1
|
Huang D, Li Z, Li G, Zhou F, Wang G, Ren X, Su J. Biomimetic structural design in 3D-printed scaffolds for bone tissue engineering. Mater Today Bio 2025; 32:101664. [PMID: 40206144 PMCID: PMC11979411 DOI: 10.1016/j.mtbio.2025.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The rising prevalence of bone diseases in an aging population underscores the urgent need for innovative and clinically translatable solutions in bone tissue engineering. While significant progress has been made in refining the chemical properties of biomaterials, the structural design of scaffolds-a critical determinant of repair success-remains comparatively underexplored. Structural parameters such as porosity, pore size, and interconnectivity are not only essential for achieving mechanical stability but also pivotal in regulating biological processes, including vascularization, osteogenesis, and immune modulation. This review systematically categorizes scaffold architectures documented in the literature and highlights how these design parameters can be optimized to enhance bone regeneration. Advanced fabrication technologies, particularly 3D printing, are emphasized for their transformative potential in creating precise, biomimetic scaffolds that align with the complex functional demands of native bone. Furthermore, this work synthesizes diverse findings to provide a comprehensive framework for designing next-generation scaffolds. By bridging the gap between structural innovation and clinical application, this review delivers actionable strategies and a strategic roadmap for advancing the field toward improved clinical outcomes and transformative breakthroughs in regenerative medicine.
Collapse
Affiliation(s)
- Dan Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zuhao Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
2
|
Michelutti L, Tel A, Robiony M, Vinayahalingam S, Agosti E, Ius T, Gagliano C, Zeppieri M. The Properties and Applicability of Bioprinting in the Field of Maxillofacial Surgery. Bioengineering (Basel) 2025; 12:251. [PMID: 40150715 PMCID: PMC11939734 DOI: 10.3390/bioengineering12030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Perhaps the most innovative branch of medicine is represented by regenerative medicine. It deals with regenerating or replacing tissues damaged by disease or aging. The innovative frontier of this branch is represented by bioprinting. This technology aims to reconstruct tissues, organs, and anatomical structures, such as those in the head and neck region. This would mean revolutionizing therapeutic and surgical approaches in the management of multiple conditions in which a conspicuous amount of tissue is lost. The application of bioprinting for the reconstruction of anatomical areas removed due to the presence of malignancy would represent a revolutionary new step in personalized and precision medicine. This review aims to investigate recent advances in the use of biomaterials for the reconstruction of anatomical structures of the head-neck region, particularly those of the oral cavity. The characteristics and properties of each biomaterial currently available will be presented, as well as their potential applicability in the reconstruction of areas affected by neoplasia damaged after surgery. In addition, this study aims to examine the current limitations and challenges and to analyze the future prospects of this technology in maxillofacial surgery.
Collapse
Affiliation(s)
- Luca Michelutti
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy; (L.M.); (A.T.)
| | - Alessandro Tel
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy; (L.M.); (A.T.)
| | - Massimo Robiony
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy; (L.M.); (A.T.)
| | | | - Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| | - Tamara Ius
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35121 Padova, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy
| |
Collapse
|
3
|
Salarpour S, Salarpour S, Dogaheh MA. Advancing Pharmaceutical Science with Artificial Neural Networks: A Review on Optimizing Drug Delivery Systems Formulation. Curr Pharm Des 2025; 31:507-520. [PMID: 39328133 DOI: 10.2174/0113816128301129240911064028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/01/1970] [Accepted: 08/19/2024] [Indexed: 09/28/2024]
Abstract
Drug Delivery Systems (DDS) have been developed to address the challenges associated with traditional drug delivery methods. These DDS aim to improve drug administration, enhance patient compliance, reduce side effects, and optimize target therapy. To achieve these goals, it is crucial to design DDS with optimal performance characteristics. The final properties of a DDS are determined by several factors that go into formulating a pharmaceutical preparation. Thus, optimizing these factors can lead to the ideal DDS formulation. Artificial Neural Networks (ANN) are computational models that mimic the function of biological neurons and neural networks and perform mathematical operations on inputs to generate outputs. ANN is widely used in medical sciences for modeling disease diagnosis and treatment, dose adjustment in combination therapy, medical education, and other fields. In the pharmaceutical sciences, ANN has gained significant attention for designing and optimizing pharmaceutical formulations. This article reviews the use of ANN in the design and optimization of pharmaceutical formulations, specifically DDS. Since DDS is highly diverse, different factors are examined for each type of DDS. These factors are considered independent and dependent parameters for each ANN model, and various examples are provided. By utilizing ANN, it is possible to establish the relationship between the formulation factors and the resulting DDS characteristics, ultimately leading to the development of optimized DDS.
Collapse
Affiliation(s)
- Simin Salarpour
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Soodeh Salarpour
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari Dogaheh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Pazhamannil RV, Alkhedher M. Advances in additive manufacturing for bone tissue engineering: materials, design strategies, and applications. Biomed Mater 2024; 20:012002. [PMID: 39662052 DOI: 10.1088/1748-605x/ad9dce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
The growing annual demand for bone grafts and artificial implants emphasizes the need for effective solutions to repair or replace injured bones. Additive manufacturing technology offers unique merits for advancing bone tissue engineering (BTE), enabling the creation of scaffolds and implants with customized shapes and designs, interconnected architecture, controlled mechanical properties and compositions, and broadening its range of applications. It overcomes the limitations of traditional manufacturing methods such as electrospinning, salt leaching, freeze drying, solvent casting etc. This review highlights additive manufacturing technologies and their applications in BTE, as well as materials and scaffold architectures to widen the potential of the biomedical sector. The selection of optimal printing methods for BTE requires careful consideration of the advantages and disadvantages against the needs for degradation, strength, and biocompatibility. Material extrusion and powder bed fusion techniques are the most widely used additive manufacturing processes in BTE. The comprehensive review also revealed that parametric designs such as triply periodic minimal surface (TPMS) and Voronoi hold better characteristics for their application in BTE. Voronoi designs exhibit exceptional randomness whereas TPMS structures feature high permeability with continuous surfaces. Topology optimized and gradient models exhibited superior physical and mechanical properties compared to uniform lattices. Future research should focus on the development of novel biomaterials, multi-material printing, assessing long-term impacts, and enhancing 3D printing technologies.
Collapse
Affiliation(s)
- Ribin Varghese Pazhamannil
- Mechanical and Industrial Engineering Department, Abu Dhabi University, PO 59911 Abu Dhabi, United Arab Emirates
| | - Mohammad Alkhedher
- Mechanical and Industrial Engineering Department, Abu Dhabi University, PO 59911 Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Yang T, Jin Y, Smith LM, Dahotre NB, Neogi A. Real-time in-situ ultrasound monitoring of soft hydrogel 3D printing with subwavelength resolution. COMMUNICATIONS ENGINEERING 2024; 3:162. [PMID: 39521874 PMCID: PMC11550851 DOI: 10.1038/s44172-024-00318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
3D bioprinting has excellent potential in tissue engineering, regenerative medicine, and drug delivery systems due to the ability to fabricate intricate structures that are challenging to make with conventional manufacturing methods. However, the complexity of parametric combinations and lack of product quality control have restricted soft hydrogel bioprinting from practical applications. Here we show an in-situ ultrasound monitoring system that reveals the alginate-gelatin hydrogel's additive manufacturing process. We use this technique to understand the parameters that influenced transient printing behaviors and material properties in approximately real-time. This unique monitoring process can facilitate the detection of minor errors/flaws during the printing. By analyzing the ultrasonic reflected signals in both time and frequency domains, transient printing information can be obtained from 3D printed soft hydrogels during the processes with a depth subwavelength resolution approaching 0.78 λ . This in-situ technique monitors the printing behaviors regarding the constructed film, interlayer bonding, transient effective elastic constant, layer-wise surface roughness (elastic or plastic), nozzle indentation/scratching, and gravitational spreading. The simulation-verified experimental methods monitored fully infilled printing and gridded pattern printing conditions. Furthermore, the proposed ultrasound system also experimentally monitored the post-crosslinking process of alginate-gelatin hydrogel in CaCl2 solution. The results can optimize crosslinking time by balancing the hydrogel's stiffness enhancement and geometrical distortion.
Collapse
Affiliation(s)
- Teng Yang
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
- Department of Physics, University of North Texas, Denton, TX, USA
| | - Yuqi Jin
- Department of Physics, University of North Texas, Denton, TX, USA.
- Department of Mechanical Engineering, University of North Texas, Denton, TX, USA.
| | - Lee Miller Smith
- Department of Mechanical Engineering, University of North Texas, Denton, TX, USA
| | - Narendra B Dahotre
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
| | - Arup Neogi
- Department of Physics, University of North Texas, Denton, TX, USA.
| |
Collapse
|
6
|
Mirsky NA, Ehlen QT, Greenfield JA, Antonietti M, Slavin BV, Nayak VV, Pelaez D, Tse DT, Witek L, Daunert S, Coelho PG. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering (Basel) 2024; 11:777. [PMID: 39199735 PMCID: PMC11351251 DOI: 10.3390/bioengineering11080777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Since three-dimensional (3D) bioprinting has emerged, it has continuously to evolved as a revolutionary technology in surgery, offering new paradigms for reconstructive and regenerative medical applications. This review highlights the integration of 3D printing, specifically bioprinting, across several surgical disciplines over the last five years. The methods employed encompass a review of recent literature focusing on innovations and applications of 3D-bioprinted tissues and/or organs. The findings reveal significant advances in the creation of complex, customized, multi-tissue constructs that mimic natural tissue characteristics, which are crucial for surgical interventions and patient-specific treatments. Despite the technological advances, the paper introduces and discusses several challenges that remain, such as the vascularization of bioprinted tissues, integration with the host tissue, and the long-term viability of bioprinted organs. The review concludes that while 3D bioprinting holds substantial promise for transforming surgical practices and enhancing patient outcomes, ongoing research, development, and a clear regulatory framework are essential to fully realize potential future clinical applications.
Collapse
Affiliation(s)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Pelaez
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David T. Tse
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Górnicki T, Lambrinow J, Golkar-Narenji A, Data K, Domagała D, Niebora J, Farzaneh M, Mozdziak P, Zabel M, Antosik P, Bukowska D, Ratajczak K, Podhorska-Okołów M, Dzięgiel P, Kempisty B. Biomimetic Scaffolds-A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:531. [PMID: 38535679 PMCID: PMC10974775 DOI: 10.3390/nano14060531] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 01/06/2025]
Abstract
Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.
Collapse
Affiliation(s)
- Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Jakub Lambrinow
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Afsaneh Golkar-Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 6193673111, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructure Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
8
|
Bonatti AF, Vozzi G, De Maria C. Enhancing quality control in bioprinting through machine learning. Biofabrication 2024; 16:022001. [PMID: 38262061 DOI: 10.1088/1758-5090/ad2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Bioprinting technologies have been extensively studied in literature to fabricate three-dimensional constructs for tissue engineering applications. However, very few examples are currently available on clinical trials using bioprinted products, due to a combination of technological challenges (i.e. difficulties in replicating the native tissue complexity, long printing times, limited choice of printable biomaterials) and regulatory barriers (i.e. no clear indication on the product classification in the current regulatory framework). In particular, quality control (QC) solutions are needed at different stages of the bioprinting workflow (including pre-process optimization, in-process monitoring, and post-process assessment) to guarantee a repeatable product which is functional and safe for the patient. In this context, machine learning (ML) algorithms can be envisioned as a promising solution for the automatization of the quality assessment, reducing the inter-batch variability and thus potentially accelerating the product clinical translation and commercialization. In this review, we comprehensively analyse the main solutions that are being developed in the bioprinting literature on QC enabled by ML, evaluating different models from a technical perspective, including the amount and type of data used, the algorithms, and performance measures. Finally, we give a perspective view on current challenges and future research directions on using these technologies to enhance the quality assessment in bioprinting.
Collapse
Affiliation(s)
- Amedeo Franco Bonatti
- Department of Information Engineering and Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Giovanni Vozzi
- Department of Information Engineering and Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Carmelo De Maria
- Department of Information Engineering and Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Toosi S, Javid-Naderi MJ, Tamayol A, Ebrahimzadeh MH, Yaghoubian S, Mousavi Shaegh SA. Additively manufactured porous scaffolds by design for treatment of bone defects. Front Bioeng Biotechnol 2024; 11:1252636. [PMID: 38312510 PMCID: PMC10834686 DOI: 10.3389/fbioe.2023.1252636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
There has been increasing attention to produce porous scaffolds that mimic human bone properties for enhancement of tissue ingrowth, regeneration, and integration. Additive manufacturing (AM) technologies, i.e., three dimensional (3D) printing, have played a substantial role in engineering porous scaffolds for clinical applications owing to their high level of design and fabrication flexibility. To this end, this review article attempts to provide a detailed overview on the main design considerations of porous scaffolds such as permeability, adhesion, vascularisation, and interfacial features and their interplay to affect bone regeneration and osseointegration. Physiology of bone regeneration was initially explained that was followed by analysing the impacts of porosity, pore size, permeability and surface chemistry of porous scaffolds on bone regeneration in defects. Importantly, major 3D printing methods employed for fabrication of porous bone substitutes were also discussed. Advancements of MA technologies have allowed for the production of bone scaffolds with complex geometries in polymers, composites and metals with well-tailored architectural, mechanical, and mass transport features. In this way, a particular attention was devoted to reviewing 3D printed scaffolds with triply periodic minimal surface (TPMS) geometries that mimic the hierarchical structure of human bones. In overall, this review enlighten a design pathway to produce patient-specific 3D-printed bone substitutions with high regeneration and osseointegration capacity for repairing large bone defects.
Collapse
Affiliation(s)
- Shirin Toosi
- Stem Cell and Regenerative Medicine Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Javad Javid-Naderi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, United States
| | | | - Sima Yaghoubian
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Laboratory for Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Science, Mashhad, Iran
- Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
10
|
Zhang J, Shen S, Zhu S, Jia F, Li J, Sun Y. Cnicus benedictus extract-loaded electrospun gelatin wound dressing for treating diabetic wounds: An in vitro and in vivo study. J Appl Biomater Funct Mater 2024; 22:22808000241245298. [PMID: 38733215 DOI: 10.1177/22808000241245298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
In the current study, Cnicus benedictus extract was loaded into electrospun gelatin scaffolds for diabetic wound healing applications. Scaffolds were characterized in vitro by mechanical testing, cell culture assays, electron microscopy, cell migration assay, and antibacterial assay. In vivo wound healing study was performed in a rat model of diabetic wound. In vitro studies revealed fibrous architecture of our developed dressings and their anti-inflammatory properties. In addition, Cnicus benedictus extract-loaded wound dressings prevented bacterial penetration. In vivo study showed that wound size reduction, collagen deposition, and epithelial thickness were significantly greater in Cnicus benedictus extract-loaded scaffolds than other groups. Gene expression studies showed that the produced wound dressings significantly upregulated VEGF and IGF genes expression in diabetic wounds.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shen Shen
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shijie Zhu
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan Jia
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jin Li
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu Sun
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
11
|
Du EY, Jung M, Skhinas J, Tolentino MAK, Noy J, Jamshidi N, Houng JL, Tjandra KC, Engel M, Utama R, Tilley RD, Kavallaris M, Gooding JJ. 3D Bioprintable Hydrogel with Tunable Stiffness for Exploring Cells Encapsulated in Matrices of Differing Stiffnesses. ACS APPLIED BIO MATERIALS 2023; 6:4603-4612. [PMID: 37844275 DOI: 10.1021/acsabm.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In vitro cell models have undergone a shift from 2D models on glass slides to 3D models that better reflect the native 3D microenvironment. 3D bioprinting promises to progress the field by allowing the high-throughput production of reproducible cell-laden structures with high fidelity. The current stiffness range of printable matrices surrounding the cells that mimic the extracellular matrix environment remains limited. The work presented herein aims to expand the range of stiffnesses by utilizing a four-armed polyethylene glycol with maleimide-functionalized arms. The complementary cross-linkers comprised a matrix metalloprotease-degradable peptide and a four-armed thiolated polymer which were adjusted in ratio to tune the stiffness. The modularity of this system allows for a simple method of controlling stiffness and the addition of biological motifs. The application of this system in drop-on-demand printing is validated using MCF-7 cells, which were monitored for viability and proliferation. This study shows the potential of this system for the high-throughput investigation of the effects of stiffness and biological motif compositions in relation to cell behaviors.
Collapse
Affiliation(s)
- Eric Y Du
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - MoonSun Jung
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Joanna Skhinas
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - M A Kristine Tolentino
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Janina Noy
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Niloufar Jamshidi
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Jacinta L Houng
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Kristel C Tjandra
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Martin Engel
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Robert Utama
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Richard D Tilley
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| |
Collapse
|
12
|
Chen X, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma N, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater 2023; 28:511-536. [PMID: 37435177 PMCID: PMC10331419 DOI: 10.1016/j.bioactmat.2023.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- X.B. Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Fazel Anvari-Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - X. Duan
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Zimmerling
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - R. Gharraei
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
| | - S. Sweilem
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - L. Ning
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| |
Collapse
|
13
|
Barros G, Correia W, Teixeira JM. Towards the Effectiveness of 3D Printing on Tactile Content Creation for Visually Impaired Users. Polymers (Basel) 2023; 15:polym15092180. [PMID: 37177326 PMCID: PMC10181369 DOI: 10.3390/polym15092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
We have conducted research on how tactile content is created for visually impaired individuals. From the data collected, an experiment was developed and applied. It investigated alternative materials to serve as a basis for the use of 3D printing to reduce production costs. It also evaluated the adherence of different values of width, height, and angles of the contour lines, as well as different geometric shapes and top/bottom fill patterns on these materials. The results show it is possible to use cellulose-based materials weighing between 120 g/m2 and 180 g/m2 to support the prints instead of making a base for the information, with gains up to 40 times in production time and up to 29 times in the consumption of materials if there is no need to fold the manufactured content. Based on visually impaired every-day activities such as locating and following a line (exploration), discerning different textures (tactile discrimination), identifying figures (picture comprehension), and locating copies of them (spatial comprehension), the ideal line widths for 3D printing adherence regarding tactile content creation were found to be between 0.8 mm and 1.2 mm, while 0.4 mm was the maximum height that did not compromise adherence. When bending the 3D printed material on the surface, we found that lines with angles between 0° and 20° from the bending direction could keep their adherence as well. The shapes must receive a small rounding at the corners and preferably align themselves with the mentioned angles. The top/bottom fill patterns did not affect adhesion. The infill can be used as a texture generator and should be adjusted to densities of 10% to 50%, or 10% to 90% when combined with other textures. In the first case, users were able to perceive differences in the tactile content whenever a single infill pattern was used. In the latter, combining two infill patterns leads to a more discriminating surface, resulting in a higher number of textures to be used in tactile content production (analogous to the number of colors used in an image for a person with no visual impairment).
Collapse
Affiliation(s)
- Gutenberg Barros
- Ciência e Tecnologia de Pernambuco (IFPE-Campus Recife), Instituto Federal de Educação, Recife 50740-545, Brazil
| | - Walter Correia
- Departamento de Design, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - João Marcelo Teixeira
- Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
14
|
Ming Z, Tang X, Liu J, Ruan B. Advancements in Research on Constructing Physiological and Pathological Liver Models and Their Applications Utilizing Bioprinting Technology. Molecules 2023; 28:molecules28093683. [PMID: 37175094 PMCID: PMC10180184 DOI: 10.3390/molecules28093683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In recent decades, significant progress has been made in liver tissue engineering through the use of 3D bioprinting technology. This technology offers the ability to create personalized biological structures with precise geometric design capabilities. The complex and multifaceted nature of liver diseases underscores the need for advanced technologies to accurately mimic the physiological and mechanical characteristics, as well as organ-level functions, of liver tissue in vitro. Bioprinting stands out as a superior option over traditional two-dimensional cell culture models and animal models due to its stronger biomimetic advantages. Through the use of bioprinting, it is possible to create liver tissue with a level of structural and functional complexity that more closely resembles the real organ, allowing for more accurate disease modeling and drug testing. As a result, it is a promising tool for restoring and replacing damaged tissue and organs in the field of liver tissue engineering and drug research. This article aims to present a comprehensive overview of the progress made in liver tissue engineering using bioprinting technology to provide valuable insights for researchers. The paper provides a detailed account of the history of liver tissue engineering, highlights the current 3D bioprinting methods and bioinks that are widely used, and accentuates the importance of existing in vitro liver tissue models based on 3D bioprinting and their biomedical applications. Additionally, the article explores the challenges faced by 3D bioprinting and predicts future trends in the field. The progress of 3D bioprinting technology is poised to bring new approaches to printing liver tissue in vitro, while offering powerful tools for drug development, testing, liver disease modeling, transplantation, and regeneration, which hold great academic and practical significance.
Collapse
Affiliation(s)
- Zibei Ming
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xinyu Tang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Jing Liu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Banfeng Ruan
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| |
Collapse
|
15
|
Maresca JA, DeMel DC, Wagner GA, Haase C, Geibel JP. Three-Dimensional Bioprinting Applications for Bone Tissue Engineering. Cells 2023; 12:cells12091230. [PMID: 37174630 PMCID: PMC10177443 DOI: 10.3390/cells12091230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The skeletal system is a key support structure within the body. Bones have unique abilities to grow and regenerate after injury. Some injuries or degeneration of the tissues cannot rebound and must be repaired by the implantation of foreign objects following injury or disease. This process is invasive and does not always improve the quality of life of the patient. New techniques have arisen that can improve bone replacement or repair. 3D bioprinting employs a printer capable of printing biological materials in multiple directions. 3D bioprinting potentially requires multiple steps and additional support structures, which may include the use of hydrogels for scaffolding. In this review, we discuss normal bone physiology and pathophysiology and how bioprinting can be adapted to further the field of bone tissue engineering.
Collapse
Affiliation(s)
- Jamie A Maresca
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
| | - Derek C DeMel
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
| | - Grayson A Wagner
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
| | - Colin Haase
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
| | - John P Geibel
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
- Department of Surgery, School of Medicine, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
16
|
A Review of the Benefits 3D Printing Brings to Patients with Neurological Diseases. Pharmaceutics 2023; 15:pharmaceutics15030892. [PMID: 36986752 PMCID: PMC10051330 DOI: 10.3390/pharmaceutics15030892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
This interdisciplinary review focuses on how flexible three-dimensional printing (3DP) technology can aid patients with neurological diseases. It covers a wide variety of current and possible applications ranging from neurosurgery to customizable polypill along with a brief description of the various 3DP techniques. The article goes into detail about how 3DP technology can aid delicate neurosurgical planning and its consequent outcome for patients. It also covers areas such as how the 3DP model can be utilized in patient counseling along with designing specific implants involved in cranioplasty and customization of a specialized instrument such as 3DP optogenetic probes. Furthermore, the review includes how a 3DP nasal cast can contribute to the development of nose-to-brain drug delivery along with looking into how bioprinting could be used for regenerating nerves and how 3D-printed drugs could offer practical benefits to patients suffering from neurological diseases via polypill.
Collapse
|
17
|
Samie M, Khan AF, Rahman SU, Iqbal H, Yameen MA, Chaudhry AA, Galeb HA, Halcovitch NR, Hardy JG. Drug/bioactive eluting chitosan composite foams for osteochondral tissue engineering. Int J Biol Macromol 2023; 229:561-574. [PMID: 36587649 DOI: 10.1016/j.ijbiomac.2022.12.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Joint defects associated with a variety of etiologies often extend deep into the subchondral bone leading to functional impairment and joint immobility, and it is a very challenging task to regenerate the bone-cartilage interface offering significant opportunities for biomaterial-based interventions to improve the quality of life of patients. Herein drug-/bioactive-loaded porous tissue scaffolds incorporating nano-hydroxyapatite (nHAp), chitosan (CS) and either hydroxypropyl methylcellulose (HPMC) or Bombyx mori silk fibroin (SF) are fabricated through freeze drying method as subchondral bone substitute. A combination of spectroscopy and microscopy (Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and X-ray fluorescence (XRF) were used to analyze the structure of the porous biomaterials. The compressive mechanical properties of these scaffolds are biomimetic of cancellous bone tissues and capable of releasing drugs/bioactives (exemplified with triamcinolone acetonide, TA, or transforming growth factor-β1, TGF-β1, respectively) over a period of days. Mouse preosteoblast MC3T3-E1 cells were observed to adhere and proliferate on the tissue scaffolds as confirmed by the cell attachment, live-dead assay and alamarBlue™ assay. Interestingly, RT-qPCR analysis showed that the TA downregulated inflammatory biomarkers and upregulated the bone-specific biomarkers, suggesting such tissue scaffolds have long-term potential for clinical application.
Collapse
Affiliation(s)
- Muhammad Samie
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YW, United Kingdom; Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan.
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Saeed Ur Rahman
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Haffsah Iqbal
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Arfat Yameen
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Hanaa A Galeb
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, 21577 Jeddah, Saudi Arabia
| | - Nathan R Halcovitch
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YW, United Kingdom.
| |
Collapse
|
18
|
Waqar A, Othman I, Pomares JC. Impact of 3D Printing on the Overall Project Success of Residential Construction Projects Using Structural Equation Modelling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20053800. [PMID: 36900821 PMCID: PMC10000831 DOI: 10.3390/ijerph20053800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/04/2023]
Abstract
After a decade of research and development, 3D printing is now an established technique in the construction sector, complete with its own set of accepted standards. The use of 3D printing in construction might potentially improve the outcome of the project as a whole. However, traditional strategies are often used in the residential construction industry in Malaysia, which causes serious public safety and health issues along with a negative impact on the environment. In the context of project management, overall project success (OPS) has five dimensions, such as cost, time, quality, safety, and environment. Understanding the role of 3D printing in relation to OPS dimensions in Malaysian residential construction projects would allow construction professionals to adopt 3D printing more easily. The aim of the study was to find the impact of 3D construction printing on OPS while considering the implications for all five dimensions. Fifteen professionals were interviewed to first evaluate and summarise the impact factors of 3D printing using the current literature. Then, a pilot survey was conducted, and the results were checked using exploratory factor analysis (EFA). The feasibility of 3D printing in the building sector was investigated by surveying industry experts. Partial least squares structural equation modelling was used to investigate and validate the fundamental structure and linkages between 3D printing and OPS (PLS-SEM). A strong correlation was found between 3D printing in residential projects and OPS. Highly positive implications are indicated by the environmental and safety dimensions of OPS. Malaysian decision-makers may look to the outcomes of introducing 3D printing into the residential construction industry as a modern method for increasing environmental sustainability, public health and safety, reducing cost and time, and increasing the quality of construction work. With this study's findings in hand, construction engineering management in Malaysia's residential building sector might benefit from a deeper understanding of how 3D printing is used for improving environmental compliance, public health and safety, and project scope.
Collapse
Affiliation(s)
- Ahsan Waqar
- Department of Civil & Environmental Engineering, University Technology PETRONAS, Seri Iskandar 32610, Malaysia
| | - Idris Othman
- Department of Civil & Environmental Engineering, University Technology PETRONAS, Seri Iskandar 32610, Malaysia
| | | |
Collapse
|
19
|
Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, Wang J, Yin W, Wu D, Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1117647. [PMID: 36793443 PMCID: PMC9923112 DOI: 10.3389/fbioe.2023.1117647] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
LL-37-Coupled Porous Composite Scaffold for the Treatment of Infected Segmental Bone Defect. Pharmaceutics 2022; 15:pharmaceutics15010088. [PMID: 36678716 PMCID: PMC9864206 DOI: 10.3390/pharmaceutics15010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Increased multiantibiotic-resistant bacteria means that infected bone defects remain a significant challenge to clinics. Great interest has emerged in the use of non-antibiotic antimicrobials to reduce the rate of multiantibiotic-resistant bacterial infection and facilitate bone regeneration. The cationic antimicrobial peptide LL-37 is the sole human cathelicidin and has shown nonspecific activity against a broad spectrum of microorganisms. In this study, we fabricated the poly(lactic-co-glycolic acid)/β-calcium phosphate/peptide LL-37 (PLGA/TCP/LL-37, PTL) scaffold with low-temperature 3D-printing technology for the treatment of infected segmental bone defects. The prepared scaffolds were divided into three groups: a high LL-37 concentration group (PTHL), low LL-37 concentration group (PTLL) and blank control group (PT). The cytocompatibility and antimicrobial activity of the engineered scaffolds were tested in vitro, and their osteogenesis properties were assessed in vivo in a rat infected bone defect model. We found the fabricated PTL scaffold had a well-designed porous structure that could support a steady and prolonged LL-37 release. Furthermore, the PTHL group showed strong antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) without any inhibition of the proliferation or alkaline phosphatase activity of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. In addition, the infected femoral defects implanted with PTHL group displayed new bone formation in four weeks without any evidence of residual bacteria, which showed similar antibacterial outcomes to the vancomycin and cancellous bone mixture group. In conclusion, the PTHL composite scaffold is a promising non-antibiotic antimicrobial graft with good biodegradability, biocompatibility, and osteogenic capability for infected bone defects.
Collapse
|
21
|
Kantaros A. 3D Printing in Regenerative Medicine: Technologies and Resources Utilized. Int J Mol Sci 2022; 23:ijms232314621. [PMID: 36498949 PMCID: PMC9738732 DOI: 10.3390/ijms232314621] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Over the past ten years, the use of additive manufacturing techniques, also known as "3D printing", has steadily increased in a variety of scientific fields. There are a number of inherent advantages to these fabrication methods over conventional manufacturing due to the way that they work, which is based on the layer-by-layer material-deposition principle. These benefits include the accurate attribution of complex, pre-designed shapes, as well as the use of a variety of innovative raw materials. Its main advantage is the ability to fabricate custom shapes with an interior lattice network connecting them and a porous surface that traditional manufacturing techniques cannot adequately attribute. Such structures are being used for direct implantation into the human body in the biomedical field in areas such as bio-printing, where this potential is being heavily utilized. The fabricated items must be made of biomaterials with the proper mechanical properties, as well as biomaterials that exhibit characteristics such as biocompatibility, bioresorbability, and biodegradability, in order to meet the strict requirements that such procedures impose. The most significant biomaterials used in these techniques are listed in this work, but their advantages and disadvantages are also discussed in relation to the aforementioned properties that are crucial to their use.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| |
Collapse
|
22
|
Rama M, Vijayalakshmi U. Drug delivery system in bone biology: an evolving platform for bone regeneration and bone infection management. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Da LC, Sun Y, Lin YH, Chen SZ, Chen GX, Zheng BH, Du SR. Emerging Bioactive Agent Delivery-Based Regenerative Therapies for Lower Genitourinary Tissues. Pharmaceutics 2022; 14:1718. [PMID: 36015344 PMCID: PMC9414065 DOI: 10.3390/pharmaceutics14081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Injury to lower genitourinary (GU) tissues, which may result in either infertility and/or organ dysfunctions, threatens the overall health of humans. Bioactive agent-based regenerative therapy is a promising therapeutic method. However, strategies for spatiotemporal delivery of bioactive agents with optimal stability, activity, and tunable delivery for effective sustained disease management are still in need and present challenges. In this review, we present the advancements of the pivotal components in delivery systems, including biomedical innovations, system fabrication methods, and loading strategies, which may improve the performance of delivery systems for better regenerative effects. We also review the most recent developments in the application of these technologies, and the potential for delivery-based regenerative therapies to treat lower GU injuries. Recent progress suggests that the use of advanced strategies have not only made it possible to develop better and more diverse functionalities, but also more precise, and smarter bioactive agent delivery systems for regenerative therapy. Their application in lower GU injury treatment has achieved certain effects in both patients with lower genitourinary injuries and/or in model animals. The continuous evolution of biomaterials and therapeutic agents, advances in three-dimensional printing, as well as emerging techniques all show a promising future for the treatment of lower GU-related disorders and dysfunctions.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yun-Hong Lin
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Su-Zhu Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Gang-Xin Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
24
|
Zhang A, Yang Y, Zhang Q, Chen X, Jalili S. Lawsonia inermis Extract-Loaded Cellulose Acetate Nanofibrous Wound Dressings Alleviate Wound Inflammation Through PI3K/AKT/NF κB Signaling Pathway: A Preclinical Investigation. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this research, we aimed to combine the principles of herbal medicine and tissue engineering to develop a bioactive wound dressing. The nanofibrous scaffolds were produced via electrospinning of cellulose acetate/Lawsonia inermis extract (LIE) solution. The developed constructs
were studied regarding their interaction with fibroblast cells and their various physicochemical and biological properties. The wound healing potential of the prepared dressings was studied on a rat model skin wound. In vitro studies showed that cellulose acetate scaffolds loaded with
3% LIE had the highest cell protection capacity under oxidative stress and promoted the fibroblast cells proliferation. Therefore, this group was used for wound healing assay. In vivo study showed that LIE-loaded wound dressings had the highest epithelial thickness, collagen deposition,
and angiogenesis scores. Gene expression analysis showed that wounds treated with cellulose acetate/LIE wound dressings upregulated VEGF, b-FGF, and collagen type 2 genes. While, NFK-β and TNF-a genes expressions were significantly reduced by these dressings. This study implies
that local delivery of LIE via cellulose acetate scaffolds can alleviate inflammation and increase the expression of pro-healing genes.
Collapse
Affiliation(s)
- Aihui Zhang
- Department of Thoracic Surgery, Xi’an Children’s Hospital, Xi’an, 710003, China
| | - Ye Yang
- Department of Thoracic Surgery, Xi’an Children’s Hospital, Xi’an, 710003, China
| | - Qiang Zhang
- Department of Thoracic Surgery, Xi’an Children’s Hospital, Xi’an, 710003, China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Xi’an Children’s Hospital, Xi’an, 710003, China
| | - Saman Jalili
- Department of Biomaterials Science and Technology, Isfahan University of Technology, Isfahan, 548987, Iran
| |
Collapse
|
25
|
Liu S, Wang T, Li S, Wang X. Application Status of Sacrificial Biomaterials in 3D Bioprinting. Polymers (Basel) 2022; 14:2182. [PMID: 35683853 PMCID: PMC9182955 DOI: 10.3390/polym14112182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing, also known as three-dimensional (3D) printing, relates to several rapid prototyping (RP) technologies, and has shown great potential in the manufacture of organoids and even complex bioartificial organs. A major challenge for 3D bioprinting complex org unit ans is the competitive requirements with respect to structural biomimeticability, material integrability, and functional manufacturability. Over the past several years, 3D bioprinting based on sacrificial templates has shown its unique advantages in building hierarchical vascular networks in complex organs. Sacrificial biomaterials as supporting structures have been used widely in the construction of tubular tissues. The advent of suspension printing has enabled the precise printing of some soft biomaterials (e.g., collagen and fibrinogen), which were previously considered unprintable singly with cells. In addition, the introduction of sacrificial biomaterials can improve the porosity of biomaterials, making the printed structures more favorable for cell proliferation, migration and connection. In this review, we mainly consider the latest developments and applications of 3D bioprinting based on the strategy of sacrificial biomaterials, discuss the basic principles of sacrificial templates, and look forward to the broad prospects of this approach for complex organ engineering or manufacturing.
Collapse
Affiliation(s)
- Siyu Liu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Tianlin Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Pavan Kalyan BG, Kumar L. 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS PharmSciTech 2022; 23:92. [PMID: 35301602 PMCID: PMC8929713 DOI: 10.1208/s12249-022-02242-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.
Collapse
|
27
|
Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:619-640. [PMID: 34989569 DOI: 10.1021/acs.biomac.1c01105] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of 3D bioprinting has allowed a variety of hydrogel-based "bioinks" to be printed in the presence of cells to create precisely defined cell-loaded 3D scaffolds in a single step for advancing tissue engineering and/or regenerative medicine. While existing bioinks based primarily on ionic cross-linking, photo-cross-linking, or thermogelation have significantly advanced the field, they offer technical limitations in terms of the mechanics, degradation rates, and the cell viabilities achievable with the printed scaffolds, particularly in terms of aiming to match the wide range of mechanics and cellular microenvironments. Click chemistry offers an appealing solution to this challenge given that proper selection of the chemistry can enable precise tuning of both the gelation rate and the degradation rate, both key to successful tissue regeneration; simultaneously, the often bio-orthogonal nature of click chemistry is beneficial to maintain high cell viabilities within the scaffolds. However, to date, relatively few examples of 3D-printed click chemistry hydrogels have been reported, mostly due to the technical challenges of controlling mixing during the printing process to generate high-fidelity prints without clogging the printer. This review aims to showcase existing cross-linking modalities, characterize the advantages and disadvantages of different click chemistries reported, highlight current examples of click chemistry hydrogel bioinks, and discuss the design of mixing strategies to enable effective 3D extrusion bioprinting of click hydrogels.
Collapse
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Isabelle Poulin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - William James Bodnaryk
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
28
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
29
|
Ragelle H, Rahimian S, Guzzi EA, Westenskow PD, Tibbitt MW, Schwach G, Langer R. Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Adv Drug Deliv Rev 2021; 178:113990. [PMID: 34600963 DOI: 10.1016/j.addr.2021.113990] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) or 3D printing is enabling new directions in product design. The adoption of AM in various industrial sectors has led to major transformations. Similarly, AM presents new opportunities in the field of drug delivery, opening new avenues for improved patient care. In this review, we discuss AM as an innovative tool for drug product design. We provide a brief overview of the different AM processes and their respective impact on the design of drug delivery systems. We highlight several enabling features of AM, including unconventional release, customization, and miniaturization, and discuss several applications of AM for the fabrication of drug products. This includes products that have been approved or are in development. As the field matures, there are also several new challenges to broad implementation in the pharmaceutical landscape. We discuss several of these from the regulatory and industrial perspectives and provide an outlook for how these issues may be addressed. The introduction of AM into the field of drug delivery is an enabling technology and many new drug products can be created through productive collaboration of engineers, materials scientists, pharmaceutical scientists, and industrial partners.
Collapse
|
30
|
Fu Z, Angeline V, Sun W. Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter Recommendation. Int J Bioprint 2021; 7:434. [PMID: 34805600 PMCID: PMC8600308 DOI: 10.18063/ijb.v7i4.434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Bioprinting is an emerging technology for the construction of complex three-dimensional (3D) constructs used in various biomedical applications. One of the challenges in this field is the delicate manipulation of material properties and various disparate printing parameters to create structures with high fidelity. Understanding the effects of certain parameters and identifying optimal parameters for creating highly accurate structures are therefore a worthwhile subject to investigate. The objective of this study is to investigate high-impact print parameters on the printing printability and develop a preliminary machine learning model to optimize printing parameters. The results of this study will lead to an exploration of machine learning applications in bioprinting and to an improved understanding between 3D printing parameters and structural printability. Reported results include the effects of rheological property, nozzle gauge, nozzle temperature, path height, and ink composition on the printability of Pluronic F127. The developed Support Vector Machine model generated a process map to assist the selection of optimal printing parameters to yield high quality prints with high probability (>75%). Future work with more generalized machine learning models in bioprinting is also discussed in this article. The finding of this study provides a simple tool to improve printability of extrusion-based bioprinting with minimum experimentations.
Collapse
Affiliation(s)
- Zhouquan Fu
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Vincent Angeline
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Wei Sun
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
31
|
Naghieh S, Lindberg G, Tamaddon M, Liu C. Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications. Bioengineering (Basel) 2021; 8:123. [PMID: 34562945 PMCID: PMC8466376 DOI: 10.3390/bioengineering8090123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biofabrication has emerged as an attractive strategy to personalise medical care and provide new treatments for common organ damage or diseases. While it has made impactful headway in e.g., skin grafting, drug testing and cancer research purposes, its application to treat musculoskeletal tissue disorders in a clinical setting remains scarce. Albeit with several in vitro breakthroughs over the past decade, standard musculoskeletal treatments are still limited to palliative care or surgical interventions with limited long-term effects and biological functionality. To better understand this lack of translation, it is important to study connections between basic science challenges and developments with translational hurdles and evolving frameworks for this fully disruptive technology that is biofabrication. This review paper thus looks closely at the processing stage of biofabrication, specifically at the bioinks suitable for musculoskeletal tissue fabrication and their trends of usage. This includes underlying composite bioink strategies to address the shortfalls of sole biomaterials. We also review recent advances made to overcome long-standing challenges in the field of biofabrication, namely bioprinting of low-viscosity bioinks, controlled delivery of growth factors, and the fabrication of spatially graded biological and structural scaffolds to help biofabricate more clinically relevant constructs. We further explore the clinical application of biofabricated musculoskeletal structures, regulatory pathways, and challenges for clinical translation, while identifying the opportunities that currently lie closest to clinical translation. In this article, we consider the next era of biofabrication and the overarching challenges that need to be addressed to reach clinical relevance.
Collapse
Affiliation(s)
- Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Gabriella Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| |
Collapse
|
32
|
Willemen NGA, Morsink MAJ, Veerman D, da Silva CF, Cardoso JC, Souto EB, Severino P. From oral formulations to drug-eluting implants: using 3D and 4D printing to develop drug delivery systems and personalized medicine. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00157-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev 2021; 175:113805. [PMID: 34019957 DOI: 10.1016/j.addr.2021.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains largely in a 'one size fits all' paradigm, in which mass-produced, identical formulations are expected to meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents innumerable options during formulation development that generally require expert navigation. Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process parameters can be accurately predicted by machine learning. AI can also be incorporated into a pharmaceutical 3DP 'Internet of Things', moving the personalised production of medicines into an intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and blockchain, will also play a vital role. Crucially, these technologies will expedite the use of pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine and Industry 4.0.
Collapse
|
34
|
Shamma RN, Sayed RH, Madry H, El Sayed NS, Cucchiarini M. Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:451-463. [PMID: 33820451 DOI: 10.1089/ten.teb.2021.0026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three-dimensional (3D) bioprinting is a novel technique applied to manufacture semisolid or solid objects via deposition of successive thin layers. The widespread implementation of the 3D bioprinting technology encouraged scientists to evaluate its feasibility for applications in human regenerative medicine. 3D bioprinting gained much interest as a new strategy to prepare implantable 3D tissues or organs, tissue and organ evaluation models to test drugs, and cell/material interaction systems. The present work summarizes recent and relevant progress based on the use of hydrogels for the technology of 3D bioprinting and their emerging biomedical applications. An overview of different 3D printing techniques in addition to the nature and properties of bioinks used will be described with a focus on hydrogels as suitable bioinks for 3D printing. A comprehensive overview of triblock copolymers with emphasis on Pluronic F127 (PF127) as a bioink in 3D printing for regenerative medicine will be provided. Several biomedical applications of PF127 in tissue engineering, particularly in bone and cartilage regeneration and in vascular reconstruction, will be also discussed.
Collapse
Affiliation(s)
- Rehab N Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
35
|
Iatecola A, Longhitano GA, Antunes LHM, Jardini AL, Miguel EDC, Béreš M, Lambert CS, Andrade TN, Buchaim RL, Buchaim DV, Pomini KT, Dias JA, Spressão DRMS, Felix M, Cardoso GBC, da Cunha MR. Osseointegration Improvement of Co-Cr-Mo Alloy Produced by Additive Manufacturing. Pharmaceutics 2021; 13:724. [PMID: 34069254 PMCID: PMC8156199 DOI: 10.3390/pharmaceutics13050724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cobalt-base alloys (Co-Cr-Mo) are widely employed in dentistry and orthopedic implants due to their biocompatibility, high mechanical strength and wear resistance. The osseointegration of implants can be improved by surface modification techniques. However, complex geometries obtained by additive manufacturing (AM) limits the efficiency of mechanical-based surface modification techniques. Therefore, plasma immersion ion implantation (PIII) is the best alternative, creating nanotopography even in complex structures. In the present study, we report the osseointegration results in three conditions of the additively manufactured Co-Cr-Mo alloy: (i) as-built, (ii) after PIII, and (iii) coated with titanium (Ti) followed by PIII. The metallic samples were designed with a solid half and a porous half to observe the bone ingrowth in different surfaces. Our results revealed that all conditions presented cortical bone formation. The titanium-coated sample exhibited the best biomechanical results, which was attributed to the higher bone ingrowth percentage with almost all medullary canals filled with neoformed bone and the pores of the implant filled and surrounded by bone ingrowth. It was concluded that the metal alloys produced for AM are biocompatible and stimulate bone neoformation, especially when the Co-28Cr-6Mo alloy with a Ti-coated surface, nanostructured and anodized by PIII is used, whose technology has been shown to increase the osseointegration capacity of this implant.
Collapse
Affiliation(s)
- Amilton Iatecola
- Faculty of Medicine of Jundiaí, Jundiaí 13202-550, São Paulo, Brazil; (A.I.); (T.N.A.); (M.R.d.C.)
| | - Guilherme Arthur Longhitano
- Center for Information Technology Renato Archer (CTI), Campinas 13069-901, São Paulo, Brazil;
- National Institute of Biofabrication (INCT-BIOFABRIS), Campinas 13083-852, São Paulo, Brazil; (L.H.M.A.); (A.L.J.); (M.B.)
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, São Paulo, Brazil
| | - Luiz Henrique Martinez Antunes
- National Institute of Biofabrication (INCT-BIOFABRIS), Campinas 13083-852, São Paulo, Brazil; (L.H.M.A.); (A.L.J.); (M.B.)
- School of Mechanical Engineering, University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil;
| | - André Luiz Jardini
- National Institute of Biofabrication (INCT-BIOFABRIS), Campinas 13083-852, São Paulo, Brazil; (L.H.M.A.); (A.L.J.); (M.B.)
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, São Paulo, Brazil
| | - Emilio de Castro Miguel
- Department of Metallurgical and Materials Engineering, Federal University of Ceará, Fortaleza 60440-554, Ceará, Brazil;
| | - Miloslav Béreš
- National Institute of Biofabrication (INCT-BIOFABRIS), Campinas 13083-852, São Paulo, Brazil; (L.H.M.A.); (A.L.J.); (M.B.)
- Department of Metallurgical and Materials Engineering, Federal University of Ceará, Fortaleza 60440-554, Ceará, Brazil;
| | - Carlos Salles Lambert
- “Gleb Wataghin” Institute of Physics, University of Campinas (UNICAMP), Campinas 13083-859, São Paulo, Brazil;
| | - Tiago Neves Andrade
- Faculty of Medicine of Jundiaí, Jundiaí 13202-550, São Paulo, Brazil; (A.I.); (T.N.A.); (M.R.d.C.)
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, São Paulo, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (D.V.B.); (J.A.D.); (D.R.M.S.S.)
- University Center of Adamantina (UniFAI), Medical School, Adamantina 17800-000, São Paulo, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, São Paulo, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (D.V.B.); (J.A.D.); (D.R.M.S.S.)
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (D.V.B.); (J.A.D.); (D.R.M.S.S.)
- Postgraduate Program in Law, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Daniele Raineri Mesquita Serva Spressão
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (D.V.B.); (J.A.D.); (D.R.M.S.S.)
| | - Marcílio Felix
- Veterinary Medicine School, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil;
| | | | | |
Collapse
|
36
|
Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules 2021; 26:molecules26092518. [PMID: 33925886 PMCID: PMC8123515 DOI: 10.3390/molecules26092518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering is known to encompass multiple aspects of science, medicine and engineering. The development of systems which are able to promote the growth of new cells and tissue components are vital in the treatment of severe tissue injury and damage. This can be done through a variety of different biofabrication strategies including the use of hydrogels, 3D bioprinted scaffolds and nanotechnology. The incorporation of stem cells into these systems and the advantage of this is also discussed. Biopolymers, those which have a natural original, have been particularly advantageous in tissue engineering systems as they are often found within the extracellular matrix of the human body. The utilization of biopolymers has become increasing popular as they are biocompatible, biodegradable and do not illicit an immune response when placed into the body. Tissue engineering systems for use with the eye are also discussed. This is of particular interest as the eye is known as an immune privileged site resulting in an extremely limited ability for natural cell regeneration.
Collapse
|
37
|
Mohammadpour F, Kamali H, Hadizadeh F, Bagheri M, Shiadeh SNR, Nazari A, Oroojalian F, Khodaverdi E. The PLGA Microspheres Synthesized by a Thermosensitive Hydrogel Emulsifier for Sustained Release of Risperidone. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09544-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen DX. Printability in extrusion bioprinting. Biofabrication 2021; 13. [PMID: 33601340 DOI: 10.1088/1758-5090/abe7ab] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Extrusion bioprinting has been widely used to extrude continuous filaments of bioink (or the mixture of biomaterial and living cells), layer-by-layer, to build three-dimensional (3D) constructs for biomedical applications. In extrusion bioprinting, printability is an important parameter used to measure the difference between the designed construct and the one actually printed. This difference could be caused by the extrudability of printed bioink and/or the structural formability and stability of printed constructs. Although studies have reported in characterizing printability based on the bioink properties and printing process, the concept of printability is often confusingly and, sometimes, conflictingly used in the literature. The objective of this perspective is to define the printability for extrusion bioprinting in terms of extrudability, filament fidelity, and structural integrity, as well as to review the effect of bioink properties, bioprinting process, and construct design on the printability. Challenges related to the printability of extrusion bioprinting are also discussed, along with recommendations for improvements.
Collapse
Affiliation(s)
- Zhouquan Fu
- Mechanical Engineering and Mechanics, Drexel University, 3141 chestnut street, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| | - Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada, Saskatoon, Saskatchewan, S7N 5A9, CANADA
| | - Cancan Xu
- SunP Biotech LLC, 5 Allison Dr, Cherry Hill, New Jersey, 08003, UNITED STATES
| | - Chengjin Wang
- Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing, 100084, CHINA
| | - Wei Sun
- Mech Engineering, Drexel University, 3141 chestnut street, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Daniel Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Saskatoon, Saskatchewan, S7N 5A9, CANADA
| |
Collapse
|
39
|
Development of a Surface-Functionalized Titanium Implant for Promoting Osseointegration: Surface Characteristics, Hemocompatibility, and In Vivo Evaluation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study aimed to evaluate the impact of surface-modified biomedical titanium (Ti) dental implant on osseointegration. The surfaces were modified using an innovative dip-coating technique (IDCT; sandblasted, large-grit, and acid-etched, then followed by coating with the modified pluronic F127 biodegradable polymer). The surface morphology and hemocompatibility evaluations were investigated by field-emission scanning electron microscopy, while the contact analysis was observed by goniometer. The IDCT-modified Ti implant was also implanted in patients with missing teeth by single-stage surgical procedure then observed immediately and again four months after placement by cone-beam computerized tomography (CBCT) imaging. It was found that the IDCT-modified Ti implant was rougher than the dental implant without surface modification. Contact angle analysis showed the IDCT-modified Ti implant was lower than the dental implant without surface modification. The hemocompatibility evaluations showed greater red blood cell aggregation and fibrin filament formation on the IDCT-modified Ti implant. The radiographic and CBCT image displayed new bone formation at four months after the IDCT-modified Ti implant placement. Therefore, this study suggests that the IDCT-modified Ti dental implant has great potential to accelerate osseointegration.
Collapse
|
40
|
Okolie O, Stachurek I, Kandasubramanian B, Njuguna J. 3D Printing for Hip Implant Applications: A Review. Polymers (Basel) 2020; 12:E2682. [PMID: 33202958 PMCID: PMC7697992 DOI: 10.3390/polym12112682] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
There is a rising demand for replacement, regeneration of tissues and organ repairs for patients who suffer from diseased/damaged bones or tissues such as hip pains. The hip replacement treatment relies on the implant, which may not always meet the requirements due to mechanical and biocompatibility issues which in turn may aggravate the pain. To surpass these limitations, researchers are investigating the use of scaffolds as another approach for implants. Three-dimensional (3D) printing offers significant potential as an efficient fabrication technique on personalized organs as it is capable of biomimicking the intricate designs found in nature. In this review, the determining factors for hip replacement and the different fabrication techniques such as direct 3D printing, Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and stereolithography (SLA) for hip replacement. The study also covers surface modifications of 3D printed implants and provides an overview on 3D tissue regeneration. To appreciate the current conventional hip replacement practices, the conventional metallic and ceramic materials are covered, highlighting their rationale as the material of choice. Next, the challenges, ethics and trends in the implants' 3D printing are covered and conclusions drawn. The outlook and challenges are also presented here. The knowledge from this review indicates that 3D printing has enormous potential for providing a pathway for a sustainable hip replacement.
Collapse
Affiliation(s)
- Obinna Okolie
- Centre of Advanced Engineering Materials, School of Engineering, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7AQ, UK;
| | - Iwona Stachurek
- Łukasiewicz Research Network—Krakow Institute of Technology, 73 Zakopianska Street, 30-418 Krakow, Poland;
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra 411025, India;
| | - James Njuguna
- Centre of Advanced Engineering Materials, School of Engineering, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7AQ, UK;
| |
Collapse
|
41
|
Genova T, Roato I, Carossa M, Motta C, Cavagnetto D, Mussano F. Advances on Bone Substitutes through 3D Bioprinting. Int J Mol Sci 2020; 21:E7012. [PMID: 32977633 PMCID: PMC7582371 DOI: 10.3390/ijms21197012] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Reconstruction of bony defects is challenging when conventional grafting methods are used because of their intrinsic limitations (biological cost and/or biological properties). Bone regeneration techniques are rapidly evolving since the introduction of three-dimensional (3D) bioprinting. Bone tissue engineering is a branch of regenerative medicine that aims to find new solutions to treat bone defects, which can be repaired by 3D printed living tissues. Its aim is to overcome the limitations of conventional treatment options by improving osteoinduction and osteoconduction. Several techniques of bone bioprinting have been developed: inkjet, extrusion, and light-based 3D printers are nowadays available. Bioinks, i.e., the printing materials, also presented an evolution over the years. It seems that these new technologies might be extremely promising for bone regeneration. The purpose of the present review is to give a comprehensive summary of the past, the present, and future developments of bone bioprinting and bioinks, focusing the attention on crucial aspects of bone bioprinting such as selecting cell sources and attaining a viable vascularization within the newly printed bone. The main bioprinters currently available on the market and their characteristics have been taken into consideration, as well.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy;
- Department of Surgical Sciences, University of Torino, via Nizza 230, 10126 Torino, Italy; (I.R.); (M.C.); (C.M.); (F.M.)
| | - Ilaria Roato
- Department of Surgical Sciences, University of Torino, via Nizza 230, 10126 Torino, Italy; (I.R.); (M.C.); (C.M.); (F.M.)
- Center for Research and Medical Studies, A.O.U. Città della Salute e della Scienza, 10100 Turin, Italy
| | - Massimo Carossa
- Department of Surgical Sciences, University of Torino, via Nizza 230, 10126 Torino, Italy; (I.R.); (M.C.); (C.M.); (F.M.)
| | - Chiara Motta
- Department of Surgical Sciences, University of Torino, via Nizza 230, 10126 Torino, Italy; (I.R.); (M.C.); (C.M.); (F.M.)
| | - Davide Cavagnetto
- Department of Surgical Sciences, University of Torino, via Nizza 230, 10126 Torino, Italy; (I.R.); (M.C.); (C.M.); (F.M.)
| | - Federico Mussano
- Department of Surgical Sciences, University of Torino, via Nizza 230, 10126 Torino, Italy; (I.R.); (M.C.); (C.M.); (F.M.)
| |
Collapse
|
42
|
Jacob S, Nair AB, Patel V, Shah J. 3D Printing Technologies: Recent Development and Emerging Applications in Various Drug Delivery Systems. AAPS PharmSciTech 2020; 21:220. [PMID: 32748243 DOI: 10.1208/s12249-020-01771-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
The 3D printing is considered as an emerging digitized technology that could act as a key driving factor for the future advancement and precise manufacturing of personalized dosage forms, regenerative medicine, prosthesis and implantable medical devices. Tailoring the size, shape and drug release profile from various drug delivery systems can be beneficial for special populations such as paediatrics, pregnant women and geriatrics with unique or changing medical needs. This review summarizes various types of 3D printing technologies with advantages and limitations particularly in the area of pharmaceutical research. The applications of 3D printing in tablets, films, liquids, gastroretentive, colon, transdermal and intrauterine drug delivery systems as well as medical devices have been briefed. Due to the novelty and distinct features, 3D printing has the inherent capacity to solve many formulation and drug delivery challenges, which are frequently associated with poorly aqueous soluble drugs. Recent approval of Spritam® and publication of USFDA technical guidance on additive manufacturing related to medical devices has led to an extensive research in various field of drug delivery systems and bioengineering. The 3D printing technology could be successfully implemented from pre-clinical phase to first-in-human trials as well as on-site production of customized formulation at the point of care having excellent dose flexibility. Advent of innovative 3D printing machineries with built-in flexibility and quality with the introduction of new regulatory guidelines would rapidly integrate and revolutionize conventional pharmaceutical manufacturing sector.
Collapse
|
43
|
Holkar K, Vaidya A, Pethe P, Kale V, Ingavle G. Biomaterials and extracellular vesicles in cell-free therapy for bone repair and regeneration: Future line of treatment in regenerative medicine. MATERIALIA 2020; 12:100736. [DOI: 10.1016/j.mtla.2020.100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Mathew E, Pitzanti G, Larrañeta E, Lamprou DA. 3D Printing of Pharmaceuticals and Drug Delivery Devices. Pharmaceutics 2020; 12:pharmaceutics12030266. [PMID: 32183435 PMCID: PMC7150971 DOI: 10.3390/pharmaceutics12030266] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
The process of 3D printing (3DP) was patented in 1986; however, the research in the field of 3DP did not become popular until the last decade. There has been an increasing research into the areas of 3DP for medical applications for fabricating prosthetics, bioprinting and pharmaceutics. This novel method allows the manufacture of dosage forms on demand, with modifications in the geometry and size resulting in changes to the release and dosage behaviour of the product. 3DP will allow wider adoption of personalised medicine due to the diversity and simplicity to change the design and dosage of the products, allowing the devices to be designed specific to the individual with the ability to alternate the drugs added to the product. Personalisation also has the potential to decrease the common side effects associated with generic dosage forms. This Special Issue Editorial outlines the current innovative research surrounding the topic of 3DP, focusing on bioprinting and various types of 3DP on applications for drug delivery as well advantages and future directions in this field of research.
Collapse
Affiliation(s)
- Essyrose Mathew
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.M.); (G.P.); (E.L.)
| | - Giulia Pitzanti
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.M.); (G.P.); (E.L.)
- Department of Life and Environmental Sciences (Unit of Drug Sciences), University of Cagliari, 09124 Cagliari, Italy
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.M.); (G.P.); (E.L.)
| | - Dimitrios A. Lamprou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.M.); (G.P.); (E.L.)
- Correspondence: ; Tel.: +44-(0)28-9097-2617
| |
Collapse
|
45
|
Mohapatra SS, Frisina RD, Mohapatra S, Sneed KB, Markoutsa E, Wang T, Dutta R, Damnjanovic R, Phan MH, Denmark DJ, Biswal MR, McGill AR, Green R, Howell M, Ghosh P, Gonzalez A, Ahmed NT, Borresen B, Farmer M, Gaeta M, Sharma K, Bouchard C, Gamboni D, Martin J, Tolve B, Singh M, Judy JW, Li C, Santra S, Daunert S, Zeynaloo E, Gelfand RM, Lenhert S, McLamore ES, Xiang D, Morgan V, Friedersdorf LE, Lal R, Webster TJ, Hoogerheide DP, Nguyen TD, D’Souza MJ, Çulha M, Kondiah PPD, Martin DK. Advances in Translational Nanotechnology: Challenges and Opportunities. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:10.3390/app10144881. [PMID: 38486792 PMCID: PMC10938472 DOI: 10.3390/app10144881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The burgeoning field of nanotechnology aims to create and deploy nanoscale structures, devices, and systems with novel, size-dependent properties and functions. The nanotechnology revolution has sparked radically new technologies and strategies across all scientific disciplines, with nanotechnology now applied to virtually every area of research and development in the US and globally. NanoFlorida was founded to create a forum for scientific exchange, promote networking among nanoscientists, encourage collaborative research efforts across institutions, forge strong industry-academia partnerships in nanoscience, and showcase the contributions of students and trainees in nanotechnology fields. The 2019 NanoFlorida International Conference expanded this vision to emphasize national and international participation, with a focus on advances made in translating nanotechnology. This review highlights notable research in the areas of engineering especially in optics, photonics and plasmonics and electronics; biomedical devices, nano-biotechnology, nanotherapeutics including both experimental nanotherapies and nanovaccines; nano-diagnostics and -theranostics; nano-enabled drug discovery platforms; tissue engineering, bioprinting, and environmental nanotechnology, as well as challenges and directions for future research.
Collapse
Affiliation(s)
- Shyam S. Mohapatra
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Robert D. Frisina
- Department of Chemical and Biomedical Engineering and Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, USA
| | - Subhra Mohapatra
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Kevin B. Sneed
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Eleni Markoutsa
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Tao Wang
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Rinku Dutta
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Ratka Damnjanovic
- Department of Chemical and Biomedical Engineering and Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, USA
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J. Denmark
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Manas R. Biswal
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Ryan Green
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Mark Howell
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Payal Ghosh
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Alejandro Gonzalez
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Nadia Tasnim Ahmed
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Brittney Borresen
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Mitchell Farmer
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Melissa Gaeta
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Krishna Sharma
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Christen Bouchard
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Danielle Gamboni
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Jamie Martin
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Bianca Tolve
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Jack W. Judy
- University of Florida Department of Electrical and Computer Engineering and Nanoscience Institute for Medical and Engineering Technology, Gainesville, FL 32611, USA
| | - Chenzhong Li
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Burnett School of Biomedical Sciences, Department of Chemistry and Department of Materials Science and Engineering, Orlando, FL 32826, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, and Department of Chemistry, Miami, FL 33124, USA
| | - Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, and Department of Chemistry, Miami, FL 33124, USA
| | - Ryan M. Gelfand
- School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Steven Lenhert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Eric S. McLamore
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Dong Xiang
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Victoria Morgan
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32603, USA
| | | | - Ratnesh Lal
- Center for Excellence in Nanomedicine and Engineering, University of California San Diego, IEM, La Jolla, CA 92093, USA
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - David P. Hoogerheide
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, MD 20899, USA
| | - Thanh Duc Nguyen
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Martin J. D’Souza
- Department of Pharmaceutical Sciences, Nanotechnology Laboratory, Mercer University, Atlanta, GA 30341, USA
| | - Mustafa Çulha
- Knight Cancer Institute, Cancer Early Detection Advanced Research (CEDAR), Oregon Health and Science University, Portland, OR 97239, USA
| | - Pierre P. D. Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Donald K. Martin
- Faculté de Pharmacie and TIMC-IMAG (UMR 5525), University Grenoble Alpes, SyNaBi, 38000 Grenoble, France
| |
Collapse
|