optimizing Nanosuspension Drug Release and Wound Healing Using a Design of Experiments Approach: Improving the Drug Delivery Potential of NDH-4338 for Treating Chemical Burns. Pharmaceutics 2024; 16:471. [PMID: 38675132 PMCID: PMC11053863 DOI: 10.3390/pharmaceutics16040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
NDH-4338 is a highly lipophilic prodrug comprising indomethacin and an acetylcholinesterase inhibitor. A design of experiments approach was used to synthesize, characterize, and evaluate the wound healing efficacy of optimized NDH-4338 nanosuspensions against nitrogen mustard-induced skin injury. Nanosuspensions were prepared by sonoprecipitation in the presence of a Vitamin E TPGS aqueous stabilizer solution. Critical processing parameters and material attributes were optimized to reduce particle size and determine the effect on dissolution rate and burn healing efficacy. The antisolvent/solvent ratio (A/S), dose concentration (DC), and drug/stabilizer ratio (D/S) were the critical sonoprecipitation factors that control particle size. These factors were subjected to a Box-Behnken design and response surface analysis, and model quality was assessed. Maximize desirability and simulation experiment optimization approaches were used to determine nanosuspension parameters with the smallest size and the lowest defect rate within the 10-50 nm specification limits. Optimized and unoptimized nanosuspensions were prepared and characterized. An established depilatory double-disc mouse model was used to evaluate the healing of nitrogen mustard-induced dermal injuries. Optimized nanosuspensions (A/S = 6.2, DC = 2% w/v, D/S = 2.8) achieved a particle size of 31.46 nm with a narrow size range (PDI = 0.110) and a reduced defect rate (42.2 to 6.1%). The optimized nanosuspensions were stable and re-dispersible, and they showed a ~45% increase in cumulative drug release and significant edema reduction in mice. Optimized NDH-4338 nanosuspensions were smaller with more uniform sizes that led to improved physical stability, faster dissolution, and enhanced burn healing efficacy compared to unoptimized nanosuspensions.
Collapse
Affiliation(s)
- Tomas L. Roldan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
| | - Shike Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
| | - Christophe Guillon
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Ned D. Heindel
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Jeffrey D. Laskin
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - In Heon Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
| | - Patrick J. Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
| |
Collapse
|
9
|
Park JS, Choi JH, Joung MY, Yang IG, Choi YS, Kang MJ, Ho MJ. Design of High-Payload Ascorbyl Palmitate Nanosuspensions for Enhanced Skin Delivery. Pharmaceutics 2024; 16:171. [PMID: 38399233 PMCID: PMC10891688 DOI: 10.3390/pharmaceutics16020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
A high-payload ascorbyl palmitate (AP) nanosuspension (NS) was designed to improve skin delivery following topical application. The AP-loaded NS systems were prepared using the bead-milling technique, and softly thickened into NS-loaded gel (NS-G) using hydrophilic polymers. The optimized NS-G system consisted of up to 75 mg/mL of AP, 0.5% w/v of polyoxyl-40 hydrogenated castor oil (Kolliphor® RH40) as the suspending agent, and 1.0% w/v of sodium carboxymethyl cellulose (Na.CMC 700 K) as the thickening agent, in citrate buffer (pH 4.5). The NS-G system was embodied as follows: long and flaky nanocrystals, 493.2 nm in size, -48.7 mV in zeta potential, and 2.3 cP of viscosity with a shear rate of 100 s-1. Both NS and NS-G provided rapid dissolution of the poorly water-soluble antioxidant, which was comparable to that of the microemulsion gel (ME-G) containing AP in solubilized form. In an ex vivo skin absorption study using the Franz diffusion cell mounted on porcine skin, NS-G exhibited faster absorption in skin, providing approximately 4, 3, and 1.4 times larger accumulation than that of ME-G at 3, 6, and 12 h, respectively. Therefore, the high-payload NS makes it a promising platform for skin delivery of the lipid derivative of ascorbic acid.
Collapse
Affiliation(s)
| | | | | | | | | | - Myung-Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea; (J.-S.P.); (J.-H.C.); (M.-Y.J.); (I.-G.Y.); (Y.-S.C.)
| | - Myoung-Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea; (J.-S.P.); (J.-H.C.); (M.-Y.J.); (I.-G.Y.); (Y.-S.C.)
| |
Collapse
|
10
|
Yang S, Lee S, Lee Y, Cho JH, Kim SH, Ha ES, Jung YS, Chung HY, Kim MS, Kim HS, Chang SC, Min KJ, Lee J. Cationic nanoplastic causes mitochondrial dysfunction in neural progenitor cells and impairs hippocampal neurogenesis. Free Radic Biol Med 2023; 208:194-210. [PMID: 37553025 DOI: 10.1016/j.freeradbiomed.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Nanoplastics (NPs) exposure to humans can occur through various routes, including the food chain, drinking water, skin contact, and respiration. NPs are plastics with a diameter of less than 100 nm and have the potential to accumulate in tissues, leading to toxic effects. This study aimed to investigate the neurotoxicity of polystyrene NPs on neural progenitor cells (NPCs) and hippocampal neurogenesis in a rodent model. Toxicity screening of polystyrene NPs based on their charge revealed that cationic amine-modified polystyrene (PS-NH3+) exhibited cytotoxicity, while anionic carboxylate-modified polystyrene (PS-COO-) and neutral NPs (PS) did not. NPCs treated with PS-NH3+ showed a significant reduction in growth rate due to G1 cell cycle arrest. PS-NH3+ increased the expression of cell cycle arrest markers p21 and p27, while decreasing cyclin D expression in NPCs. Interestingly, PS-NH3+ accumulated in mitochondria, leading to mitochondrial dysfunction and energy depletion, which caused G1 cell cycle arrest. Prolonged exposure to PS-NH3+ in C17.2 NPCs increased the expression of p16 and senescence-associated secretory phenotype factors, indicating cellular senescence. In vivo studies using C57BL/6 mice demonstrated impaired hippocampal neurogenesis and memory retention after 10 days of PS-NH3+ administration. This study suggests that NPs could deplete neural stem cell pools in the brain by mitochondrial dysfunction, thereby adversely affecting hippocampal neurogenesis and neurocognitive functions.
Collapse
Affiliation(s)
- Seonguk Yang
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seulah Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yujeong Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea; Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Jung-Hyun Cho
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Sou Hyun Kim
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun-Sol Ha
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 2066, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Jaewon Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
11
|
Liquid antisolvent crystallization of pharmaceutical compounds: current status and future perspectives. Drug Deliv Transl Res 2023; 13:400-418. [PMID: 35953765 DOI: 10.1007/s13346-022-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 12/30/2022]
Abstract
The present work reviews the liquid antisolvent crystallization (LASC) to prepare the nanoparticle of pharmaceutical compounds to enhance their solubility, dissolution rate, and bioavailability. The application of ultrasound and additives is discussed to prepare the particles with narrow size distribution. The use of ionic liquid as an alternative to conventional organic solvent is presented. Herbal compounds, also known for low aqueous solubility and limited clinical application, have been crystalized by LASC and discussed here. The particle characteristics such as particle size and particle size distribution are interpreted in terms of supersaturation, nucleation, and growth phenomena. To overcome the disadvantage of batch crystallization, the scientific literature on continuous flow reactors is also reviewed. LASC in a microfluidic device is emerging as a promising technique. The different design of the microfluidic device and their application in LASC are discussed. The combination of the LASC technique with traditional techniques such as high-pressure homogenization and spray drying is presented. A comparison of product characteristics prepared by LASC and the supercritical CO2 antisolvent method is discussed to show that LASC is an attractive and inexpensive alternative for nanoparticle preparation. One of the major strengths of this paper is a discussion on less-explored applications of LASC in pharmaceutical research to attract the attention of future researchers.
Collapse
|
12
|
Harwansh RK, Yadav P, Deshmukh R. Current Insight into Novel Delivery Approaches of Resveratrol for Improving Therapeutic Efficacy and Bioavailability with its Clinical Updates. Curr Pharm Des 2023; 29:2921-2939. [PMID: 38053352 DOI: 10.2174/0113816128282713231129094715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Resveratrol (RSV) is a polyphenolic phytoalexin, and belongs to the stilbene family. RSV has several therapeutic activities such as cardioprotective, anticancer, and antioxidant. Apart from its therapeutic benefits, its pharmacological uses are limited due to low solubility, poor bioavailability, and short biological halflife. A researcher continuously focuses on overcoming the limitations of RSV through nanotechnology platforms to get the optimum health benefits. In this context, nanocarriers are pioneering to overcome these drawbacks. Nanocarriers possess high drug loading capacity, thermal stability, low production cost, longer shelflife, etc. Fortunately, scientists were proficient in delivering resveratrol-based nanocarriers in the present scenario. Nanocarriers can deliver drugs to the target sites without compromising the bioavailability. Thus, this review highlights how the latest nanocarrier systems overcome the shortcomings of RSV, which will be good for improving therapeutic efficacy and bioavailability. Moreover, recent updates on resveratrol-based novel formulations and their clinical trials have been addressed to manage several health-related problems.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Paras Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
13
|
Nose-to-brain delivery of rotigotine redispersible nanosuspension: In vitro and in vivo characterization. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Gausuzzaman SAL, Saha M, Dip SJ, Alam S, Kumar A, Das H, Sharker SM, Rashid MA, Kazi M, Reza HM. A QbD Approach to Design and to Optimize the Self-Emulsifying Resveratrol-Phospholipid Complex to Enhance Drug Bioavailability through Lymphatic Transport. Polymers (Basel) 2022; 14:polym14153220. [PMID: 35956734 PMCID: PMC9371077 DOI: 10.3390/polym14153220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: Despite having profound therapeutic value, the clinical application of resveratrol is restrained due to its <1% bioavailability, arising from the extensive fast-pass effect along with enterohepatic recirculation. This study aimed to develop a self-emulsifying formulation capable of increasing the bioavailability of resveratrol via lymphatic transport. Methods: The resveratrol−phospholipid complex (RPC) was formed by the solvent evaporation method and characterized by FTIR, DSC, and XRD analyses. The RPC-loaded self-emulsifying drug delivery system (SEDDS) was designed, developed, and optimized using the QbD approach with an emphasis on resveratrol transport through the intestinal lymphatic pathway. The in vivo pharmacokinetic study was investigated in male Wister Albino rats. Results: The FTIR, DSC, and XRD analyses confirmed the RPC formation. The obtained design space provided robustness of prediction within the 95% prediction interval to meet the CQA specifications. An optimal formulation (desirability value of 7.24) provided Grade-A self-emulsion and exhibited a 48-fold bioavailability enhancement compared to the pure resveratrol. The cycloheximide-induced chylomicron flow blocking approach demonstrated that 91.14% of the systemically available resveratrol was transported through the intestinal lymphatic route. Conclusions: This study suggests that an optimal self-emulsifying formulation can significantly increase the bioavailability of resveratrol through lymphatic transport to achieve the desired pharmacological effects.
Collapse
Affiliation(s)
| | - Mithun Saha
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shahid Jaman Dip
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shaiful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Arup Kumar
- Materials Science Division, Atomic Energy Centre, 4 Kazi Nazrul Islam Avenue, Shahbagh, Dhaka 1000, Bangladesh
| | - Harinarayan Das
- Materials Science Division, Atomic Energy Centre, 4 Kazi Nazrul Islam Avenue, Shahbagh, Dhaka 1000, Bangladesh
| | - Shazid Md. Sharker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
- Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (M.K.); (H.M.R.); Tel.: +966-114677372 (M.K.); +880-255668200 (ext. 1954) (H.M.R.); Fax: +966-114676295 (M.K.); +880-255668202 (H.M.R.)
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
- Correspondence: (M.K.); (H.M.R.); Tel.: +966-114677372 (M.K.); +880-255668200 (ext. 1954) (H.M.R.); Fax: +966-114676295 (M.K.); +880-255668202 (H.M.R.)
| |
Collapse
|
15
|
Zhao X, Chen G, Wang F, Zhao H, Wei Y, Liu L, Zhang H. Extraction, characterization, antioxidant activity and rheological behavior of a polysaccharide produced by the extremely salt tolerant Bacillus subtilis LR-1. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Preparation, Characterization, and Evaluation of Breviscapine Nanosuspension and Its Freeze-Dried Powder. Pharmaceutics 2022; 14:pharmaceutics14050923. [PMID: 35631508 PMCID: PMC9143020 DOI: 10.3390/pharmaceutics14050923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 01/19/2023] Open
Abstract
As a biopharmaceutics classification system (BCS) class IV drug, breviscapine (Bre) has low solubility in water, poor chemical stability, a short biological half-life and rapid removal from plasma. This paper prepared a Bre nanosuspension (Bre-NS) by an ultrasound-assisted anti-solvent precipitation method. Characterization of Bre-NS was studied using a Box–Behnken design concerning drug concentration in DMSO, an anti-solvent-to-solvent ratio, and sonication time. Under the optimized conditions of 170 mg/mL for the drug concentration, a 1:60 solvent-to-anti-solvent ratio, and a 9 min sonication time, the particle size of Bre-NS was 303.7 ± 7.3 nm, the polydispersity index was 0.178 ± 0.015, and the zeta potential was −31.10 ± 0.26 mV. Combined with the results from differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform-infrared spectroscopy (FT-IR), the findings indicated that the crystal form and chemical structure of Bre-NS did not change during the entire process. The optimized formulation displayed good stability, increased solubility, and better in vitro release. Therefore, the results of this study can be a reference for the delivery system design of insoluble active components and effective parts in traditional Chinese medicine.
Collapse
|
17
|
Ma S, Guo J, Tian Z, Meng T, Mai Y, Yang J. Multi-directionally evaluating the formation mechanism of 1,4-dihydropyridine drug nanosuspensions through experimental validation and computer-aided drug design. Drug Dev Ind Pharm 2022; 47:1587-1597. [PMID: 35037805 DOI: 10.1080/03639045.2022.2028824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The poor aqueous solubility of 1,4-dihydropyridine drugs needs to be solved urgently to improve the bioavailability. Nanotechnology can improve drug solubility and dissolution by reducing particle size, but usually a specific polymer or surfactant is required for stabilization. In this study, Poloxamer-407(P-407) was screened as the optimal stabilize through energy simulation, molecular docking and particle size. morphological study, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, Raman, in vitro dissolution test and molecular simulation of interactions were utilized to explore the formation mechanisms of four 1,4-dihydropyridine drugs/P-407 nanosuspensions. The result shows that the optimized nanosuspensions had the particle size in the nano-size range and maintained the original crystal state. The in vitro dissolution rate of the nanosuspension was 3-4 times higher than the corresponding API and could reduce the restriction of drug dissolution in different pH environments. Raman spectroscopy, FTIR and molecular docking simulations provided strong supporting evidence for the formation mechanism of 1,4-dihydropyridine drugs/P-407 nanosuspensions at the molecular level, which confirmed that the stable intermolecular hydrogen bond adsorption and hydrophobic interaction were formed between the drug and P-407. This research will provide practical concepts and technologies, which are helpful to develop nanosuspensions for the same class of drugs.
Collapse
Affiliation(s)
- Shijie Ma
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Zonghua Tian
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Tingting Meng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Yaping Mai
- Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| |
Collapse
|
18
|
Saha P, Pandey MM. DoE-based validation of a HPLC-UV method for quantification of rotigotine nanocrystals: Application to in vitro dissolution and ex vivo nasal permeation studies. Electrophoresis 2021; 43:590-600. [PMID: 34783375 DOI: 10.1002/elps.202100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022]
Abstract
The current work is focused on optimization, development, and validation of a sensitive and specific reversed-phase high-performance liquid chromatography (RP-HPLC) method for the estimation of rotigotine (RTG) in bulk and nanoformulations. The RP-HPLC method was effectively optimized using the concepts of design of experiments. Critical method variables (CMVs) were screened using Plackett-Burman design. Box-Behnken, a surface response methodology-based design, was further used for the optimization of CMVs with the number of theoretical plates and retention time (min) as responses. The optimized chromatographic conditions for the RP-HPLC method were: acetonitrile proportion: 54% v/v, pH of buffer: 5.0 (10 mM), and flow rate: 0.65 mL/min. The number of theoretical plates and retention time in the study were found to be 11206 and 7.65 min, respectively. The developed method exhibited good linearity (R2 = 0.9995) within a range of 25-600 ng/mL and LOD and LOQ were found to be 9 and 12 ng/mL, respectively. The developed RP-HPLC method was found sensitive, accurate, precise, specific, robust, and stability indicating according to the regulatory guidelines. The validated method was efficiently applied for in vitro dissolution study, ex vivo nasal permeation study, and estimation of drug content of RTG nanocrystals.
Collapse
Affiliation(s)
- Paramita Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Murali Monohar Pandey
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| |
Collapse
|
19
|
Park H, Kim JS, Kim S, Ha ES, Kim MS, Hwang SJ. Pharmaceutical Applications of Supercritical Fluid Extraction of Emulsions for Micro-/Nanoparticle Formation. Pharmaceutics 2021; 13:pharmaceutics13111928. [PMID: 34834343 PMCID: PMC8625501 DOI: 10.3390/pharmaceutics13111928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
Micro-/nanoparticle formulations containing drugs with or without various biocompatible excipients are widely used in the pharmaceutical field to improve the physicochemical and clinical properties of the final drug product. Among the various micro-/nanoparticle production technologies, emulsion-based particle formation is the most widely used because of its unique advantages such as uniform generation of spherical small particles and higher encapsulation efficiency (EE). For this emulsion-based micro-/nanoparticle technology, one of the most important factors is the extraction efficiency associated with the fast removal of the organic solvent. In consideration of this, a technology called supercritical fluid extraction of emulsions (SFEE) that uses the unique mass transfer mechanism and solvent power of a supercritical fluid (SCF) has been proposed to overcome the shortcomings of several conventional technologies such as solvent evaporation, extraction, and spray drying. This review article presents the main aspects of SFEE technology for the preparation of micro-/nanoparticles by focusing on its pharmaceutical applications, which have been organized and classified according to several types of drug delivery systems and active pharmaceutical ingredients. It was definitely confirmed that SFEE can be applied in a variety of drugs from water-soluble to poorly water-soluble. In addition, it has advantages such as low organic solvent residual, high EE, desirable release control, better particle size control, and agglomeration prevention through efficient and fast solvent removal compared to conventional micro-/nanoparticle technologies. Therefore, this review will be a good resource for determining the applicability of SFEE to obtain better pharmaceutical quality when researchers in related fields want to select a suitable manufacturing process for preparing desired micro-/nanoparticle drug delivery systems containing their active material.
Collapse
Affiliation(s)
- Heejun Park
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Korea; (H.P.); (S.K.)
| | - Jeong-Soo Kim
- Dong-A ST Co. Ltd., 21, Geumhwa-ro 105beon-gil, Giheung-gu, Yongin-si 17073, Korea;
| | - Sebin Kim
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Korea; (H.P.); (S.K.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea;
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: (M.-S.K.); (S.-J.H.); Tel.: +82-51-510-2813 (M.-S.K.)
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences & College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
- Correspondence: (M.-S.K.); (S.-J.H.); Tel.: +82-51-510-2813 (M.-S.K.)
| |
Collapse
|
20
|
Spray-freeze-dried inhalable composite microparticles containing nanoparticles of combinational drugs for potential treatment of lung infections caused by Pseudomonas aeruginosa. Int J Pharm 2021; 610:121160. [PMID: 34624446 DOI: 10.1016/j.ijpharm.2021.121160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/24/2022]
Abstract
The multi-drug resistance of Pseudomonas aeruginosa is an overwhelming cause of terminal and persistent lung infections in cystic fibrosis (CF) patients. Antimicrobial synergy has been shown for colistin and ivacaftor, and our study designed a relatively high drug-loading dry powder inhaler formulation containing nanoparticles of ivacaftor and colistin. The ivacaftor-colistin nanosuspensions (Iva-Col-NPs) were prepared by the anti-solvent method with different stabilizers. Based on the aggregation data, the formulation 7 (F7) with DSPG-PEG-OMe as the stabilizer was selected for further studies. The F7 consisted of ivacaftor, colistin and DSPG-PEG-OMe with a mass ratio of 1:1:1. The F7 powder formulation was developed using the ultrasonic spray-freeze-drying method and exhibited a rough surface with relatively high fine particle fraction values of 61.4 ± 3.4% for ivacaftor and 63.3 ± 3.3% for colistin, as well as superior emitted dose of 97.8 ± 0.3% for ivacaftor and 97.6 ± 0.5% for colistin. The F7 showed very significant dissolution improvement for poorly water soluble ivacaftor than the physical mixture. Incorporating two drugs in a single microparticle with synchronized dissolution and superior aerosol performance will maximize the synergy and bioactivity of those two drugs. Minimal cytotoxicity in Calu-3 human lung epithelial cells and enhanced antimicrobial activity against colistin-resistant P. aeruginosa suggested that our formulation has potential to improve the treatment of CF patients with lung infections.
Collapse
|
21
|
Enhanced oral permeability of Trans-Resveratrol using nanocochleates for boosting anticancer efficacy; in-vitro and ex-vivo appraisal. Eur J Pharm Biopharm 2021; 168:166-183. [PMID: 34481049 DOI: 10.1016/j.ejpb.2021.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent liver cancer representing the fourth most lethal cancer worldwide. Trans-Resveratrol (T-R) possesses a promising anticancer activity against HCC. However, it suffers from poor bioavailability because of the low solubility, chemical instability, and hepatic metabolism. Herein, we developed T-R-loaded nanocochleates using a simple trapping method. Nanocarriers were optimized using a comprehensive in-vitro characterization toolset and evaluated for the anticancer activity against HepG2 cell line. T-R-loaded nanocochleates demonstrated monodispersed cylinders (163.27 ± 2.68 nm and 0.25 ± 0.011 PDI) and -46.6 mV ζ-potential. They exhibited a controlled biphasic pattern with minimal burst followed by sustained release for 72 h. Significant enhancements of Caco-2 transport and ex-vivo intestinal permeation over liposomes, with 1.8 and 2.1-folds respectively, were observed. Nanocochleates showed significant reduction of 24 h IC50 values compared to liposomes and free T-R. Moreover, an efficient knockdown of anti-apoptotic (Bcl-2) and cancer stemness (NANOG) genes was demonstrated. To the best of our knowledge, we are the first to develop T-R loaded nanocochleates and scrutinize its potential in suppressing NANOG expression, 2-folds lower, compared to free T-R. According to these auspicious outcomes, nanocochleates represent a promising nanoplatform to enhance T-R oral permeability and augment its anticancer efficacy in the treatment of HCC.
Collapse
|
22
|
Won DH, Park H, Ha ES, Kim HH, Jang SW, Kim MS. Optimization of bilayer tablet manufacturing process for fixed dose combination of sustained release high-dose drug and immediate release low-dose drug based on quality by design (QbD). Int J Pharm 2021; 605:120838. [PMID: 34197909 DOI: 10.1016/j.ijpharm.2021.120838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
A fixed dose combination (FDC) bilayer tablet, consisting of high-dose metformin HCl in a sustained release layer and low-dose evogliptin tartrate in an immediate release layer, was developed based on a quality by design (QbD) approach. To implement QbD approach, the bilayer tableting process parameters judged as high risk through risk analysis were optimized by a central composite face-centered design as a design of experiment (DOE) methodology. Using DOE, the optimized conditions of the tableting process for drug products that satisfy the established quality target product profiles were obtained. The content uniformity of low-dose evogliptin tartrate in the optimized bilayer tablet prepared on a large scale was confirmed by at-line transmittance Raman spectroscopy as a process analytical technology. In addition, the in vitro drug release and in vivo pharmacokinetic studies showed that metformin HCl and evogliptin tartrate in the bilayer tablet is bioequivalent to those of the respective reference drugs. Furthermore, the physicochemical stability of the optimized bilayer tablet during storage under long-term and accelerated conditions was also confirmed. Therefore, it can be concluded that the QbD approach is an effective way to develop a new FDC bilayer tablet that is easy to scale up for successful commercialization.
Collapse
Affiliation(s)
- Dong Han Won
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; Dong-A ST Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Republic of Korea
| | - Heejun Park
- College of Pharmacy, Duksung Women's University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hwan-Ho Kim
- Dong-A ST Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Republic of Korea
| | - Sun Woo Jang
- Dong-A ST Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
23
|
Ghazwani M, Alam P, Alqarni MH, Yusufoglu HS, Shakeel F. Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol + Water Mixtures. Molecules 2021; 26:3091. [PMID: 34064283 PMCID: PMC8196874 DOI: 10.3390/molecules26113091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
This research deals with the determination of solubility, Hansen solubility parameters, dissolution properties, enthalpy-entropy compensation, and computational modeling of a naturally-derived bioactive compound trans-resveratrol (TRV) in water, methanol, ethanol, n-propanol, n-butanol, propylene glycol (PG), and various PG + water mixtures. The solubility of TRV in six different mono-solvents and various PG + water mixtures was determined at 298.2-318.2 K and 0.1 MPa. The measured experimental solubility values of TRV were regressed using six different computational/theoretical models, including van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsly-Roseman, Jouyban-Acree, and van't Hoff-Jouyban-Acree models, with average uncertainties of less than 3.0%. The maxima of TRV solubility in mole fraction was obtained in neat PG (2.62 × 10-2) at 318.2 K. However, the minima of TRV solubility in the mole fraction was recorded in neat water (3.12 × 10-6) at 298.2 K. Thermodynamic calculation of TRV dissolution properties suggested an endothermic and entropy-driven dissolution of TRV in all studied mono-solvents and various PG + water mixtures. Solvation behavior evaluation indicated an enthalpy-driven mechanism as the main mechanism for TRV solvation. Based on these data and observations, PG has been chosen as the best mono-solvent for TRV solubilization.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.); (H.S.Y.)
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.); (H.S.Y.)
| | - Hasan S. Yusufoglu
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.); (H.S.Y.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Sinha B, Müller RH, Möschwitzer JP. Can the cavi-precipitation process be exploited to generate smaller size drug nanocrystal? Drug Dev Ind Pharm 2021; 47:235-245. [PMID: 33404268 DOI: 10.1080/03639045.2020.1871004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Cavi-precipitation has the potential to generate drug nanocrystals very efficiently. Achieving smaller than 100 nm particle size for organic drug substances still remained a challenge. The objective of this study was to demonstrate if cavi-precipitation technology can be used to generate smaller than 100 nm drug nanocrystal particle. SIGNIFICANCE This study demonstrates that cavi-precipitation process can be used to generate drug nanocrystals of the model compound resveratrol (RVT) consists of crystallites of 30-50 nm size. METHOD RVT was dissolved in different organic solvents to prepare the solvent phase (S-phase). Several stabilizers were tested for the organic phase. A combination of SDS and PVP was used stabilizer system in the aqueous anti-solvent phase (AS-phase). The S-phase was added to the AS-phase inside the Emulsiflex C5 homogenizer. Nanosuspension was characterized by laser diffractometry (LD), photon correlation spectroscopy (PCS) and scanning electron microscopy (SEM). The solid state of the suspended particles was investigated by powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC). RESULTS It was found that DMSO, alone or in combination with acetone in the S-Phase generated the smallest size RVT nanocrystals. The optimum solvent (S) antisolvent (AS) ratio (S:AS) was found to be 3.6:56.4 (v:v). Span 20 was identified as the best stabilizer for the organic phase at a ratio (w:w) of 1:3 (Span 20:RVT). The particles precipitated from different solvents were predominantly crystalline. CONCLUSIONS The best sample had a mean particle size (LD) of 167 nm [d(0.5)] which was composed of smaller crystallites having 30-50 nm size (SEM).
Collapse
Affiliation(s)
- Biswadip Sinha
- Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics and Nutricosmetics, Freie University of Berlin, Berlin, Germany
| | - Rainer H Müller
- Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics and Nutricosmetics, Freie University of Berlin, Berlin, Germany
| | - Jan P Möschwitzer
- Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics and Nutricosmetics, Freie University of Berlin, Berlin, Germany
| |
Collapse
|
25
|
Solubility Determination of c-Met Inhibitor in Solvent Mixtures and Mathematical Modeling to Develop Nanosuspension Formulation. Molecules 2021; 26:molecules26020390. [PMID: 33450987 PMCID: PMC7828412 DOI: 10.3390/molecules26020390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/29/2023] Open
Abstract
The solubility and dissolution thermodynamics of new c-Met inhibitor, ABN401, were determined in eleven solvents and Transcutol® HP-water mixture (TWM) from 298.15 to 318.15 K. The experimental solubilities were validated using five mathematical models, namely modified Apelblat, van't Hoff, Buchowski-Ksiazaczak λh, Yalkowsky, and Jouyban-Acree van't Hoff models. The experimental results were correlated and utilized further to investigate the feasibility of nanosuspension formation using liquid anti-solvent precipitation. Thermodynamic solubility of ABN401 increased significantly with the increase in temperature and maximum solubility was obtained with Transcutol® HP while low solubility in was obtained water. An activity coefficient study indicated that high molecular interaction was observed in ABN401-Transcutol® HP (THP). The solubility increased proportionately as the mole fraction of Transcutol® HP increased in TWM, which was also supported by a solvent effect study. The result suggested endothermic and entropy-driven dissolution. Based on the solubility, nanosuspension was designed with Transcutol® HP as solvent, and water as anti-solvent. The mean particle size of nanosuspension decreased to 43.05 nm when the mole fraction of ABN401 in THP, and mole fraction of ABN401 in TWM mixture were decreased to 0.04 and 0.1. The ultrasonicated nanosuspension appeared to give comparatively higher dissolution than micronized nanosuspension and provide a candidate formulation for in vivo purposes.
Collapse
|
26
|
Enhanced Oral Bioavailability of Resveratrol by Using Neutralized Eudragit E Solid Dispersion Prepared via Spray Drying. Antioxidants (Basel) 2021; 10:antiox10010090. [PMID: 33440781 PMCID: PMC7828062 DOI: 10.3390/antiox10010090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, we designed amorphous solid dispersions based on Eudragit E/HCl (neutralized Eudragit E using hydrochloric acid) to maximize the dissolution of trans-resveratrol. Solid-state characterization of amorphous solid dispersions of trans-resveratrol was performed using powder X-ray diffraction, scanning electron microscopy, and particle size measurements. In addition, an in vitro dissolution study and an in vivo pharmacokinetic study in rats were carried out. Among the tested polymers, Eudragit E/HCl was the most effective solid dispersion for the solubilization of trans-resveratrol. Eudragit E/HCl significantly inhibited the precipitation of trans-resveratrol in a pH 1.2 dissolution medium in a dose-dependent manner. The amorphous Eudragit E/HCl solid dispersion at a trans-resveratrol/polymer ratio of 10/90 exhibited a high degree of supersaturation without trans-resveratrol precipitation for at least 48 h by the formation of Eudragit E/HCl micelles. In rats, the absolute oral bioavailability (F%) of trans-resveratrol from Eudragit E/HCl solid dispersion (10/90) was estimated to be 40%. Therefore, trans-resveratrol-loaded Eudragit E/HCl solid dispersions prepared by spray drying offer a promising formulation strategy with high oral bioavailability for developing high-quality health supplements, nutraceutical, and pharmaceutical products.
Collapse
|
27
|
Singh G. Resveratrol: nanocarrier-based delivery systems to enhance its therapeutic potential. Nanomedicine (Lond) 2020; 15:2801-2817. [PMID: 33191840 DOI: 10.2217/nnm-2020-0289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a polyphenolic compound existing in trees, peanuts and grapes and exhibits a broad spectrum of promising therapeutic activities, but it is unclear whether this entity targets the sites of action after oral administration. In vivo applicability of resveratrol has limited success so far, mainly due to its incompetent systemic delivery resulting from its low water solubility, poor bioavailability and short biological half-life. First-pass metabolism and presence of enterohepatic recirculation create doubt on the biological application of high doses typically used for in vitro trials. To augment bioavailability, absorption and uptake of resveratrol by cellular internalization, countless approaches have been implemented which involve the use of nanocarriers. Nanocarriers are a well-known delivery system used to reduce first-pass hepatic metabolism, overcome enterohepatic recirculation and accelerate the absorption of drugs via lymphatic pathways.
Collapse
|
28
|
Resveratrol Suppresses Cross-Talk between Colorectal Cancer Cells and Stromal Cells in Multicellular Tumor Microenvironment: A Bridge between In Vitro and In Vivo Tumor Microenvironment Study. Molecules 2020; 25:molecules25184292. [PMID: 32962102 PMCID: PMC7570736 DOI: 10.3390/molecules25184292] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction between tumor cells and the tumor microenvironment (TME) is an important process for the development of tumor malignancy. Modulation of paracrine cross-talk could be a promising strategy for tumor control within the TME. The exact mechanisms of multi-targeted compound resveratrol are not yet fully understood. Whether resveratrol can modulate paracrine signal transduction-induced malignancy in the multicellular-TME of colorectal cancer cells (CRC) was investigated. An in vitro model with 3D-alginate HCT116 cells in multicellular-TME cultures (fibroblast cells, T-lymphocytes) was used to elucidate the role of TNF-β, Sirt1-ASO and/or resveratrol in the proliferation, invasion and cancer stem cells (CSC) of CRC cells. We found that multicellular-TME, similar to TNF-β-TME, promoted proliferation, colony formation, invasion of CRC cells and enabled activation of CSCs. However, after co-treatment with resveratrol, the malignancy of multicellular-TME reversed to HCT116. In addition, resveratrol reduced the secretion of T-lymphocyte/fibroblast (TNF-β, TGF-β3) proteins, antagonized the T-lymphocyte/fibroblast-promoting NF-κB activation, NF-κB nuclear translocation and thus the expression of NF-κB-promoting biomarkers, associated with proliferation, invasion and survival of CSCs in 3D-alginate cultures of HCT116 cells induced by TNF-β- or multicellular-TME, but not by Sirt1-ASO, indicating the central role of this enzyme in the anti-tumor function of resveratrol. Our results suggest that in vitro multicellular-TME promotes crosstalk between CRC and stromal cells to increase survival, migration of HCT116 and the resveratrol/Sirt1 axis suppresses this loop by modulating paracrine agent secretion and NF-κB signaling. Fibroblasts and T-lymphocytes are promising targets for resveratrol in the prevention of CRC metastasis.
Collapse
|
29
|
Ha ES, Park H, Lee SK, Sim WY, Jeong JS, Kim MS. Equilibrium solubility and modeling of trans-resveratrol in dichloromethane and primary alcohol solvent mixtures at different temperatures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113363] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Ashrafizadeh M, Javanmardi S, Moradi-Ozarlou M, Mohammadinejad R, Farkhondeh T, Samarghandian S, Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Biosci Rep 2020; 40:BSR20200257. [PMID: 32163546 PMCID: PMC7133519 DOI: 10.1042/bsr20200257] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are intracellular organelles with two distinct membranes, known as an outer mitochondrial membrane and inner cell membrane. Originally, mitochondria have been derived from bacteria. The main function of mitochondria is the production of ATP. However, this important organelle indirectly protects cells by consuming oxygen in the route of energy generation. It has been found that mitochondria are actively involved in the induction of the intrinsic pathways of apoptosis. So, there have been efforts to sustain mitochondrial homeostasis and inhibit its dysfunction. Notably, due to the potential role of mitochondria in the stimulation of apoptosis, this organelle is a promising target in cancer therapy. Resveratrol is a non-flavonoid polyphenol that exhibits significant pharmacological effects such as antioxidant, anti-diabetic, anti-inflammatory and anti-tumor. The anti-tumor activity of resveratrol may be a consequence of its effect on mitochondria. Multiple studies have investigated the relationship between resveratrol and mitochondria, and it has been demonstrated that resveratrol is able to significantly enhance the concentration of reactive oxygen species, leading to the mitochondrial dysfunction and consequently, apoptosis induction. A number of signaling pathways such as sirtuin and NF-κB may contribute to the mitochondrial-mediated apoptosis by resveratrol. Besides, resveratrol shifts cellular metabolism from glycolysis into mitochondrial respiration to induce cellular death in cancer cells. In the present review, we discuss the possible interactions between resveratrol and mitochondria, and its potential application in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Moradi-Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
31
|
Pure Trans-Resveratrol Nanoparticles Prepared by A Supercritical Antisolvent Process Using Alcohol and Dichloromethane Mixtures: Effect of Particle Size on Dissolution and Bioavailability in Rats. Antioxidants (Basel) 2020; 9:antiox9040342. [PMID: 32331478 PMCID: PMC7222356 DOI: 10.3390/antiox9040342] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to prepare pure trans-resveratrol nanoparticles without additives (surfactants, polymers, and sugars) using a supercritical antisolvent (SAS) process with alcohol (methanol or ethanol) and dichloromethane mixtures. In addition, in order to investigate the effect of particle size on the dissolution and oral bioavailability of the trans-resveratrol, two microparticles with different sizes (1.94 μm and 18.75 μm) were prepared using two different milling processes, and compared to trans-resveratrol nanoparticles prepared by the SAS process. The solid-state properties of pure trans-resveratrol particles were characterized. By increasing the percentage of dichloromethane in the solvent mixtures, the mean particle size of trans-resveratrol was decreased, whereas its specific surface area was increased. The particle size could thus be controlled by solvent composition. Trans-resveratrol nanoparticle with a mean particle size of 0.17 μm was prepared by the SAS process using the ethanol/dichloromethane mixture at a ratio of 25/75 (w/w). The in vitro dissolution rate of trans-resveratrol in fasted state-simulated gastric fluid was significantly improved by the reduction of particle size, resulting in enhanced oral bioavailability in rats. The absolute bioavailability of trans-resveratrol nanoparticles was 25.2%. The maximum plasma concentration values were well correlated with the in vitro dissolution rate. These findings clearly indicate that the oral bioavailability of trans-resveratrol can be enhanced by preparing pure trans-resveratrol nanoparticles without additives (surfactants, polymers, and sugars) by the SAS process. These pure trans-resveratrol nanoparticles can be applied as an active ingredient for the development of health supplements, pharmaceutical products, and cosmetic products.
Collapse
|
32
|
Hashem FM, Abd Allah FI, Abdel-Rashid RS, Hassan AAA. Glibenclamide nanosuspension inhaler: development, in vitro and in vivo assessment. Drug Dev Ind Pharm 2020; 46:762-774. [DOI: 10.1080/03639045.2020.1753062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fahima M. Hashem
- Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Fathy I. Abd Allah
- International Center for Bioavailability, Pharmaceutical and Clinical Research (ICBR), Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar university, Cairo, Egypt
| | | | - Abdelsabour A. A. Hassan
- International Center for Bioavailability, Pharmaceutical and Clinical Research (ICBR), Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar university, Cairo, Egypt
- Metered Dose Inhaler Department (MDI), Cairo, Egypt
- Arab Drug Company for pharmaceuticals and chemical industries (ADCO), Cairo, Egypt
| |
Collapse
|