1
|
Di Mare EJ, Punia A, Lamm MS, Rhodes TA, Gormley AJ. Data-Driven Design of Novel Polymer Excipients for Pharmaceutical Amorphous Solid Dispersions. Bioconjug Chem 2024; 35:1363-1372. [PMID: 39150455 DOI: 10.1021/acs.bioconjchem.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
About 90% of active pharmaceutical ingredients (APIs) in the oral drug delivery system pipeline have poor aqueous solubility and low bioavailability. To address this problem, amorphous solid dispersions (ASDs) embed hydrophobic APIs within polymer excipients to prevent drug crystallization, improve solubility, and increase bioavailability. There are a limited number of commercial polymer excipients, and the structure-function relationships which lead to successful ASD formulations are not well-documented. There are, however, certain solid-state ASD characteristics that inform ASD performance. One characteristic shared by successful ASDs is a high glass transition temperature (Tg), which correlates with higher shelf stability and decreased drug crystallization. We aim to identify how polymer features such as side chain geometry, backbone methylation, and hydrophilic-lipophilic balance impact Tg to design copolymers capable of forming high-Tg ASDs. We tested a library of 50 ASD formulations (18 previously studied and 32 newly synthesized) of the model drug probucol with copolymers synthesized through automated photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization. A machine learning (ML) algorithm was trained on the Tg data to identify the major factors influencing Tg, including backbone methylation and nonlinear side chain geometry. In both polymer alone and probucol-loaded ASDs, a Random Forest Regressor captured structure-function trends in the data set and accurately predicted Tg with an average R2 > 0.83 across a 10-fold cross validation. This ML model will be used to predict novel copolymers to design ASDs with high Tg, a crucial factor in predicting ASD success.
Collapse
Affiliation(s)
- Elena J Di Mare
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ashish Punia
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew S Lamm
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Timothy A Rhodes
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Sundram S, Dhiman N, Malviya R, Awasthi R. Synthesis of Novel Acrylamide Graft Copolymer of Acacia nilotica Gum for the Stabilization of Melatonin Nanoparticles for Improved Therapeutic Effect: Optimization Using (3) 2 Factorial Design. Assay Drug Dev Technol 2024; 22:278-307. [PMID: 38962889 DOI: 10.1089/adt.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of Acacia nilotica gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 32 factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. In vitro toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Neerupma Dhiman
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
3
|
Reis CLB, Campelo TA, Frota CC, Ayala AP, Silva LMA, Rocha MVP, Santiago-Aguiar RSD. The use of green protic ionic liquids in the crystallization of isoniazid: Evaluation of physicochemical and biological properties of drug. Eur J Pharm Biopharm 2024; 201:114345. [PMID: 38823540 DOI: 10.1016/j.ejpb.2024.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
This study evaluated the synthesis of protic ionic liquids (PILs), 2-hydroxy ethylammonium formate (2-HEAF) and 2-hydroxy ethylammonium acetate (2-HEAA), and their applicability in the crystallization process of the active pharmaceutical ingredient isoniazid (INH) as anti-solvent. Isoniazid is an antibiotic used in the treatment of tuberculosis infections, being used as a first-line chemotherapeutic agent against Mycobacterium tuberculosis. Futhermore, this investigation was conducted in order to evaluate how these PILs can influence the habit, solubility, stability, and therapeutic efficiency of the obtained isoniazid crystals. The 2-HEAF and 2-HEAA PILs were easily formed in reactions between ethanolamine and carboxylic acids (formic or acetic acid), and they have no toxicity against Artemia salina. The PILs were able to crystallize isoniazid, influencing the crystal habit and size. The greatest variations in the hydrogen signals of the NH2 and NH groups of the amine and low variations in the chemical shifts of the hydrogens of the cation of the ethanolamine group from 2-HEAA and 2-HEAF indicate that PILs establish possibly weak interactions with INH. The obtained crystals were amorphous and showed higher solubility in water than standard INH. Moreover, these crystals showed therapeutic efficiency inantimycobacterial activity to inhibit the growth of Mycobacterium tuberculosis. The INH:2-HEAF only degraded 5.1 % (w/w), however, INH:2-HEAA degraded 32.8 % (w/w) after 60 days in an accelerated atmosphere. Then, the 2-HEAA and 2-HEAF were able to crystallize isoniazid, being a new application for these PILs. The used PILs also influenced the characteristics of isoniazid crystals.
Collapse
Affiliation(s)
- Carla Luzia Borges Reis
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, Bloco 709, 60440-900 Fortaleza, Ceará, Brazil
| | - Thales Alves Campelo
- Department of Pathology, Federal University of Ceará, Alexandre Baraúna St., 949, Rodolfo Teófilo, 60430-160 Fortaleza, Ceará, Brazil
| | - Cristiane Cunha Frota
- Department of Pathology, Federal University of Ceará, Alexandre Baraúna St., 949, Rodolfo Teófilo, 60430-160 Fortaleza, Ceará, Brazil
| | - Alejandro Pedro Ayala
- Department of Physics, Federal University of Ceará, Mister Hull Ave., Pici, 60440-900 Fortaleza, Ceará, Brazil
| | | | - Maria Valderez Ponte Rocha
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, Bloco 709, 60440-900 Fortaleza, Ceará, Brazil
| | | |
Collapse
|
4
|
Tsai MT, Lee YC, Lin YM, Hsiao VKS, Chu CC. Exploring the Influence of Solvents on Electrochemically Etched Porous Silicon Based on Photoluminescence and Surface Morphology Analysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:989. [PMID: 38473462 DOI: 10.3390/ma17050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Porous silicon (PSi) has promising applications in optoelectronic devices due to its efficient photoluminescence (PL). This study systematically investigates the effects of various organic solvents and their concentrations during electrochemical etching on the resulting PL and surface morphology of PSi. Ethanol, n-butanol, ethylene glycol (EG) and N,N-dimethylformamide (DMF) were employed as solvents in hydrofluoric acid (HF)-based silicon etching. The PL peak position exhibited progressive blue-shifting with increasing ethanol and EG concentrations, accompanied by reductions in the secondary peak intensity and emission linewidth. Comparatively, changes in n-butanol concentration only slightly impacted the main PL peak position. Additionally, distinct morphological transitions were observed for different solvents, with ethanol and n-butanol facilitating uniform single-layer porous structures at higher concentrations in contrast to the excessive etching caused by EG and DMF resulting in PL quenching. These results highlight the complex interdependencies between solvent parameters such as polarity, volatility and viscosity in modulating PSi properties through their influence on surface wetting, diffusion and etching kinetics. The findings provide meaningful guidelines for selecting suitable solvent conditions to tune PSi characteristics for optimized device performance.
Collapse
Affiliation(s)
- Meng-Ting Tsai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Chen Lee
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou 54561, Taiwan
| | - Yung-Mei Lin
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou 54561, Taiwan
| | - Vincent K S Hsiao
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou 54561, Taiwan
| | - Chih-Chien Chu
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
5
|
Sip S, Rosiak N, Sip A, Żarowski M, Hojan K, Cielecka-Piontek J. A Fisetin Delivery System for Neuroprotection: A Co-Amorphous Dispersion Prepared in Supercritical Carbon Dioxide. Antioxidants (Basel) 2023; 13:24. [PMID: 38275644 PMCID: PMC10812833 DOI: 10.3390/antiox13010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Fisetin (FIS), a senolytic flavonoid, mitigates age-related neuroprotective changes. An amorphous FIS dispersion with a co-carrier was prepared using supercritical fluid extraction with carbon dioxide (scCO2). Characterisation, including powder X-ray diffraction and Fourier-transform infrared spectroscopy, confirmed amorphization and assessed intermolecular interactions. The amorphous FIS dispersion exhibited enhanced solubility, dissolution profiles, and bioavailability compared to the crystalline form. In vitro, the amorphous FIS dispersion demonstrated antioxidant activity (the ABTS, CUPRAC, DDPH, FRAP assays) and neuroprotective effects by inhibiting acetylcholinesterase and butyrylcholinesterase. FIS modulated gut microbiota, reducing potentially pathogenic gram-negative bacteria without affecting probiotic microflora. These improvements in solubility, antioxidant and neuroprotective activities, and gut microbiome modulation suggest the potential for optimising FIS delivery systems to leverage its health-promoting properties while addressing oral functionality limitations.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (S.S.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (S.S.); (N.R.)
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland;
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Rehabilitation, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (S.S.); (N.R.)
| |
Collapse
|
6
|
Solnier J, Zhang Y, Kuo YC, Du M, Roh K, Gahler R, Wood S, Chang C. Characterization and Pharmacokinetic Assessment of a New Berberine Formulation with Enhanced Absorption In Vitro and in Human Volunteers. Pharmaceutics 2023; 15:2567. [PMID: 38004546 PMCID: PMC10675484 DOI: 10.3390/pharmaceutics15112567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Berberine is a plant-origin quaternary isoquinoline alkaloid with a vast array of biological activities, including antioxidant and blood-glucose- and blood-lipid-lowering effects. However, its therapeutic potential is largely limited by its poor oral bioavailability. The aim of this study was to investigate the in vitro solubility and Caco-2 cell permeability followed by pharmacokinetic profiling in healthy volunteers of a new food-grade berberine delivery system (i.e., Berberine LipoMicel®). X-ray diffractometry (XRD), in vitro solubility, and Caco-2 cell permeability indicated higher bioavailability of LipoMicel Berberine (LMB) compared to the standard formulation. Increased aqueous solubility (up to 1.4-fold), as well as improved Caco-2 cell permeability of LMB (7.18 × 10-5 ± 7.89 × 10-6 cm/s), were observed when compared to standard/unformulated berberine (4.93 × 10-6 ± 4.28 × 10-7 cm/s). Demonstrating better uptake, LMB achieved significant increases in AUC0-24 and Cmax compared to the standard formulation (AUC: 78.2 ± 14.4 ng h/mL vs. 13.4 ± 1.97 ng h/mL, respectively; p < 0.05; Cmax: 15.8 ± 2.6 ng/mL vs. 1.67 ± 0.41 ng/mL) in a pilot study of healthy volunteers (n = 10). No adverse reactions were reported during the study period. In conclusion, LMB presents a highly bioavailable formula with superior absorption (up to six-fold) compared to standard berberine formulation and may, therefore, have the potential to improve the therapeutic efficacy of berberine. The study has been registered on ClinicalTrials.gov with Identifier NCT05370261.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yiming Zhang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yun Chai Kuo
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Min Du
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Kyle Roh
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | | | - Simon Wood
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia;
- InovoBiologic Inc., Calgary, AB Y2N 4Y7, Canada
- Food, Nutrition and Health Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chuck Chang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| |
Collapse
|
7
|
Farzan M, Roth R, Schoelkopf J, Huwyler J, Puchkov M. The processes behind drug loading and release in porous drug delivery systems. Eur J Pharm Biopharm 2023:S0939-6411(23)00141-8. [PMID: 37230292 DOI: 10.1016/j.ejpb.2023.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Porous materials are ubiquitous and exhibit properties suitable for depositing therapeutic compounds. Drug loading in porous materials can protect the drug, control its release rate, and improve its solubility. However, to achieve such outcomes from porous delivery systems, effective incorporation of the drug in the internal porosity of the carrier must be guaranteed. Mechanistic knowledge of the factors influencing drug loading and release from porous carriers allows rational design of formulations by selecting a suitable carrier for each application. Much of this knowledge exists in research areas other than drug delivery. Thus, a comprehensive overview of this topic from the drug delivery aspect is warranted. This review aims to identify the loading processes and carrier characteristics influencing the drug delivery outcome with porous materials. Additionally, the kinetics of drug release from porous materials are elucidated, and the common approaches to mathematical modeling of these processes are outlined.
Collapse
Affiliation(s)
- Maryam Farzan
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Roger Roth
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Joachim Schoelkopf
- Fundamental Research, Omya International AG, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| |
Collapse
|
8
|
Li X, Song Q, Zhou T, Chen H, Nan W, Xie L, Wang H, Zhang Q, Hao Y. Facile fabrication of a biodegradable multi-hollow iron phosphate nanoplatform for tumor-specific nanocatalytic therapy and chemotherapy. Biomater Sci 2022; 10:6818-6827. [DOI: 10.1039/d2bm01033j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Doxorubicin-loaded iron phosphate could be disintegrated in a low pH environment, releasing both ferric and ferrous ions as well as doxorubicin, and achieve combination tumor therapy.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Qingxia Song
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Ting Zhou
- School of Basic Medical Science, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
- The Third Affiliated Hospital of Xinxiang Medical University, 599 Hualan Avenue, Xinxiang 453003, P. R. China
| | - Wenbin Nan
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Liqin Xie
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Haijiao Wang
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Qiqing Zhang
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Yongwei Hao
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| |
Collapse
|
9
|
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021; 171:108-138. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers of the brain. Despite extensive research over the last several decades, the survival rates for GBM have not improved and prognosis remains poor. To date, only a few therapies are approved for the treatment of GBM with the main reasons being: 1) significant tumour heterogeneity which promotes the selection of resistant subpopulations 2) GBM induced immunosuppression and 3) fortified location of the tumour in the brain which hinders the delivery of therapeutics. Existing therapies for GBM such as radiotherapy, surgery and chemotherapy have been unable to reach the clinical efficacy necessary to prolong patient survival more than a few months. This comprehensive review evaluates the current and emerging therapies including those in clinical trials that may potentially improve both targeted delivery of therapeutics directly to the tumour site and the development of agents that may specifically target GBM. Particular focus has also been given to emerging delivery technologies such as focused ultrasound, cellular delivery systems nanomedicines and immunotherapy. Finally, we discuss the importance of developing novel materials for improved delivery efficacy of nanoparticles and therapeutics to reduce the suffering of GBM patients.
Collapse
|
10
|
Persano F, Batasheva S, Fakhrullina G, Gigli G, Leporatti S, Fakhrullin R. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J Mater Chem B 2021; 9:2756-2784. [PMID: 33596293 DOI: 10.1039/d0tb02957b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inorganic materials, in particular nanoclays and silica nanoparticles, have attracted enormous attention due to their versatile and tuneable properties, making them ideal candidates for a wide range of biomedical applications, such as drug delivery. This review aims at overviewing recent developments of inorganic nanoparticles (like porous or mesoporous silica particles) and different nano-clay materials (like montmorillonite, laponites or halloysite nanotubes) employed for overcoming the blood brain barrier (BBB) in the treatment and therapy of major brain diseases such as Alzheimer's, Parkinson's, glioma or amyotrophic lateral sclerosis. Recent strategies of crossing the BBB through invasive and not invasive administration routes by using different types of nanoparticles compared to nano-clays and inorganic particles are overviewed.
Collapse
Affiliation(s)
- Francesca Persano
- University of Salento, Department of Mathematics and Physics, Via Per Arnesano 73100, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Zhang X, Chen Z, Tao C, Zhang J, Zhang M, Zhang J, Liu Z, Lin J, Xu H, Zhang Q, Song H. Effect of Surface Property on the Release and Oral Absorption of Solid Sirolimus-Containing Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 2021; 22:108. [PMID: 33718989 DOI: 10.1208/s12249-021-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
The combination of self-microemulsifying drug delivery system (SMEDDS) and mesoporous silica materials favors the oral delivery of poorly water-soluble drugs (PWSD). However, the influence of the surface property of the mesopores towards the drug release and in vivo pharmacokinetics is still unknown. In this study, SBA-15 with hydroxyl groups (SBA-15-H), methyl groups (SBA-15-M), amino groups (SBA-15-A), or carboxyl groups (SBA-15-C) was combined with SMEDDS containing sirolimus (SRL). The diffusion and self-emulsifying of SMEDDS greatly improved the drug release over the raw SRL and SRL-SBA-15-R (R referred to as the functional groups). Results of drug absorption and X-ray photoelectron spectroscopy (XPS) showed strong hydrogen binding between SRL and the amino groups of SBA-15-A, which hindered the drug release and oral bioavailability of SRL-SMEDDS-SBA-15-A. The favorable release of SRL-SMEDDS-SBA-15-C (91.31 ± 0.57%) and SRL-SMEDDS-SBA-15-M (91.76 ± 3.72%) contributed to enhancing the maximum blood concentration (Cmax) and the area under the concentration-time curve (AUC0→48). In conclusion, the release of SRL-SMEDDS-SBA-15-R was determined by the surface affinity of the SBA-15-R and the interaction between the SRL molecules and the surface of SBA-15-R. This study suggested that the SMEDDS-SBA-15 was a favorable carrier for PWSD, and the surface property of the mesopores should be considered for the optimization of the SMEDDS-SBA-15.
Collapse
|
12
|
García-González CA, Sosnik A, Kalmár J, De Marco I, Erkey C, Concheiro A, Alvarez-Lorenzo C. Aerogels in drug delivery: From design to application. J Control Release 2021; 332:40-63. [PMID: 33600880 DOI: 10.1016/j.jconrel.2021.02.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/28/2022]
Abstract
Aerogels are the lightest processed solid materials on Earth and with the largest empty volume fraction in their structure. Composition versatility, modularity, and feasibility of industrial scale manufacturing are behind the fast emergence of aerogels in the drug delivery field. Compared to other 3D materials, the high porosity (interconnected mesopores) and high specific surface area of aerogels may allow faster loading of small-molecule drugs, less constrained access to inner regions of the matrix, and more efficient interactions of the biological milieu with the polymer matrix. Processing in supercritical CO2 medium for both aerogel production (drying) and drug loading (impregnation) has remarkable advantages such as absence of an oxidizing environment, clean manufacture, and easiness for the scale-up under good manufacturing practices. The aerogel solid skeleton dictates the chemical affinity to the different drugs, which in turn determines the loading efficiency and the release pattern. Aerogels can be used to increase the solubility of BCS Class II and IV drugs because the drug can be deposited in amorphous state onto the large surface area of the skeleton, which facilitates a rapid contact with the body fluids, dissolution, and release. Conversely, tuning the aerogel structure by functionalization with drug-binding moieties or stimuli-responsive components, application of coatings and incorporation of drug-loaded aerogels into other matrices may enable site-specific, stimuli-responsive, or prolonged drug release. The present review deals with last decade advances in aerogels for drug delivery. An special focus is paid first on the loading efficiency of active ingredients and release kinetics under biorelevant conditions. Subsequent sections deal with aerogels intended to address specific therapeutic demands. In addition to oral delivery, the physical properties of the aerogels appear to be very advantageous for mucosal administration routes, such as pulmonary, nasal, or transdermal. A specific section devoted to recent achievements in gene therapy and theranostics is also included. In the last section, scale up strategies and life cycle assessment are comprehensively addressed.
Collapse
Affiliation(s)
- Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - József Kalmár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Can Erkey
- Chemical and Biological Engineering Department, Koç University, 34450 Sarıyer, Istanbul, Turkey
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Banerjee M, Brettmann B. Combining Surface Templating and Confinement for Controlling Pharmaceutical Crystallization. Pharmaceutics 2020; 12:E995. [PMID: 33092148 PMCID: PMC7589131 DOI: 10.3390/pharmaceutics12100995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Poor water solubility is one of the major challenges to the development of oral dosage forms containing active pharmaceutical ingredients (APIs). Polymorphism in APIs leads to crystals with different surface wettabilities and free energies, which can lead to different dissolution properties. Crystal size and habit further contribute to this variability. An important focus in pharmaceutical research has been on controlling the drug form to improve the solubility and thus bioavailability of APIs. In this regard, heterogeneous crystallization on surfaces and crystallization under confinement have become prominent forms of controlling polymorphism and drug crystal size and habits; however there has not been a thorough review into the emerging field of combining these approaches to control crystallization. This tutorial-style review addresses the major advances that have been made in controlling API forms using combined crystallization methods. By designing templates that not only control the surface functionality but also enable confinement of particles within a porous structure, these combined systems have the potential to provide better control over drug polymorph formation and crystal size and habit. This review further provides a perspective on the future of using a combined crystallization approach and suggests that combining surface templating with confinement provides the advantage of both techniques to rationally design systems for API nucleation.
Collapse
Affiliation(s)
- Manali Banerjee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Blair Brettmann
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Degrees of order: A comparison of nanocrystal and amorphous solids for poorly soluble drugs. Int J Pharm 2020; 586:119492. [PMID: 32505579 DOI: 10.1016/j.ijpharm.2020.119492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
Poor aqueous solubility is currently a prevalent issue in the development of small molecule pharmaceuticals. Several methods are possible for improving the solubility, dissolution rate and bioavailability of Biopharmaceutics Classification System (BCS) class II and class IV drugs. Two solid state approaches, which rely on reductions in order, and can theoretically be applied to all molecules without any specific chemical prerequisites (compared with e.g. ionizable or co-former groups, or sufficient lipophilicity), are the use of the amorphous form and nanocrystals. Research involving these two approaches is relatively extensive and commercial products are now available based on these technologies. Nevertheless, their formulation remains more challenging than with conventional dosage forms. This article describes these two technologies from both theoretical and practical perspectives by briefly discussing the physicochemical backgrounds behind these approaches, as well as the resulting practical implications, both positive and negative. Case studies demonstrating the benefits and challenges of these two techniques are presented.
Collapse
|