1
|
Zhang Z, Jin M, Yang X, Zhu H, Li H, Yang Q. Particulate platform for pulmonary drug delivery: Recent advances of formulation and fabricating strategies. Int J Pharm 2025; 676:125601. [PMID: 40250501 DOI: 10.1016/j.ijpharm.2025.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Pulmonary drug delivery for managing respiratory diseases has attained a significant maturity level and holds substantial potential for applications in treating systemic diseases. Advancements in pulmonary delivery techniques have driven the innovative development of dry powder inhalers (DPIs), specifically engineered to optimize the efficacy of pulmonary drug delivery. This review examines recent progress in formulation and manufacturing strategies of inhalable dry powder, focusing on prescription design and fabrication approaches for advanced particulate systems. These include the integration of cutting-edge excipients into conventional formulations, nano-based delivery system, composite particles, and a blend of traditional and next-generation processing techniques, all contributing to enhanced drug delivery efficiency and bioavailability. Additionally, this review discusses the latest advancements in DPI devices. This review aims to provide a clear perspective on emerging inhalable dry powder formulation and processing trends for pulmonary delivery, highlighting the critical role of novel particulate platform in advancing pulmonary drug delivery systems.
Collapse
Affiliation(s)
- Zijia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengya Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyu Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Huang Y, Patil CD, Arte KS, Zhou QT, Qu LL. Particle surface coating for dry powder inhaler formulations. Expert Opin Drug Deliv 2025:1-17. [PMID: 40101203 DOI: 10.1080/17425247.2025.2482052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION The development of dry powder inhalers (DPIs) is challenging due to the need for micronized particles to achieve lung delivery. The high specific surface area of micronized particles renders them cohesive and adhesive. Addition of certain excipients like magnesium stearate has been reported to coat the particles and improve the aerosolization in the carrier-based DPI. Therefore, application of particle coating in DPI developments has been investigated and expanded over the years, along with the growing need of high-dose carrier-free DPIs. AREA COVERED In addition to modifying inter-particulate forces, particle coating has also been demonstrated to effectively provide moisture resistance, modify particle morphology, improve the stability of biologics, alter dissolution behaviors for DPI developments. These different coating functions have been discussed in the current work. Moreover, various coating techniques including solvent-based coating, dry coating, and vapor coating, as well as coating characterization have been summarized in the present review. EXPERT OPINION The extent of particle coating is critical to DPI performance; however, there is a demand for advanced characterization techniques to quantify and understand the coating quality. Further advancements in coating materials, methods, characterization techniques are needed to better relate coating properties to performance, especially for complex drug modalities.
Collapse
Affiliation(s)
- Yijing Huang
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Chanakya D Patil
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Kinnari Santosh Arte
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Qi Tony Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Li Lily Qu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Huang Y, Arte KS, Patil CD, Zhou Q, Qu L. Impact of Co-Spray Drying with Leucine or Trileucine on Aerosol Performance, In Vitro Dissolution, and Cellular Uptake of Colistin Powder Formulations for Inhalation. Pharmaceutics 2025; 17:199. [PMID: 40006566 PMCID: PMC11858924 DOI: 10.3390/pharmaceutics17020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objective: Surface enrichment of hydrophobic excipients via spray drying has been demonstrated as an efficient way to protect the dry powder inhaler formulations against moisture-induced deterioration in aerosol performance. However, the impact of such surface enrichment on dissolution and cellular uptake is less investigated, which can affect the safety and efficacy of dry powder inhalers (DPIs). Methods: In the present work, hygroscopic colistin was coated with leucine or trileucine, at different weight ratios during spray drying. All the powders were exposed to 75% relative humidity for one week. The aerosol performance was compared before and after the moisture exposure. Various solid-state characterizations, including particle size, particle morphology, crystallinity, water sorption/desorption, and surface composition, were conducted to evaluate the properties of spray-dried colistin with/without leucine or trileucine. Results: The results indicated that leucine or trileucine could protect the aerosol performance of spray-dried colistin against moisture deterioration. Leucine crystallized after spray drying with colistin, and such crystal leucine could further hinder water uptake when leucine was at a 20% or higher weight ratio. Trileucine did not crystallize after spray drying with colistin nor reduce the water uptake. Interestingly, trileucine showed a superior moisture protective effect to that of leucine, which could be attributed to its better surface enrichment efficiency than that of leucine due to its lower water solubility. Conclusions: Importantly, our results showed that the surface enrichment with leucine and trileucine did not significantly affect in vitro dissolution of colistin in the Franz cell test and cellular uptake of colistin in the H441 lung epithelium cell model, which could be attributed to small particle size and incomplete surface coverage by leucine or trileucine.
Collapse
Affiliation(s)
| | | | | | - Qi Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Li Qu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Shukla D, Kaur S, Singh A, Narang RK, Singh C. Enhanced antichemobrain activity of amino acid assisted ferulic acid solid dispersion in adult zebrafish (Danio rerio). Drug Deliv Transl Res 2024; 14:3422-3437. [PMID: 38573496 DOI: 10.1007/s13346-024-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Chemotherapy-induced cognitive impairment (CICI), also known as "chemobrain," is a common side effect of breast cancer therapy which causes oxidative stress and generation of reactive oxygen species (ROS). Ferulic acid (FA), a natural polyphenol, belongs to BCS class II is confirmed to have nootropic, neuroprotective and antioxidant effects. Here, we have developed FA solid dispersion (SD) in order to enhance its therapeutic potential against chemobrain. An amorphous ferulic acid loaded leucin solid dispersion (FA-Leu SD) was prepared by utilizing amino acid through spray-drying technique. The solid-state characterization was carried out via Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). Additionally, in-vitro release studies and antioxidant assay were also performed along with in-vivo locomotor, biochemical and histopathological analysis. The physical properties showed that FA-Leu SD so formed exhibited spherical, irregular surface hollow cavity of along with broad melting endotherm as observed from FE-SEM and DSC results. The XRD spectra demonstrated absence of sharp and intense peaks in FA-Leu SD which evidenced for complete encapsulation of drug into carrier. Moreover, in-vitro drug release studies over a period of 5 h in PBS (pH 7.4) displayed a significant enhanced release in the first hr (68. 49 ± 5.39%) and in-vitro DPPH assay displayed greater antioxidant potential of FA in FA-Leu SD. Furthermore, the in-vivo behavioral findings of FA-Leu SD (equivalent to 150 mg/kg of free FA) exhibited positive results accompanied by in-vivo biochemical and molecular TNF-α showed a significant difference (p < 0.001) vis-à-vis DOX treated group upon DOX + FA-Leu SD. Additionally, histopathological analysis revealed neuroprotective effects of FA-Leu SD together with declined oxidative stress due to antioxidant potential of FA which was induced by anticancer drug doxorubicin (DOX). Overall, the above findings concluded that spray-dried FA-Leu SD could be useful for the treatment of chemotherapy induced cognitive impairment.
Collapse
Affiliation(s)
- Deeksha Shukla
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India.
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India.
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India.
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
5
|
Floroiu A, Loretz B, Krämer J, Lehr CM. Drug solubility in biorelevant media in the context of an inhalation-based biopharmaceutics classification system (iBCS). Eur J Pharm Biopharm 2024; 197:114206. [PMID: 38316234 DOI: 10.1016/j.ejpb.2024.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
An inhalation-based Biopharmaceutics Classification System for pulmonary drugs (iBCS) holds the perspective to allow for scientifically sound prediction of differences in the in vivo performance of orally inhaled drug products (OIDPs). A set of nine drug substances were selected, that are administered via both the oral and pulmonary routes. Their solubility was determined in media representative for the oral (Fasted State Simulated Intestinal Fluid (FaSSIF)) and pulmonary (Alveofact medium and Simulated Lung Fluid (SLF)) routes of administration to confirm the need for a novel approach for inhaled drugs. The complexity of these media was then stepwise reduced with the purpose of understanding the contribution of their components to the solubilizing capacity of the media. A second reason for varying the complexity was to identify a medium that would allow robust but accurate dissolution testing. Hence, Hank's balanced salt solution (HBSS) as a medium used in many in vitro biological tests, non-buffered saline solution, and water were included. For some drug substances (salbutamol sulfate, tobramycin, isoniazid, and tiotropium bromide), no significant differences were observed between the solubility in the media used. For other drugs, however, we observed either just small (rifampicin, budesonide, salmeterol) or unexpectedly large differences (beclomethasone dipropionate). Based on the minimum theoretical solubility required for their common pulmonary dose in 10 ml of lung lining fluid, drug solubility was classified as either high or low. Two high solubility and two low solubility compounds were then selected for refined solubility testing in pulmonary relevant media by varying their content of phospholipids, surfactant proteins and other proteins. The solubility of drug substances in simulated lung lining fluids was found to be dependent on the physicochemical properties of the drug substance and the composition of the media. While a pulmonary dissolution medium that would fit all drugs could not be established, our approach may provide guidance for finding the most suitable dissolution medium for a given drug substance and better designing in vitro tests for predicting the in vivo performance of inhalable drug products.
Collapse
Affiliation(s)
- Andreea Floroiu
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Eurofins PHAST Development GmbH & Co. KG, 78467 Konstanz, Germany.
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany.
| |
Collapse
|
6
|
Party P, Ambrus R. Investigation of Physico-Chemical Stability and Aerodynamic Properties of Novel "Nano-in-Micro" Structured Dry Powder Inhaler System. MICROMACHINES 2023; 14:1348. [PMID: 37512657 PMCID: PMC10386112 DOI: 10.3390/mi14071348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Pulmonary drug transport has numerous benefits. Large surface areas for absorption and limited drug degradation of the gastrointestinal system are provided through the respiratory tract. The administration is painless and easy for the patient. Due to their better stability when compared to liquid formulations, powders have gained popularity among pulmonary formulations. In the pharmaceutical sector, quality assurance and product stability have drawn a lot of attention. Due to this, it was decided to perform a long-term stability study on a previously developed, nanosized dry powder inhaler (DPI) formulation that contained meloxicam. Wet milling was implemented to reduce the particle size, and nano spray-drying was used to produce the extra-fine inhalable particles. The particle diameter was determined using dynamic light scattering and laser diffraction. Scanning electron microscopy was utilized to describe the morphology. X-ray powder diffraction and differential scanning calorimetry were applied to determine the crystallinity. In an artificial lung medium, the in vitro dissolution was studied. The Andersen Cascade Impactor was used to investigate the in vitro aerodynamic characteristics. The stability test results demonstrated that the DPI formulation maintained its essential qualities after 6 and 12 months of storage. Consequently, the product might be promising for further studies and development.
Collapse
Affiliation(s)
- Petra Party
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, 6720 Szeged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, 6720 Szeged, Hungary
| |
Collapse
|
7
|
Heida R, Hagedoorn P, van Meel MC, Prins JER, Simonis FS, Akkerman R, Huckriede ALW, Frijlink HW, de Boer AH, Hinrichs WLJ. Performance Testing of a Homemade Aerosol Generator for Pulmonary Administration of Dry Powder Formulations to Mice. Pharmaceutics 2023; 15:1847. [PMID: 37514034 PMCID: PMC10385055 DOI: 10.3390/pharmaceutics15071847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
A challenge in the development of dry powder formulations for inhalation is the poor reproducibility of their administration to small laboratory animals. The currently used devices for the pulmonary administration of dry powder formulations to small rodents often function sub-optimally as they use the same puff of air for both powder dispersion and aerosol delivery. As a result, either the air volume and flow rate are too low for complete powder deagglomeration or they are too high for effective aerosol delivery to the lungs of the animal. Therefore, novel and better devices are desired. We here present an aerosol generator designed to administer a pre-generated aerosol to the lungs of mice. By mapping the complex relationship between the airflow rate, delivery time and emitted dose, we were able to control the amount of powder being delivered from the aerosol generator. The emitted aerosol had a size range favorable for lung deposition and could be measured reproducibly. Nevertheless, in vivo fluorescent imaging still revealed considerable differences between the mice in terms of the dose deposited and the distribution of powder over the lungs, suggesting that a certain biological variation in lung deposition is inevitable.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Melle C van Meel
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jurrie E R Prins
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Frederike S Simonis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Renate Akkerman
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Anne H de Boer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
8
|
Qi D, Jia B, Peng H, He J, Pi J, Guo P, Zhang Y, Deng X, Li J, Liu Z. Baicalin/ambroxol hydrochloride combined dry powder inhalation formulation targeting lung delivery for treatment of idiopathic pulmonary fibrosis: fabrication, characterization, pharmacokinetics, and pharmacodynamics. Eur J Pharm Biopharm 2023:S0939-6411(23)00139-X. [PMID: 37224929 DOI: 10.1016/j.ejpb.2023.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal lung disease caused by multiple factors. Currently, safe, and effective drugs for the treatment of IPF have been extremely scarce. Baicalin (BA) is used to treat pulmonary fibrosis, IPF, chronic obstructive pulmonary disease, and other lung diseases. Ambroxol hydrochloride (AH), a respiratory tract lubricant and expectorant, is often used to treat chronic respiratory diseases, such as bronchial asthma, emphysema, tuberculosis, and cough. The combination of BA and AH can relieve cough and phlegm, improve lung function, and potentially treat IPF and its symptoms. However, given the extremely low solubility of BA, its bioavailability for oral absorptions is also low. AH, on the other hand, has been associated with certain side effects, such as gastrointestinal tract and acute allergic reactions, which limit its applicability. Therefore, an efficient drug delivery system is urgently needed to address the mentioned problems. This study combined BA and AH as model drugs with L-leucine (L-leu) as the excipient to prepare BA/AH dry powder inhalations (BA/AH DPIs) using the co-spray drying method. We the performed modern pharmaceutical evaluation, which includes particle size, differential scanning calorimetry analysis, X-ray diffraction, scanning electron microscope, hygroscopicity, in vitro aerodynamic analysis, pharmacokinetics, and pharmacodynamics. Notably, BA/AH DPIs were found to be advantageous over BA and AH in treating IPF and had better efficacy in improving lung function than did the positive drug pirfenidone. The BA/AH DPI is a promising preparation for the treatment of IPF given its lung targeting, rapid efficacy, and high lung bioavailability.
Collapse
Affiliation(s)
- Dongli Qi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Bei Jia
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jiachen He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jiaxin Pi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Pan Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiuping Deng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jiawei Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300617, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Ordoubadi M, Shepard KB, Wang H, Wang Z, Pluntze AM, Churchman JP, Vehring R. On the Physical Stability of Leucine-Containing Spray-Dried Powders for Respiratory Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020435. [PMID: 36839756 PMCID: PMC9967520 DOI: 10.3390/pharmaceutics15020435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Carrier-free spray-dried dispersions for pulmonary delivery, for which the demand is growing, frequently require the incorporation of dispersibility-enhancing excipients into the formulations to improve the efficacy of the dosage form. One of the most promising of such excipients, L-leucine, is expected to be approved for inhalation soon and has been studied exhaustively. However, during stability, small fibers protruding from the particles of leucine-containing powders have occasionally been observed. To clarify the origin of these fibers and assess their potential influence on the performance of the powders, three different classes of spray-dried leucine-containing formulation systems were studied over an 8-month accelerated stability program. These systems consisted of a large molecule biologic (bevacizumab) in conjunction with a glass former (trehalose), an amorphous small-molecular mass active (moxidectin), and a crystallizing active (mannitol). It was determined that the appearance of the fibers was due to the presence of small quantities of leucine in higher energy states, either because these were amorphous or present as a less stable crystalline polymorph. It was further shown that the growth of these leucine fibers caused no significant physicochemical instability in the powders. Nor, more importantly, did it decrease their aerosol performance in a dry powder inhaler or reduce the concentration of their active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Zheng Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | | | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
10
|
Akdag Y. Nanoparticle-containing lyophilized dry powder inhaler formulations optimized using central composite design with improved aerodynamic parameters and redispersibility. Pharm Dev Technol 2023; 28:124-137. [PMID: 36602194 DOI: 10.1080/10837450.2023.2166066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objectives: The aim of this study was to improve the aerodynamic behavior and redispersibility of a lyophilized dry powder inhaler (DPI) formulation containing nanoparticles.Methods: Paclitaxel (PTX)-human serum albumin (HSA) nanoparticles were used as a model, and DPIs containing the nanoparticles were produced by lyophilization using different carriers and carrier ratios. A central composite design was employed to optimize the formulation. L-leucine and mannitol were chosen as independent variables, and mass median aerodynamic diameter (MMAD), emitted fraction, fine particle fraction (FPF), nanoparticle size, polydispersity index (PDI), zeta potential were selected as dependent variables.Results: The water content of DPIs was less than 5% for all DPIs. The cytotoxicity of the DPIs, determined using A549 cells, was due to PTX alone. Particle sizes of 204.3 ± 1.65 nm and 94.3-1353.0 nm were obtained before and after lyophilization, respectively. The developed method resulted in a reduction in the MMAD from 8.148 µm to 5.274 µm, an increase in the FPF from 17.63% to 33.60%, and an increase in the emitted fraction from 77.68% to 97.03%. The physico-chemical characteristics of the optimized formulation were also assessed.Conclusions: In conclusion, this study demonstrates that lyophilization can be used to produce nanoparticle-containing DPI formulations with improved redispersibility and aerodynamic properties.
Collapse
Affiliation(s)
- Yagmur Akdag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Ke WR, Chang RYK, Chan HK. Engineering the right formulation for enhanced drug delivery. Adv Drug Deliv Rev 2022; 191:114561. [PMID: 36191861 DOI: 10.1016/j.addr.2022.114561] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Dry powder inhalers (DPIs) can be used with a wide range of drugs such as small molecules and biologics and offer several advantages for inhaled therapy. Early DPI products were intended to treat asthma and lung chronic inflammatory disease by administering low-dose, high-potency drugs blended with lactose carrier particles. The use of lactose blends is still the most common approach to aid powder flowability and dose metering in DPI products. However, this conventional approach may not meet the high demand for formulation physical stability, aerosolisation performance, and bioavailability. To overcome these issues, innovative techniques coupled with modification of the traditional methods have been explored to engineer particles for enhanced drug delivery. Different particle engineering techniques have been utilised depending on the types of the active pharmaceutical ingredient (e.g., small molecules, peptides, proteins, cells) and the inhaled dose. This review discusses the challenges of formulating DPI formulations of low-dose and high-dose small molecule drugs, and biologics, followed by recent and emerging particle engineering strategies utilised in developing the right inhalable powder formulations for enhanced drug delivery.
Collapse
Affiliation(s)
- Wei-Ren Ke
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Khadka P, Dummer J, Hill PC, Katare R, Das SC. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv Transl Res 2022; 13:1246-1271. [PMID: 36131190 PMCID: PMC9491662 DOI: 10.1007/s13346-022-01238-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Inhaled drug delivery is a promising approach to achieving high lung drug concentrations to facilitate efficient treatment of tuberculosis (TB) and to reduce the overall duration of treatment. Rifampicin is a good candidate for delivery via the pulmonary route. There have been no clinical studies yet at relevant inhaled doses despite the numerous studies investigating its formulation and preclinical properties for pulmonary delivery. This review discusses the clinical implications of pulmonary drug delivery in TB treatment, the drug delivery systems reported for pulmonary delivery of rifampicin, animal models, and the animal studies on inhaled rifampicin formulations, and the research gaps hindering the transition from preclinical development to clinical investigation. A review of reports in the literature suggested there have been minimal attempts to test inhaled formulations of rifampicin in laboratory animals at relevant high doses and there is a lack of appropriate studies in animal models. Published studies have reported testing only low doses (≤ 20 mg/kg) of rifampicin, and none of the studies has investigated the safety of inhaled rifampicin after repeated administration. Preclinical evaluations of inhaled anti-TB drugs, such as rifampicin, should include high-dose formulations in preclinical models, determined based on allometric conversions, for relevant high-dose anti-TB therapy in humans.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Philip C Hill
- Centre for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
13
|
Wang H, Connaughton P, Lachacz K, Carrigy N, Ordoubadi M, Lechuga-Ballesteros D, Vehring R. Inhalable Microparticle Platform Based on a Novel Shell-Forming Lipid Excipient and its Feasibility for Respirable Delivery of Biologics. Eur J Pharm Biopharm 2022; 177:308-322. [PMID: 35905804 DOI: 10.1016/j.ejpb.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Administration of biologics such as proteins, vaccines, and phages via the respiratory route is becoming increasingly popular. Inhalable powder formulations for the successful delivery of biologics must first ensure both powder dispersibility and physicochemical stability. A lipid-based inhalable microparticle platform combining the stability advantages offered by dry powder formulations and high dispersibility afforded by a rugose morphology was spray dried and tested. A new simplified spray drying method requiring no organic solvents or complicated feedstock preparation processes was introduced for the manufacture of the microparticles. Trehalose was selected to form the amorphous particle core, because of its well-known ability to stabilize biologics, and also because of its ability to serve as a surrogate for small molecule actives. Phospholipid distearoyl phosphatidylcholine (DSPC), the lipid component in this formulation, was used as a shell former to improve powder dispersibility. Effectiveness of the lipid excipient in modifying trehalose particle morphology and enhancing powder dispersibility was evaluated at different lipid mass fractions (5%, 10%, 25%, 50%) and compared with that of several previously published shell-forming excipients at their effective mass fractions, i.e., 5% trileucine, 20% leucine, and 40% pullulan. A strong dependence of particle morphology on the lipid mass fraction was observed. Particles transitioned from typical smooth spherical trehalose particles without lipid to highly rugose microparticles at higher lipid mass fractions (> 5%). In vitro aerosol performance testing demonstrated a significant improvement of powder dispersibility even at lipid mass fractions as low as 5%. Powder formulations with excellent aerosol performance comparable to those modified with leucine and trileucine were achieved at higher lipid mass fractions (> 25%). A model biologic-containing formulation with 35% myoglobin, 35% glass stabilizer (trehalose), and 30% lipid shell former was shown to produce highly rugose particle structure as designed and excellent aerosol performance for efficient pulmonary delivery. A short-term stability at 40 °C proved that this protein-containing formulation had good thermal stability as designed. The results demonstrated great potential for the new lipid microparticle as a platform for the delivery of both small-molecule APIs and large-molecule biologics to the lung.
Collapse
Affiliation(s)
- Hui Wang
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Patrick Connaughton
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Kellisa Lachacz
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Nicholas Carrigy
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| |
Collapse
|
14
|
Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb) 2022; 135:102228. [PMID: 35779497 DOI: 10.1016/j.tube.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
Despite advancements in the medical and pharmaceutical fields, tuberculosis remains a major health problem globally. Patients do not widely accept the conventional approach to treating tuberculosis (TB) due to prolonged treatment periods with multiple high doses of drugs and associated side effects. A pulmonary route is a non-invasive approach to delivering drugs, hormones, nucleic acid, steroids, proteins, and peptides directly to the lungs, improving the efficacy of the treatment and consequently decreasing the adverse effect of the treatment. This route has been successfully developed for the treatment of various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), tuberculosis (TB), lung cancer, and other pulmonary infections. The major approaches of inhalation delivery systems include nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers (DPIs). However, dry powder inhalers (DPIs) are more advantageous due to their stability and ability to deliver a high dose of the drug to the lungs. The present review analyzes the modern therapeutic approach of inhaled dry powders, with a special focus on novel drug delivery system (NDDS) based DPIs for the treatment of TB. The article also discussed the challenges of preparing inhalable dry powder formulations for the treatment of TB. The clinical development of inhalable anti-TB drugs is also reviewed.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Yuwanshi Sharma
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
15
|
Salem A, Khanfar E, Nagy S, Széchenyi A. Cocrystals of tuberculosis antibiotics: Challenges and missed opportunities. Int J Pharm 2022; 623:121924. [PMID: 35738333 DOI: 10.1016/j.ijpharm.2022.121924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 01/10/2023]
Abstract
Cocrystals have been extensively used to improve the physicochemical properties and bioavailability of active pharmaceutical ingredients. Cocrystals of anti-tuberculosis medications are among those commonly reported. This review provides a summary of the tuberculosis antibiotic cocrystals reported in the literature, providing the main results on current tuberculosis medications utilized in cocrystals. Moreover, anti-tuberculosis cocrystals limitations and advantages are described, including evidence for enhanced solubility, stability and effect. Opportunities to enhance anti-tuberculosis medications and fixed dose combinations using cocrystals are given. Several cocrystal pairs are suggested to enhance the effectiveness of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ala' Salem
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.
| | - Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary
| | - Sándor Nagy
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Aleksandar Széchenyi
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary; Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
16
|
Spray-dried Pneumococcal Membrane Vesicles are Promising Candidates for Pulmonary Immunization. Int J Pharm 2022; 621:121794. [PMID: 35525468 DOI: 10.1016/j.ijpharm.2022.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Pneumococcal infections represent a global health threat, which requires novel vaccine developments. Extracellular vesicles are secreted from most cells, including prokaryotes, and harbor virulence factors and antigens. Hence, bacterial membrane vesicles (MVs) may induce a protective immune response. For the first time, we formulate spray-dried gram-positive pneumococcal MVs-loaded vaccine microparticles using lactose/leucine as inert carriers to enhance their stability and delivery for pulmonary immunization. The optimized vaccine microparticles showed a mean particle size of 1-2µm, corrugated surface, and nanocrystalline nature. Their aerodynamic diameter of 2.34µm, average percentage emitted dose of 88.8%, and fine powder fraction 79.7%, demonstrated optimal flow properties for deep alveolar delivery using a next-generation impactor. Furthermore, confocal microscopy confirmed the successful encapsulation of pneumococcal MVs within the prepared microparticles. Human macrophage-like THP-1 cells displayed excellent viability, negligible cytotoxicity, and a rapid uptake around 60% of fluorescently labeled MVs after incubation with vaccine microparticles. Moreover, vaccine microparticles increased the release of pro-inflammatory cytokines tumor necrosis factor and interleukin-6 from primary human peripheral blood mononuclear cells. Vaccine microparticles exhibited excellent properties as promising vaccine candidates for pulmonary immunization and are optimal for further animal testing, scale-up and clinical translation.
Collapse
|
17
|
Gomez M, Vehring R. Spray Drying and Particle Engineering in Dosage Form Design for Global Vaccines. J Aerosol Med Pulm Drug Deliv 2022; 35:121-138. [PMID: 35172104 DOI: 10.1089/jamp.2021.0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vaccines are a very important tool in the effort to reduce the global burden of infectious diseases. Modern vaccines can be formulated in several ways to induce specific immunity, including through the use of live bacteria, subunit antigens, and even genetic material. However, vaccines typically need to be transported and stored under controlled refrigerated or frozen conditions to maintain potency. This strict temperature control is incompatible with the available infrastructure in many developing countries. One method of improving the thermostability of a vaccine is through drying of a liquid presentation into a dry dosage form. In addition to enhancing the capability for distribution in resource-poor settings, these dry vaccine forms are more suitable for long-term stockpiling. Spray drying is a drying method that has been successfully used to stabilize many experimental vaccines into a dry form for storage above refrigerated temperatures. Additionally, the use of spray drying allows for the production of engineered particles suitable for respiratory administration. These particles can be further designed for increased out-of-package robustness against high humidity. Furthermore, there are already commercial dry powder delivery devices available that can be used to safely deliver vaccines to the respiratory system. The research in this field demonstrates that the resources to develop highly stable vaccines in flexible dosage forms are available and that these presentations offer many advantages for global vaccination campaigns.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Raj Adhikari B, Bērziņš K, Fraser-Miller SJ, Cavallaro A, Gordon KC, Das SC. Optimization of Methionine in Inhalable High-dose Spray-dried Amorphous Composite Particles using Response Surface Method, Infrared and Low frequency Raman Spectroscopy. Int J Pharm 2022; 614:121446. [PMID: 34998923 DOI: 10.1016/j.ijpharm.2021.121446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022]
Abstract
The influence of amino acids, other than leucine, in improving aerosolization of inhalable powders has not been widely explored. This detailed study focused on the use of methionine, another promising endogenous amino acid, in high dose spray-dried co-amorphous powders by investigating the influence of methionine proportion (0 - 20% w/w), and feed concentration (0.2 - 0.8% w/v) on aerosolization of kanamycin, a model drug, using a design of experiment approach. Low frequency Raman spectroscopy was used to assess the stability of the powders stored at 25 °C/53% relative humidity over 28 days. An increase in concentration of methionine was associated with an increase in fine particle fraction (FPF), with the highest FPF of 84% being achieved at 20% w/w and 0.2% w/v feed concentration. With an increase in feed concentration, both yield and particle size increased for all formulations; the FPF did not change except for kanamycin only formulation in which it decreased. During storage at high humidity, similar aerosolization stabilities were offered by different proportions of methionine although methionine crystallized out in all formulations. Furthermore, the crystallization was accompanied by surface enrichment of methionine on the particles. This study suggests that there is a direct relationship between methionine content and aerosolization for kanamycin-methionine amorphous matrices but feed concentration has little effect. In addition, methionine proportion has no effect on physical stability of such matrices at high humidity.
Collapse
Affiliation(s)
| | - Kārlis Bērziņš
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Sara J Fraser-Miller
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Alex Cavallaro
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
19
|
Zillen D, Beugeling M, Hinrichs WL, Frijlink HW, Grasmeijer F. Natural and bioinspired excipients for dry powder inhalation formulations. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Targeting of Inhaled Therapeutics to the Small Airways: Nanoleucine Carrier Formulations. Pharmaceutics 2021; 13:pharmaceutics13111855. [PMID: 34834270 PMCID: PMC8624185 DOI: 10.3390/pharmaceutics13111855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Current dry powder formulations for inhalation deposit a large fraction of their emitted dose in the upper respiratory tract where they contribute to off-target adverse effects and variability in lung delivery. The purpose of the current study is to design a new formulation concept that more effectively targets inhaled dry powders to the large and small airways. The formulations are based on adhesive mixtures of drug nanoparticles and nanoleucine carrier particles prepared by spray drying of a co-suspension of leucine and drug particles from a nonsolvent. The physicochemical and aerosol properties of the resulting formulations are presented. The formulations achieve 93% lung delivery in the Alberta Idealized Throat model that is independent of inspiratory flow rate and relative humidity. Largely eliminating URT deposition with a particle size larger than solution pMDIs is expected to improve delivery to the large and small airways, while minimizing alveolar deposition and particle exhalation.
Collapse
|
21
|
Ordoubadi M, Gregson FKA, Wang H, Carrigy NB, Nicholas M, Gracin S, Lechuga-Ballesteros D, Reid JP, Finlay WH, Vehring R. Trileucine as a dispersibility enhancer of spray-dried inhalable microparticles. J Control Release 2021; 336:522-536. [PMID: 34229002 DOI: 10.1016/j.jconrel.2021.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
The formation of trileucine-containing spray-dried microparticles intended for pulmonary delivery was studied in depth. A single-particle method was employed to study the shell formation characteristics of trileucine in the presence of trehalose as a glass former, and an empirical correlation was proposed to predict the instance of shell formation. A droplet chain instrument was used to produce and collect monodisperse particles to examine morphology and calculate particle density for different levels of trileucine. It was observed that the addition of only 0.5 mg/mL (10% w/w) trileucine to a trehalose system could lower dried particle densities by approximately 1 g/cm3. In addition, a laboratory-scale spray dryer was used to produce batches of trileucine/trehalose powders in the respirable range. Raman spectroscopy demonstrated that both components were completely amorphous. Scanning electron microscopy and time-of-flight secondary ion mass spectrometry were used to study the particle morphologies and surface compositions. For all cases with trileucine, highly rugose particles with trileucine coverages of more than 60% by mass were observed with trileucine feed fractions of as little as 2% w/w. Moreover, it was seen that at lower trileucine content, smaller and larger particles of a polydisperse powder had slightly different surface compositions. The surface activity of trileucine was also modeled via a modified form of the diffusion equation inside an evaporating droplet that took into account initial surface adsorption and eventual surface desorption due to droplet shrinkage. Finally, using the Flory-Huggins theory, it was estimated that at room temperature, liquid-liquid phase separation would start when the trileucine reached an aqueous concentration of about 18 mg/mL. Besides the surface activity of trileucine, this low concentration was assumed to explain the substantial effect of trileucine on the morphology of spray-dried particles due to early phase separation. The methodology proposed in this study can be used in the rational design of trileucine-containing microparticles.
Collapse
Affiliation(s)
- Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nicholas B Carrigy
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, California, USA
| | - Mark Nicholas
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Sandra Gracin
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, California, USA
| | - Jonathan P Reid
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Alhajj N, O'Reilly NJ, Cathcart H. Leucine as an excipient in spray dried powder for inhalation. Drug Discov Today 2021; 26:2384-2396. [PMID: 33872799 DOI: 10.1016/j.drudis.2021.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
Leucine is a promising excipient with several applications in the development of inhalable spray-dried powder of high- and low-dose drugs. The addition of leucine has exhibited significant enhancing effects on the aerosolization and physical stability of the produced particles. Here, we focus not only on the applications of leucine in inhalable spray-drying powders, but also on the underlying mechanisms by which the formulation and processing parameters dictate the behavior of leucine during the drying process and, therefore, its functionalities within the dried powder. Additionally, we highlight the current regulatory status of leucine. Such insights are important for more efficient utilization of leucine in the future, both for dry powder inhaler formulations and other pharmaceutical applications.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
24
|
Boc S, Momin MAM, Farkas DR, Longest W, Hindle M. Development and Characterization of Excipient Enhanced Growth (EEG) Surfactant Powder Formulations for Treating Neonatal Respiratory Distress Syndrome. AAPS PharmSciTech 2021; 22:136. [PMID: 33860409 DOI: 10.1208/s12249-021-02001-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to develop and characterize a spray-dried powder aerosol formulation of a commercially available surfactant formulation, Survanta® intratracheal suspension, using the excipient enhanced growth (EEG) approach. Survanta EEG powders were prepared by spray drying of the feed dispersions containing Survanta® (beractant) intratracheal suspension, hygroscopic excipients (mannitol and sodium chloride), and a dispersion enhancer (l-leucine or trileucine) in 5 or 20% v/v ethanol in water using the Buchi Nano Spray Dryer B-90 HP. Powders were characterized for primary particle size, morphology, phospholipid content, moisture content, thermal properties, moisture sorption, and surface activity. The aerosol performance of the powders was assessed using a novel low-volume dry powder inhaler (LV-DPI) device operated with 3-mL volume of dispersion air. At both ethanol concentrations, in comparison to trileucine, l-leucine significantly reduced the primary particle size and span and increased the fraction of submicrometer particles of the Survanta EEG powders. The l-leucine-containing Survanta EEG powders exhibited good aerosolization performance with ≥ 88% of the mass emitted (% nominal) after 3 actuations from the modified LV-DPI device. In addition, l-leucine-containing powders had a low moisture content (< 3% w/w) with transition temperatures close to the commercial surfactant formulation and retained their surface tension reducing activity after formulation processing. A Survanta EEG powder containing l-leucine was developed which showed efficient aerosol delivery from the modified LV-DPI device using a low dispersion air volume.
Collapse
|
25
|
Park H, Ha ES, Kim MS. Physicochemical analysis techniques specialized in surface characterization of inhalable dry powders. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00526-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Gomez M, McCollum J, Wang H, Ordoubadi M, Jar C, Carrigy NB, Barona D, Tetreau I, Archer M, Gerhardt A, Press C, Fox CB, Kramer RM, Vehring R. Development of a formulation platform for a spray-dried, inhalable tuberculosis vaccine candidate. Int J Pharm 2021; 593:120121. [PMID: 33278492 PMCID: PMC7790949 DOI: 10.1016/j.ijpharm.2020.120121] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Protection against primarily respiratory infectious diseases, such as tuberculosis (TB), can likely be enhanced through mucosal immunization induced by direct delivery of vaccines to the nose or lungs. A thermostable inhalable dry powder vaccine offers further advantages, such as independence from the cold chain. In this study, we investigate the formulation for a stable, inhalable dry powder version of ID93 + GLA-SE, an adjuvanted subunit TB vaccine candidate, containing recombinant fusion protein ID93 and glucopyranosyl lipid A (GLA) in a squalene emulsion (SE) as an adjuvant system, via spray drying. The addition of leucine (20% w/w), pullulan (10%, 20% w/w), and trileucine (3%, 6% w/w) as dispersibility enhancers was investigated with trehalose as a stabilizing agent. Particle morphology and solid state, nanoemulsion droplet size, squalene and GLA content, ID93 presence, and aerosol performance were assessed for each formulation. The results showed that the addition of leucine improved aerosol performance, but increased aggregation of the emulsion droplets was demonstrated on reconstitution. Addition of pullulan preserved emulsion droplet size; however, the antigen could not be detected after reconstitution. The trehalose-trileucine excipient formulations successfully stabilized the adjuvant system, with evidence indicating retention of the antigen, in an inhalable dry powder format suitable for lung delivery.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Chester Jar
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Nicholas B Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Isobel Tetreau
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | | | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ryan M Kramer
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Yıldız-Peköz A, Ehrhardt C. Advances in Pulmonary Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12100911. [PMID: 32977672 PMCID: PMC7598662 DOI: 10.3390/pharmaceutics12100911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Pulmonary drug delivery represents an attractive, non-invasive administration option. In addition to locally acting drugs, molecules that are intended to produce systemic effects can be delivered via the pulmonary route. Several factors need to be considered in the context of delivering drugs to or via the lungs—in addition to the drug itself, its formulation into an appropriate inhalable dosage form of sufficient stability is critical. It is also essential that this formulation is paired with a suitable inhaler device, which generates an aerosol of a particle/droplet size that ensures deposition in the desired region of the respiratory tract. Lastly, the patient’s (patho-) physiology and inhalation manoeuvre are of importance. This Special Issue brings together recent advances in the areas of inhalation device testing, aerosol formulation development, use of in vitro and in silico models in pulmonary drug deposition and drug disposition studies, and pulmonary delivery of complex drugs, such as vaccines, antibiotics and peptides, to or via the lungs.
Collapse
Affiliation(s)
- Ayca Yıldız-Peköz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey;
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: ; Tel.: +353-1-896-2441
| |
Collapse
|
28
|
Chang RYK, Chen L, Chen D, Chan HK. Overcoming challenges for development of amorphous powders for inhalation. Expert Opin Drug Deliv 2020; 17:1583-1595. [DOI: 10.1080/17425247.2020.1813105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Lan Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Donghao Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
29
|
Sibum I, Hagedoorn P, Botterman CO, Frijlink HW, Grasmeijer F. Automated Filling Equipment Allows Increase in the Maximum Dose to Be Filled in the Cyclops ® High Dose Dry Powder Inhalation Device While Maintaining Dispersibility. Pharmaceutics 2020; 12:pharmaceutics12070645. [PMID: 32659899 PMCID: PMC7407802 DOI: 10.3390/pharmaceutics12070645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years there has been increasing interest in the pulmonary delivery of high dose dry powder drugs, such as antibiotics. Drugs in this class need to be dosed in doses far over 2.5 mg, and the use of excipients should therefore be minimized. To our knowledge, the effect of the automatic filling of high dose drug formulations on the maximum dose that can be filled in powder inhalers, and on the dispersion behavior of the powder, have not been described so far. In this study, we aimed to investigate these effects after filling with an Omnidose, a vacuum drum filler. Furthermore, the precision and accuracy of the filling process were investigated. Two formulations were used—an isoniazid formulation we reported previously and an amikacin formulation. Both formulations could be precisely and accurately dosed in a vacuum pressure range of 200 to 600 mbar. No change in dispersion was seen after automatic filling. Retention was decreased, with an optimum vacuum pressure range found from 400 to 600 mbar. The nominal dose for amikacin was 57 mg, which resulted in a fine particle dose of 47.26 ± 1.72 mg. The nominal dose for isoniazid could be increased to 150 mg, resulting in a fine particle dose of 107.35 ± 13.52 mg. These findings may contribute to the understanding of the upscaling of high dose dry powder inhalation products.
Collapse
|