1
|
Souza ARD, Antinarelli LMR, Lemos ASDO, Glanzmann N, Vicente B, Midlej VDV, Silva Neto AFD, Machado RRP, da Silva AD, Coimbra ES. Multiple mechanisms of action of a triazole-derived salt against Leishmania amazonensis: Apoptosis-like death and autophagy. Chem Biol Interact 2025; 409:111409. [PMID: 39922522 DOI: 10.1016/j.cbi.2025.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Current chemotherapy for leishmaniasis faces significant limitations due to high toxicity, prolonged treatment regimens, and increasing parasite resistance, highlighting the urgent need for innovative treatment strategies. This study aimed to evaluate the in vitro activity of 1,2,3-triazole derivatives against promastigotes and amastigotes of Leishmania amazonensis, as well as their cytotoxicity in murine macrophages. Additionally, we investigated the mechanism of parasite death through different biochemical and cellular indicators of cell death parameters. Our results underscored the importance of the salt form, as the neutral form showed no inhibition of parasite growth. In contrast, the triazole-derived salt demonstrated promising selective index (SI = 34.28) and antileishmanial activity (IC50 = 0.13 μM and IC50 = 2.06 μM against promastigote and amastigote forms, respectively), proving more active than miltefosine, the standard drug. Regarding the mode of action of the triazole-derived salt, this compound induced significant mitochondrial alterations in the parasite, characterized by an increase in mitochondrial membrane potential (ΔΨm), elevated levels of total and mitochondrial Reactive Oxygen Species (ROS), and lipid body accumulation in the cytoplasm. Treatment with triazole-derived salt also produced several ultrastructural, biochemical, and cellular changes in the promastigote forms, such as the occurrence of apoptosis-like death, including cell shrinkage and reduction in length, as well as exposure of phosphatidylserine in the outer leaflet of the plasma membrane and marked cell cycle interruption, in addition to DNA fragmentation. Despite MDC positive and the presence of membrane-bound vacuoles resembling autophagosomal structures observed by TEM analysis, autophagy is not a predominant process, with severe mitochondrial damage emerging as the primary event leading to parasite death. These findings demonstrate the promising antileishmanial potential of the triazole-derived salt, with its effect on multiple targets in parasite cells. Moreover, the association of the active compound with miltefosine showed an additive effect in treating L. amazonensis-infected macrophages. Altogether, these results highlight the therapeutic potential of the evaluated salt and support further studies to assess its in vivo efficacy in a murine model of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Andrezza Rodrigues de Souza
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Ari Sergio de Oliveira Lemos
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Nicolas Glanzmann
- Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Bruno Vicente
- Structural Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Victor do Valle Midlej
- Structural Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Adolfo Firmino da Silva Neto
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Adilson David da Silva
- Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
2
|
Dabagh S, Javanifar R, Kaya M, Ebrahimi A, Güven S, Kaya BM, Esenturk O, Askin A, Güzel FD, Uysal O, Sarıboyacı AE, Ghorbanpoor H, Avci H. Electrosprayed MnFe2O4/PVDF membrane integrated microfluidic chip for amoxicillin removal with real-time monitoring of pH and dissolved oxygen. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:114895. [DOI: 10.1016/j.jece.2024.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Faísca F, Petrovski Ž, Grilo I, Lima SAC, Santos MM, Branco LC. Synthesis, Characterization, Bioavailability and Antimicrobial Studies of Cefuroxime-Based Organic Salts and Ionic Liquids. Pharmaceutics 2024; 16:1291. [PMID: 39458620 PMCID: PMC11510342 DOI: 10.3390/pharmaceutics16101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 10/28/2024] Open
Abstract
Low oral bioavailability is a common feature in most drugs, including antibiotics, due to low solubility in physiological media and inadequate cell permeability, which may limit their efficacy or restrict their administration in a clinical setting. Cefuroxime is usually administered in its prodrug form, cefuroxime axetil. However, its preparation requires further reaction steps and additional metabolic pathways to be converted into its active form. The combination of Active Pharmaceutical Ingredients (APIs) with biocompatible organic molecules as salts is a viable and documented method to improve the solubility and permeability of a drug. Herein, the preparations of five organic salts of cefuroxime as an anion with enhanced physicochemical characteristics have been reported. These were prepared via buffer-assisted neutralization methodology with pyridinium and imidazolium cations in quantitative yields and presented as solids at room temperature. Cell viability studies on 3T3 cells showed that only the cefuroxime salts combined with longer alkyl chain cations possess higher cytotoxicity than the original drug, and while most salts lost in vitro antibacterial activity against E. coli, P. aeruginosa and B. subtilis, one compound, [PyC10Py][CFX]2, retained the activity. Cefuroxime organic salts have a water solubility 8-to-200-times greater than the original drug at 37 °C. The most soluble compounds have a very low octanol-water partition, similar to cefuroxime, while more lipophilic salts partition predominantly to the organic phase.
Collapse
Affiliation(s)
- Francisco Faísca
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; (F.F.); (Ž.P.); (M.M.S.)
| | - Željko Petrovski
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; (F.F.); (Ž.P.); (M.M.S.)
| | - Inês Grilo
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
| | - Sofia A. C. Lima
- LAQV, REQUIMTE, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal;
| | - Miguel M. Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; (F.F.); (Ž.P.); (M.M.S.)
| | - Luis C. Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; (F.F.); (Ž.P.); (M.M.S.)
| |
Collapse
|
4
|
Silva AT, Oliveira I, Duarte D, Moita D, Prudêncio M, Nogueira F, Ferraz R, Marques EF, Gomes P. "Seasoning" antimalarial drugs' action: chloroquine bile salts as novel triple-stage antiplasmodial hits. RSC Med Chem 2024; 15:2657-2662. [PMID: 39149112 PMCID: PMC11324038 DOI: 10.1039/d4md00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 08/17/2024] Open
Abstract
Malaria is one of the "big three" global infectious diseases, having caused above two hundred million cases and over half a million deaths in 2020. The continuous demand for new treatment options prioritizes the cost-effective development of new chemical entities with multi-stage antiplasmodial activity, for higher efficacy and lower propensity to elicit drug-resistant parasite strains. Following up on our long-term research towards the rescue of classical antimalarial aminoquinolines like chloroquine and primaquine, we have developed new organic salts by acid-base pairing of those drugs with natural bile acids. These antimalarial drug-derived bile salts were screened in vitro against the hepatic, blood and gametocyte stages of Plasmodium parasites, unveiling chloroquine bile salts as unprecedented triple-stage antiplasmodial hits. These findings pave a new pathway for drug rescuing, even beyond anti-malarial and other anti-infective drugs.
Collapse
Affiliation(s)
- Ana Teresa Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
| | - Isabel Oliveira
- CIQUP - IMS, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
| | - Denise Duarte
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa P-1349-008 Lisboa Portugal
| | - Diana Moita
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa P-1649 028 Lisboa Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa P-1649 028 Lisboa Portugal
| | - Fátima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa P-1349-008 Lisboa Portugal
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde - Instituto Politécnico do Porto P-4200-072 Porto Portugal
| | - Eduardo Figueira Marques
- CIQUP - IMS, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto P-4169-007 Porto Portugal
| |
Collapse
|
5
|
Taib LA. RSM and ANN methodologies in modeling the enhanced biodiesel production using novel protic ionic liquid anchored on g-C 3N 4@Fe 3O 4 nanohybrid. CHEMOSPHERE 2024; 360:142399. [PMID: 38801903 DOI: 10.1016/j.chemosphere.2024.142399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Herin, a new nanohybrid acid catalyst was fabricated for the efficient biodiesel production. At the first, magnetic porous nanosheets of graphitic carbon nitride (g-C3N4@Fe3O4) was prepared and then functionalized with sulfonic acid. Next, the preparation of the catalyst was completed by mixing this surface modified support with n-methyl imidazolium butyl sulfonate zwitterion to achieve non-covalent immobilized acidic ionic liquid on g-C3N4@Fe3O4 support. The catalyst underwent characterization through various techniques such as 1H and 13C NMR, FTIR, SEM, TEM, TGA, EDX and BET which revealing that the magnetic support loaded acidic ionic liquids via a robust charge interaction effect enabling the one-pot production of biodiesel from low-quality oils. Furthermore, the catalyst could be simply recovered using a permanent magnet and reused multiple times without a significant decline in catalytic activity. Consequently, the solid catalyst based on ionic liquids holds promise for the sustainable and eco-friendly production of biodiesel from low-quality oils. Furthermore, Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were used to model the yield and various process parameters. The findings underscore the enhanced predictive capabilities of ANN in comparison to RSM.
Collapse
Affiliation(s)
- Layla A Taib
- Department of Chemistry, College of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Mikuni-Mester P, Robben C, Witte AK, Linke K, Ehling-Schulz M, Rossmanith P, Grunert T. Antimicrobial Ionic Liquids: Ante-Mortem Mechanisms of Pathogenic EPEC and MRSA Examined by FTIR Spectroscopy. Int J Mol Sci 2024; 25:4705. [PMID: 38731923 PMCID: PMC11083031 DOI: 10.3390/ijms25094705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Ionic liquids (ILs) have gained considerable attention due to their versatile and designable properties. ILs show great potential as antibacterial agents, but understanding the mechanism of attack on bacterial cells is essential to ensure the optimal design of IL-based biocides. The final aim is to achieve maximum efficacy while minimising toxicity and preventing resistance development in target organisms. In this study, we examined a dose-response analysis of ILs' antimicrobial activity against two pathogenic bacteria with different Gram types in terms of molecular responses on a cellular level using Fourier-transform infrared (FTIR) spectroscopy. In total, 18 ILs with different antimicrobial active motifs were evaluated on the Gram-negative enteropathogenic Escherichia coli (EPEC) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA). The results showed that most ILs impact bacterial proteins with increasing concentration but have a minimal effect on cellular membranes. Dose-response spectral analysis revealed a distinct ante-mortem response against certain ILs for MRSA but not for EPEC. We found that at sub-lethal concentrations, MRSA actively changed their membrane composition to counteract the damaging effect induced by the ILs. This suggests a new adaptive mechanism of Gram-positive bacteria against ILs and demonstrates the need for a better understanding before using such substances as novel antimicrobials.
Collapse
Affiliation(s)
- Patrick Mikuni-Mester
- Centre for Food Science and Veterinary Public Health, Unit of Food Microbiology, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Technopark 1D, 3430 Tulln, Austria
| | - Christian Robben
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Anna K. Witte
- HTK Hygiene Technologie Kompetenzzentrum GmbH, Buger Str. 80, 96049 Bamberg, Germany;
| | - Kristina Linke
- ZuchtData EDV-Dienstleistungen GmbH, Dresdner Str. 89/18, 1200 Vienna, Austria;
| | - Monika Ehling-Schulz
- Centre of Pathobiology, Functional Microbiology Division, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (M.E.-S.); (T.G.)
| | - Peter Rossmanith
- Centre for Food Science and Veterinary Public Health, Unit of Food Microbiology, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Tom Grunert
- Centre of Pathobiology, Functional Microbiology Division, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (M.E.-S.); (T.G.)
| |
Collapse
|
7
|
Mazur A, Neugebauer D. Characterization of Graft Copolymers Synthesized from p-Aminosalicylate Functionalized Monomeric Choline Ionic Liquid. Pharmaceutics 2023; 15:2556. [PMID: 38004535 PMCID: PMC10674915 DOI: 10.3390/pharmaceutics15112556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
An ionic liquid based on the monomeric choline, specifically [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (TMAMA), underwent biofunctionalization through an ion exchange reaction with the model drug anion: p-aminosalicylate (PAS), a primary antibiotic for tuberculosis treatment. This modified biocompatible IL monomer (TMAMA/PAS) was subsequently copolymerized with methyl methacrylate (MMA) to directly synthesize the well-defined graft conjugates with regulated content of ionic fraction with PAS anions (up to 49%), acting as drug delivery systems. The length of the polymeric side chains was assessed by the monomer conversions, yielding a degree of polymerization ranging from 12 to 89. The density of side chains was controlled by "grafting from" using the multifunctional macroinitiators. In vitro drug release, triggered by the ion exchange between the pharmaceutical and phosphate anions in a PBS medium, occurred in the range of 71-100% (2.8-9.8 μg/mL). Owing to significant drug content and consistent release profiles, these particular graft copolymers, derived from biomodified IL monomers with ionically attached pharmaceutical PAS in the side chains, are recognized as potentially effective drug delivery vehicles.
Collapse
Affiliation(s)
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
8
|
Costa FMS, Granja A, Pérez RL, Warner IM, Reis S, Passos MLC, Saraiva MLMFS. Fluoroquinolone-Based Organic Salts (GUMBOS) with Antibacterial Potential. Int J Mol Sci 2023; 24:15714. [PMID: 37958698 PMCID: PMC10650486 DOI: 10.3390/ijms242115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Antimicrobial resistance is a silent pandemic considered a public health concern worldwide. Strategic therapies are needed to replace antibacterials that are now ineffective. One approach entails the use of well-known antibacterials along with adjuvants that possess non-antibiotic properties but can extend the lifespan and enhance the effectiveness of the treatment, while also improving the suppression of resistance. In this regard, a group of uniform materials based on organic salts (GUMBOS) presents an alternative to this problem allowing the combination of antibacterials with adjuvants. Fluoroquinolones are a family of antibacterials used to treat respiratory and urinary tract infections with broad-spectrum activity. Ciprofloxacin and moxifloxacin-based GUMBOS were synthesized via anion exchange reactions with lithium and sodium salts. Structural characterization, thermal stability and octanol/water partition ratios were evaluated. The antibacterial profiles of most GUMBOS were comparable to their cationic counterparts when tested against Gram-positive S. aureus and Gram-negative E. coli, except for deoxycholate anion, which demonstrated the least effective antibacterial activity. Additionally, some GUMBOS were less cytotoxic to L929 fibroblast cells and non-hemolytic to red blood cells. Therefore, these agents exhibit promise as an alternative approach to combining drugs for treating infections caused by resistant bacteria.
Collapse
Affiliation(s)
- Fábio M. S. Costa
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Andreia Granja
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Rocío L. Pérez
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (R.L.P.); (I.M.W.)
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30458, USA
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (R.L.P.); (I.M.W.)
- Department of Chemistry, Cincinnati University, Cincinnati, OH 45221, USA
| | - Salette Reis
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Marieta L. C. Passos
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| |
Collapse
|
9
|
Shamshina JL, Rogers RD. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem Rev 2023; 123:11894-11953. [PMID: 37797342 DOI: 10.1021/acs.chemrev.3c00384] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, Texas 79409, United States
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, Alabama 35403, United States
| |
Collapse
|
10
|
Javed S, Abbas G, Shah S, Rasul A, Irfan M, Saleem A, Hosny KM, Bukhary SM, Safhi AY, Sabei FY, Majrashi MA, Alkhalidi HM, Alissa M, Khan SM, Hanif M. Tobramycin-loaded nanoparticles of thiolated chitosan for ocular drug delivery: Preparation, mucoadhesion and pharmacokinetic evaluation. Heliyon 2023; 9:e19877. [PMID: 37809498 PMCID: PMC10559273 DOI: 10.1016/j.heliyon.2023.e19877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
The present work aimed to develop nanoparticles of tobramycin (TRM) using thiolated chitosan (TCS) in order to improve the mucoadhesion, antibacterial effect and pharmacokinetics. The nanoparticles were evaluated for their compatibility, thermal stability, particle size, zeta potential, mucoadhesion, drug release, kinetics of TRM release, corneal permeation, toxicity and ocular irritation. The thiolation of chitosan was confirmed by 1H NMR and FTIR, which showed peaks at 6.6 ppm and 1230 cm-1, respectively. The nanoparticles had a diameter of 73 nm, a negative zeta potential (-21 mV) and a polydispersity index of 0.15. The optimized formulation, NT8, exhibited the highest values of mucoadhesion (7.8 ± 0.541h), drug loading (87.45 ± 1.309%), entrapment efficiency (92.34 ± 2.671%), TRM release (>90%) and corneal permeation (85.56%). The release pattern of TRM from the developed formulations was fickian diffusion. TRM-loaded nanoparticles showed good antibacterial activity against Pseudomonas aeruginosa. The optimized formulation NT8 (0.1% TRM) greatly increased the AUC(0-∞) (1.5-fold) while significantly reducing the clearance (5-fold) compared to 0.3% TRM. Pharmacokinetic parameters indicated improved ocular retention and bioavailability of TRM loaded nanoparticles. Our study demonstrated that the TRM-loaded nanoparticles had improved mucoadhesion and pharmacokinetics and a suitable candidate for effective treatment of ocular bacterial infections.
Collapse
Affiliation(s)
- Sadaf Javed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sahar M. Bukhary
- Department of Biological Analysis, Neuroscience unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed A. Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sajid Mehmood Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University Bahawalpur, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
11
|
Filipe L, de Sousa T, Silva D, Santos MM, Ribeiro Carrott M, Poeta P, Branco LC, Gago S. In Vitro Antimicrobial Studies of Mesoporous Silica Nanoparticles Comprising Anionic Ciprofloxacin Ionic Liquids and Organic Salts. Pharmaceutics 2023; 15:1934. [PMID: 37514120 PMCID: PMC10385687 DOI: 10.3390/pharmaceutics15071934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The combination of active pharmaceutical ingredients in the form of ionic liquids or organic salts (API-OSILs) with mesoporous silica nanoparticles (MSNs) as drug carriers can provide a useful tool in enhancing the capabilities of current antibiotics, especially against resistant strains of bacteria. In this publication, the preparation of a set of three nanomaterials based on the modification of a MSN surface with cholinium ([MSN-Chol][Cip]), 1-methylimidazolium ([MSN-1-MiM][Cip]) and 3-picolinium ([MSN-3-Pic][Cip]) ionic liquids coupled with anionic ciprofloxacin have been reported. All ionic liquids and functionalized nanomaterials were prepared through sustainable protocols, using microwave-assisted heating as an alternative to conventional methods. All materials were characterized through FTIR, solution 1H NMR, elemental analysis, XRD and N2 adsorption at 77 K. The prepared materials showed no in vitro cytotoxicity in fibroblasts viability assays. The minimum inhibitory concentration (MIC) for all materials was tested against Gram-negative K. pneumoniae and Gram-positive Enterococcus spp., both with resistant and sensitive strains. All sets of nanomaterials containing the anionic antibiotic outperformed free ciprofloxacin against resistant and sensitive forms of K. pneumoniae, with the prominent case of [MSN-Chol][Cip] suggesting a tenfold decrease in the MIC against sensitive strains. Against resistant K. pneumoniae, a five-fold decrease in the MIC was observed for all sets of nanomaterials compared with neutral ciprofloxacin. Against Enterococcus spp., only [MSN-1-MiM][Cip] was able to demonstrate a slight improvement over the free antibiotic.
Collapse
Affiliation(s)
- Luís Filipe
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Telma de Sousa
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Dário Silva
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Miguel M Santos
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Manuela Ribeiro Carrott
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, Department of Chemistry and Biochemistry, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - Patrícia Poeta
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís C Branco
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Sandra Gago
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
12
|
Costa T, Veiga MI, Osório NS, Neves NM, Aguilar H, Fraga AG. Development of polyurethane antimicrobial coatings by composition with phenolic-, ionic- and copper-based agents. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2023; 24:6942-6957. [DOI: 10.1016/j.jmrt.2023.04.243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Govindaraj S, Ganesan K, Dharmasivam M, Raman L, Kuppusamy KM, Pandiappan V, Alam MM, Mohammed A. Discovery of Novel Dimeric Pyridinium Bromide Analogues Inhibits Cancer Cell Growth by Activating Caspases and Downregulating Bcl-2 Protein. ACS OMEGA 2023; 8:13243-13251. [PMID: 37065022 PMCID: PMC10099142 DOI: 10.1021/acsomega.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Flexible dimeric substituted pyridinium bromides with primary and tertiary amines are prepared by conventional and solvent-free methods. The formation of compounds 2 and 4 is much easier than that of compounds 1 and 3 because of the benzyl carbon which is more electropositive than the primary alkyl carbon. The newly synthesized dimeric pyridinium compounds are optimized using DFT and B3LYP 6-31 g(d,p). The in vitro antiproliferative activity is studied in lung (A549) and breast cancer cell lines (MDA-MB 231). Among the four compounds, 1,1'-(1,3-phenylene bis(methylene)bis 2-aminopyridinium bromide 4 showed potent anticancer activity when compared to the standard drug 5-fluorouracil. 1,1'-(1,3-Phenylene bis(methylene)bis 2-aminopyridinium bromide 4 is not toxic to normal cell lines 3T3-L1 and MRC-5 cell lines. Also, 1,1'-(1,3-phenylene bis(methylene)bis 2-aminopyridinium bromide 4-induced apoptosis in cancer cell lines is examined using AO/EB and Hoechst staining, which is further supported by cell cycle analysis. Western blot analysis showed that 1,1'-(1,3-phenylene bis(methylene)bis 2-aminopyridinium bromide 4 induces apoptosis through the extrinsic apoptotic pathway by upregulating caspase 3 and caspase 9. This compound also downregulates intrinsic apoptotic proteins, including Bcl-2, Bcl-x, and Bad. From the present study results, it is confirmed that 1,1'-(1,3-phenylene bis(methylene)bis 2-aminopyridinium bromide 4 has potent anticancer activity when compared to other compounds.
Collapse
Affiliation(s)
| | - Kilivelu Ganesan
- PG
and Research Department of Chemistry, Presidency
College, Chennai 600005, India
| | - Mahendiran Dharmasivam
- Centre
for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Lakshmisundaram Raman
- Sri
Ramachandra Faculty of Pharmacy, Sri Ramachandra
Institute of Higher Educational and Research (DU), Porur, Chennai 600116, India
| | - Kalaivani M. Kuppusamy
- Research
Centre for Cellular Genomics and Cancer Research, Sree Balaji Medical College and Hospital, Chennai 600044, India
| | - Viswanathan Pandiappan
- Department
of Uyivedhiyal, JSA Medical College for
Siddha and Research Centre, Ulundurpet, Kallakkurichi 606 104, India
| | - Mohammed Mujahid Alam
- Department
of Chemistry, College of Science, King Khalid
University, PO Box 9004, Abha 61413, Kingdom of Saudi Arabia
| | - Amanullah Mohammed
- Department
of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 61413, Kingdom
of Saudi Arabia
| |
Collapse
|
14
|
Abrar Siddiquee M, Saraswat J, Ud Din Parray M, Singh P, Bargujar S, Patel R. Spectroscopic and DFT study of imidazolium based ionic liquids with broad spectrum antibacterial drug levofloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121803. [PMID: 36095856 DOI: 10.1016/j.saa.2022.121803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Herein, we have shown the interaction of levofloxacin (LVF) with two imidazolium based ionic liquids (ILs), 1-butly-3-methylimidazolium chloride ([Bmim][Cl]) and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]) by utilising spectroscopic techniques along with computational approach. Both [Bmim][Cl] and [Dmim][Cl] quenched the fluorescence emission of LVF suggesting complex formation between ILs and the drug. The steady-state and time-resolve fluorescence studies revealed that the quenching of fluorescence emission of LVF in the presence of [Bmim][Cl] and [Dmim][Cl], which signified the non-fluorescent complex formation between LVF and ILs. The complex formation between LVF and ILs were also validated by the UV-visible spectroscopy method. The cyclic voltammetry (CV) results further suggest the strong interaction between LVF and ILs. The estimated binding constant (Kb) and free energy change (ΔG) parameters shows the substantial binding of LVF with both the ILs and spontaneous in nature. The value suggested that LVF have stronger binding with [Dmim][Cl] than [Bmim][Cl]. Further, in order to support the results classical density functional theory (DFT) model was performed. The DFT calculations were utilized to explore the 3D structure and the molecular orbitals (HOMO and LUMO) of ILs, LVF and their complexes using Gaussian 09 software. The aggregate size (Dh) and zeta potential of ILs and IL-drug complexes were determined by dynamic light scattering (DLS) and zeta potential in aqueous medium.
Collapse
Affiliation(s)
- Md Abrar Siddiquee
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Juhi Saraswat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mehraj Ud Din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prashant Singh
- Department of Chemistry, ARSD College, Delhi University, New Delhi 110021, India
| | - Savita Bargujar
- Department of Chemistry, Ramjas College, Delhi University, New Delhi 110007, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
15
|
Improving the Antimycobacterial Drug Clofazimine through Formation of Organic Salts by Combination with Fluoroquinolones. Int J Mol Sci 2023; 24:ijms24021402. [PMID: 36674923 PMCID: PMC9865903 DOI: 10.3390/ijms24021402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
This work reports the synthesis, structural and thermal analysis, and in vitro evaluation of the antimicrobial activity of two new organic salts (OSs) derived from the antimycobacterial drug clofazimine and the fluoroquinolones ofloxacin or norfloxacin. Organic salts derived from active pharmaceutical ingredients (API-OSs), as those herein disclosed, hold promise as cost-effective formulations with improved features over their parent drugs, thus enabling the mitigation of some of their shortcomings. For instance, in the specific case of clofazimine, its poor solubility severely limits its bioavailability. As compared to clofazimine, the clofazimine-derived OSs now reported have improved solubility and thermostability, without any major deleterious effects on the drug's bioactivity profile.
Collapse
|
16
|
Saraswat J, Kumar S, Alzahrani KA, Malik MA, Patel R. Experimental and Computational Characterisation of the Molecular Interactions between 1‐Butyl‐1‐methyl‐pyrrolidin‐1‐ium bis(trifluoromethanesulphonyl)imide and Human Serum Albumin. ChemistrySelect 2023. [DOI: 10.1002/slct.202204159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Juhi Saraswat
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi 110025 India
| | - Shiv Kumar
- Department of Chemistry Kalindi College University of Delhi New Delhi 110008 India
| | - Khalid Ahmed Alzahrani
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
17
|
Synthesis and Biological Evaluation of Amphotericin B Formulations Based on Organic Salts and Ionic Liquids against Leishmania infantum. Antibiotics (Basel) 2022; 11:antibiotics11121841. [PMID: 36551498 PMCID: PMC9774544 DOI: 10.3390/antibiotics11121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Nowadays, organic salts and ionic liquids (OSILs) containing active pharmaceutical ingredients (APIs) are being explored as drug delivery systems in modern therapies (OSILs-API). In that sense, this work is focused on the development of novel OSILs-API based on amphotericin B through an innovative procedure and the evaluation of the respective biological activity against Leishmania infantum. Several ammonium, methylimidazolium, pyridinium and phosphonium organic cations combined with amphotericin B as anion were synthesized in moderate to high yields and high purities by the water-reduced buffer neutralization method. All prepared compounds were characterized to confirm the desired chemical structure and the specific optical rotation ([α]D25) was also determined. The biological assays performed on L. infantum promastigotes showed increased activity against this parasitic disease when compared with the starting chloride forms and amphotericin B alone, highlighting [P6,6,6,14][AmB] as the most promising formulation. Possible synergism in the antiprotozoal activity was also evaluated for [P6,6,6,14][AmB], since it was proven to be the compound with the highest toxicity. This work reported a simple synthetic method, which can be applied to prepare other organic salts based on molecules containing fragile chemical groups, demonstrating the potential of these OSILs-AmB as possible agents against leishmaniasis.
Collapse
|
18
|
Mazur A, Niesyto K, Neugebauer D. Pharmaceutical Functionalization of Monomeric Ionic Liquid for the Preparation of Ionic Graft Polymer Conjugates. Int J Mol Sci 2022; 23:ijms232314731. [PMID: 36499061 PMCID: PMC9735495 DOI: 10.3390/ijms232314731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Polymerizable choline-based ionic liquid (IL), i.e., [2-(methacryloyloxy)ethyl]-trimethylammonium (TMAMA/Cl¯), was functionalized by an ion exchange reaction with pharmaceutical anions, i.e., cloxacillin (CLX¯) and fusidate (FUS¯), as the antibacterial agents. The modified biocompatible IL monomers (TMAMA/CLX¯, TMAMA/FUS¯) were copolymerized with methyl methacrylate (MMA) to prepare the graft copolymers (19-50 mol% of TMAMA units) serving as the drug (co)delivery systems. The in vitro drug release, which was driven by the exchange reaction of the pharmaceutical anions to phosphate ones in PBS medium, was observed for 44% of CLX¯ (2.7 μg/mL) and 53% of FUS¯ (3.6 μg/mL) in the single systems. Similar amounts of released drugs were detected for the dual system, i.e., 41% of CLX¯ (2.2 μg/mL) and 33% of FUS¯ (2.0 μg/mL). The investigated drug ionic polymer conjugates were examined for their cytotoxicity by MTT test, showing a low toxic effect against human bronchial epithelial cells (BEAS-2B) and normal human dermal fibroblasts (NHDF) as the normal cell lines. The satisfactory drug contents and the release profiles attained for the well-defined graft polymers with ionically bonded pharmaceuticals in the side chains make them promising drug carriers in both separate and combined drug delivery systems.
Collapse
|
19
|
M. S. Costa F, Lúcia M. F. S. Saraiva M, L. C. Passos M. Ionic Liquids and Organic Salts with Antimicrobial Activity as a Strategy Against Resistant Microorganisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Silva D, Lopes MVC, Petrovski Ž, Santos MM, Santos JP, Yamada-Ogatta SF, Bispo MLF, de Souza MVN, Duarte ARC, Lourenço MCS, Gonçalves RSB, Branco LC. Novel Organic Salts Based on Mefloquine: Synthesis, Solubility, Permeability, and In Vitro Activity against Mycobacterium tuberculosis. Molecules 2022; 27:5167. [PMID: 36014405 PMCID: PMC9412322 DOI: 10.3390/molecules27165167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
The development of novel pharmaceutical tools to efficiently tackle tuberculosis is the order of the day due to the rapid development of resistant strains of Mycobacterium tuberculosis. Herein, we report novel potential formulations of a repurposed drug, the antimalarial mefloquine (MFL), which was combined with organic anions as chemical adjuvants. Eight mefloquine organic salts were obtained by ion metathesis reaction between mefloquine hydrochloride ([MFLH][Cl]) and several organic acid sodium salts in high yields. One of the salts, mefloquine mesylate ([MFLH][MsO]), presented increased water solubility in comparison with [MFLH][Cl]. Moreover, all salts with the exception of mefloquine docusate ([MFLH][AOT]) showed improved permeability and diffusion through synthetic membranes. Finally, in vitro activity studies against Mycobacterium tuberculosis revealed that these ionic formulations exhibited up to 1.5-times lower MIC values when compared with [MFLH][Cl], particularly mefloquine camphorsulfonates ([MFLH][(1R)-CSA], [MFLH][(1S)-CSA]) and mefloquine HEPES ([MFLH][HEPES]).
Collapse
Affiliation(s)
- Dário Silva
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Márcio V. C. Lopes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
| | - Željko Petrovski
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Miguel M. Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Jussevania P. Santos
- Departamento de Microbiologia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445), Km 380, Campus Universitário, Londrina 86057-970, Brazil
| | - Sueli F. Yamada-Ogatta
- Departamento de Microbiologia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445), Km 380, Campus Universitário, Londrina 86057-970, Brazil
| | - Marcelle L. F. Bispo
- Departamento de Microbiologia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445), Km 380, Campus Universitário, Londrina 86057-970, Brazil
| | - Marcus V. N. de Souza
- FioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Ana Rita C. Duarte
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Maria C. S. Lourenço
- Instituto de Pesquisas Clínica Evandro Chagas—IPEC, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Raoni Schroeder B. Gonçalves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
| | - Luis C. Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| |
Collapse
|
21
|
Fang Z, Zheng X, Li L, Qi J, Wu W, Lu Y. Ionic Liquids: Emerging Antimicrobial Agents. Pharm Res 2022; 39:2391-2404. [PMID: 35879499 DOI: 10.1007/s11095-022-03336-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Antimicrobial resistance has become a serious threat to global health. New antimicrobials are thus urgently needed. Ionic liquids (ILs), salts consisting of organic cations and anions with melting points less than 100°C, have been recently found to be promising in antimicrobial field as they may disrupt the bacterial wall and membrane and consequently lead to cell leakage and death. Different types of antimicrobial ILs are introduced in the review, including cationic, polymeric, and anionic ILs. Being the main type of the antimicrobial ILs, the review focuses on the structure and the antimicrobial mechanisms of cationic ILs. The quantitative structure-activity relationship (QSAR) models of the cationic ILs are also included. Increase in alkyl chain length and lipophilicity is beneficial to increase the antimicrobial effects of cationic ILs. Polymeric ILs are homopolymers of monomer ILs or copolymers of ILs and other monomers. They have great potential in the field of antibiotics as they provide stronger antimicrobial effects than the sum of the monomer ILs. Anionic ILs are composed of existing anionic antibiotics and organic cations, being capable to enhance the solubility and bioavailability of the original form. Nonetheless, the medical application of antimicrobial ILs is limited by the toxicity. The structural optimization aided by QSAR model and combination with existing antibiotics may provide a solution to this problem and expand the application range of ILs in antimicrobial field.
Collapse
Affiliation(s)
- Zhezheng Fang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xianzi Zheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lu Li
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
22
|
Ali MK, Moshikur RM, Goto M, Moniruzzaman M. Recent Developments in Ionic Liquid-Assisted Topical and Transdermal Drug Delivery. Pharm Res 2022; 39:2335-2351. [PMID: 35773446 DOI: 10.1007/s11095-022-03322-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) have attracted growing interest as designer solvents/materials for exploring unrealized functions in many areas of research including drug formulations and delivery owing to their inherent tunable physicochemical and biological properties. The use of ILs in the pharmaceutical industry can address challenges related to the use of conventional organic solvent-based chemical permeation enhancers. Their tunability in forming ion pairs with a diverse range of ions enables the task-specific optimization of ILs at the molecular level. In particular, ILs comprising second- and third-generation cations and anions have been extensively used to design biocompatible drug delivery systems to address the challenges related to conventional topical and transdermal drug delivery, including limited permeability, high cytotoxicity, and skin irritation. This review highlights the progress in IL-related research with particular emphasis on the very recent conceptual developments in transdermal drug delivery. Technological advancement and approaches for the formation of IL-based topical and transdermal delivery systems, as well as their promising application in drug delivery, are also discussed.
Collapse
Affiliation(s)
- Md Korban Ali
- Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
- Center for Research in Ionic Liquids, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
23
|
Enderle AG, Franco-Castillo I, Atrián-Blasco E, Martín-Rapún R, Lizarraga L, Culzoni MJ, Bollini M, de la Fuente JM, Silva F, Streb C, Mitchell SG. Hybrid Antimicrobial Films Containing a Polyoxometalate-Ionic Liquid. ACS APPLIED POLYMER MATERIALS 2022; 4:4144-4153. [PMID: 35720671 PMCID: PMC9194901 DOI: 10.1021/acsapm.2c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/02/2022] [Indexed: 05/30/2023]
Abstract
The increasing resistance of pathogenic microorganisms against common treatments requires innovative concepts to prevent infection and avoid long-term microbe viability on commonly used surfaces. Here, we report the preparation of a hybrid antimicrobial material based on the combination of microbiocidal polyoxometalate-ionic liquids (POM-ILs) and a biocompatible polymeric support, which enables the development of surface coatings that prevent microbial adhesion. The composite material is based on an antibacterial and antifungal room-temperature POM-IL composed of guanidinium cations (N,N,N',N'-tetramethyl-N″, N″-dioctylguanidinum) combined with lacunary Keggin-type polyoxotungstate anions, [α-SiW11O39]8-. Integration of the antimicrobial POM-IL into the biocompatible, flexible, and stable polymer poly(methyl methacrylate) (PMMA) results in processable films, which are suitable as surface coatings or packaging materials to limit the proliferation and spread of pathogenic microorganisms (e.g., on public transport and hospital surfaces, or in ready-to-eat-food packaging).
Collapse
Affiliation(s)
- Ana G. Enderle
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Centro
de Investigaciones en Bionanociencias (CIBION), CONICET, Godoy Cruz,
2390, C1425FQD Ciudad
de Buenos Aires, Argentina
- Laboratorio
de Desarrollo Analítico y Quimiometría (LADAQ), Universidad
Nacional del Litoral—CONICET, Ciudad
Universitaria, Paraje
El Pozo, CC242, S3000 Santa Fe, Argentina
| | - Isabel Franco-Castillo
- Instituto
de Nanociencia y Materiales de Aragón (INMA-CSIC), Consejo Superior de Investigaciones Científicas-Universidad
de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Atrián-Blasco
- Instituto
de Nanociencia y Materiales de Aragón (INMA-CSIC), Consejo Superior de Investigaciones Científicas-Universidad
de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Martín-Rapún
- Instituto
de Nanociencia y Materiales de Aragón (INMA-CSIC), Consejo Superior de Investigaciones Científicas-Universidad
de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Leonardo Lizarraga
- Centro
de Investigaciones en Bionanociencias (CIBION), CONICET, Godoy Cruz,
2390, C1425FQD Ciudad
de Buenos Aires, Argentina
| | - María J. Culzoni
- Laboratorio
de Desarrollo Analítico y Quimiometría (LADAQ), Universidad
Nacional del Litoral—CONICET, Ciudad
Universitaria, Paraje
El Pozo, CC242, S3000 Santa Fe, Argentina
| | - Mariela Bollini
- Centro
de Investigaciones en Bionanociencias (CIBION), CONICET, Godoy Cruz,
2390, C1425FQD Ciudad
de Buenos Aires, Argentina
| | - Jesús M. de la Fuente
- Instituto
de Nanociencia y Materiales de Aragón (INMA-CSIC), Consejo Superior de Investigaciones Científicas-Universidad
de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Filomena Silva
- ARAID—Agencia
Aragonesa para la Investigación y el Desarrollo, Av. Ranillas, 1D, 2B, 50018 Zaragoza, Spain
- Facultad
de Veterinaria, Universidad de Zaragoza, Calle Miguel Servet 117, 50013 Zaragoza, Spain
| | - Carsten Streb
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Scott G. Mitchell
- Instituto
de Nanociencia y Materiales de Aragón (INMA-CSIC), Consejo Superior de Investigaciones Científicas-Universidad
de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
Faísca F, Correia V, Petrovski Ž, Branco LC, Rebelo-de-Andrade H, Santos MM. Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2. Pharmaceutics 2022; 14:pharmaceutics14040877. [PMID: 35456711 PMCID: PMC9031298 DOI: 10.3390/pharmaceutics14040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
The development of effective antiviral drugs against SARS-CoV-2 is urgently needed and a global health priority. In light of the initial data regarding the repurposing of hydroxychloroquine (HCQ) to tackle this coronavirus, herein we present a quantitative synthesis and spectroscopic and thermal characterization of seven HCQ room temperature ionic liquids (HCQ-ILs) obtained by direct protonation of the base with two equivalents of organic sulfonic, sulfuric and carboxylic acids of different polarities. Two non-toxic and hydrophilic HCQ-ILs, in particular, [HCQH2][C1SO3]2 and [HCQH2][GlcCOO]2, decreased the virus-induced cytopathic effect by two-fold in comparison with the original drug, [HCQH2][SO4]. Despite there being no significant differences in viral RNA production between the three compounds, progeny virus production was significantly affected (p < 0.05) by [HCQH2][GlcCOO]2. Overall, the data suggest that the in vitro antiviral activities of the HCQ-ILs are most likely the result of specific intra- and intermolecular interactions and not so much related with their hydrophilic or lipophilic character. This work paves the way for the development of future novel ionic formulations of hydroxychloroquine with enhanced physicochemical properties.
Collapse
Affiliation(s)
- Francisco Faísca
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
| | - Vanessa Correia
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
| | - Helena Rebelo-de-Andrade
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (H.R.-d.-A.); (M.M.S.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
- Correspondence: (H.R.-d.-A.); (M.M.S.)
| |
Collapse
|
25
|
Sadaf A, Sinha R, Ekka MK. Ionic liquid-mediated skin technologies: Recent advances and prospects. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Klebeko J, Ossowicz-Rupniewska P, Świątek E, Szachnowska J, Janus E, Taneva SG, Krachmarova E, Guncheva M. Salicylic Acid as Ionic Liquid Formulation May Have Enhanced Potency to Treat Some Chronic Skin Diseases. Molecules 2021; 27:216. [PMID: 35011452 PMCID: PMC8746858 DOI: 10.3390/molecules27010216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, numerous studies have shown that conversion of conventional drugs in ionic liquid (IL) formulation could be a successful strategy to improve their physicochemical properties or suggest a new route of administration. We report the synthesis and detailed characterization of eight salicylic acid-based ILs (SA-ILs) containing cation non-polar or aromatic amino acid esters. Using in vitro assays, we preliminary evaluated the therapeutic potency of the novel SA-ILs. We observed that conversion of the SA into ionic liquids led to a decrease in its cytotoxicity toward NIH/3T3 murine embryo fibroblasts and human HaCaT keratinocytes. It should be mentioned is that all amino acid alkyl ester salicylates [AAOR][SA] inhibit the production of the proinflammatory cytokine IL-6 in LPS-stimulated keratinocytes. Moreover, keratinocytes, pretreated with [PheOMe][SA] and [PheOPr][SA] seem to be protected from LPS-induced inflammation. Finally, the novel compounds exhibit a similar binding affinity to bovine serum albumin (BSA) as the parent SA, suggesting a similar pharmacokinetic profile. These preliminary results indicate that SA-ILs, especially those with [PheOMe], [PheOPr], and [ValOiPr] cation, have the potential to be further investigated as novel topical agents for chronic skin diseases such as psoriasis and acne vulgaris.
Collapse
Affiliation(s)
- Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Ewelina Świątek
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Joanna Szachnowska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Ewa Janus
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (P.O.-R.); (E.Ś.); (J.S.); (E.J.)
| | - Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria;
| | - Elena Krachmarova
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria;
| | - Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
27
|
Júlio A, Costa JG, Pereira-Leite C, Santos de Almeida T. TransfersomILs: From Ionic Liquids to a New Class of Nanovesicular Systems. NANOMATERIALS 2021; 12:nano12010007. [PMID: 35009956 PMCID: PMC8747046 DOI: 10.3390/nano12010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022]
Abstract
Ionic liquids (ILs) have increasingly been studied as key materials to upgrade the performance of many pharmaceutical formulations. In controlled delivery systems, ILs have improved multiple physicochemical properties, showing the relevance of continuing to study their incorporation into these formulations. Transfersomes are biocompatible nanovesicular systems, quite useful in controlled delivery. They have promising characteristics, such as elasticity and deformability, making them suitable for cutaneous delivery. Nonetheless, their overall properties and performance may still be improved. Herein, new TransfersomILs systems to load rutin were developed and the physicochemical properties of the formulations were assessed. These systems were prepared based on an optimized formulation obtained from a Box-Behnken factorial design (BBD). The impact of imidazole-based ILs, cholinium-based ILs, and their combinations on the cell viability of HaCaT cells and on the solubility of rutin was initially assessed. The newly developed TransfersomILs containing rutin presented a smaller size and, in general, a higher association efficiency, loading capacity, and total amount of drug release compared to the formulation without IL. The ILs also promoted the colloidal stability of the vesicles, upgrading storage stability. Thus, ILs were a bridge to develop new TransfersomILs systems with an overall improved performance.
Collapse
Affiliation(s)
- Ana Júlio
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (J.G.C.); (C.P.-L.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - João Guilherme Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (J.G.C.); (C.P.-L.)
| | - Catarina Pereira-Leite
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (J.G.C.); (C.P.-L.)
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Tânia Santos de Almeida
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (J.G.C.); (C.P.-L.)
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +35-12-1751-5500
| |
Collapse
|
28
|
Teixeira S, Santos MM, Branco LC, Costa-Rodrigues J. Etidronate-based organic salts and ionic liquids: In vitro effects on bone metabolism. Int J Pharm 2021; 610:121262. [PMID: 34748807 DOI: 10.1016/j.ijpharm.2021.121262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Bisphosphonates are a class of drugs widely used for the treatment of several pathologies associated with increased bone resorption. Although displaying low oral bioavailability, these drugs have the ability to accumulate in bone matrix, where the biological effects are exerted. In the present work, four mono- and dianionic Etidronate-based Organic Salts and Ionic Liquids (Eti-OSILs) were developed by combination of this drug with the superbases 1,1,3,3-tetramethylguanidine (TMG) and 1,5-diazabicyclo(4.3.0)non-5-ene (DBN) as cations, aiming to improve not only the physicochemical properties of this seminal bisphosphonate, but also its efficacy in the modulation of cellular behavior, particularly on human osteoclasts and osteoblasts. It was observed that some of the developed compounds, in particular the dianionic ones, presented very high water solubility and diminished or absent polymorphism. Also, several of them appeared to be more cytotoxic against human breast and osteosarcoma cancer cell lines while retaining low toxicity to normal cells. Regarding bone cells, a promotion of an anabolic state was observed for all Eti-OSILs, primarily for the dianionic ones, which leads to an inhibition of osteoclastogenesis and an increase in osteoblastogenesis. The observed effects resulted from differential modulation of intracellular signaling pathways by the Eti-OSILs in comparison with Etidronate. Hence, these results pave the way for the development of more efficient and bioavailable ionic formulations of bisphosphonates aiming to effectively modulate bone metabolism, particularly in the case of increased bone resorption.
Collapse
Affiliation(s)
- Sónia Teixeira
- Instituto de Ciências Biomédicas Abel Salazar, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Miguel M Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Luís C Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - João Costa-Rodrigues
- ESS - Escola Superior de Saúde, Politécnico do Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Rua D. Moisés Alves Pinho 190, 4900-314 Viana do Castelo, Portugal; i3S, Instituto de Inovação e Investigação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
29
|
|
30
|
Effect of imidazolium-based ionic liquid on the antibacterial activity of an expired drug rifampicin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Zhao H, Zheng Y, Wang Z, Xie W, Zhou J, Zhong C. Preparation of a bacterial flocculant by using caprolactam as a sole substrate and its application in amoxicillin removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113026. [PMID: 34119990 DOI: 10.1016/j.jenvman.2021.113026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/08/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
High cost is one of the limiting factors in the industrial production of bioflocculant. Simultaneous preparation of bioflocculant from the contaminants in wastewater was considered as a potential approach to reduce the production cost. In this study, caprolactam was verified as sole feedstock for the growth of strain Alcaligenes faecalis subsp. phenolicus ZY-16 in batch experiments. Chemical analysis showed that the as-prepared MBF-16 consisted of heteropolysaccharides (88.3%) and peptides (9.4%). XPS result indicated the plentiful acylamino, hydroxyl and amino groups in MBF-16, which have an indispensable role in amoxicillin flocculation. The flocculation of amoxicillin can be well stimulated by Freundlich isotherm equation, and the Kf was up to 178.6524 for amoxicillin. The kinetic fitting results proved that the flocculation of amoxicillin by MBF-16 was chemisorbed. This contribution may develop a novel technology for the preparation of bacterial flocculants that can consume toxic substrates (caprolactam) and have potential applications in amoxicillin removal.
Collapse
Affiliation(s)
- Haijuan Zhao
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; School of Mathematics and Economics, Hubei University of Education, Wuhan, 430205, China
| | - Yongliang Zheng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, 438000, China
| | - Ziyu Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Weifeng Xie
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Jiangang Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China.
| | - Chunying Zhong
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Chemistry and Biology Science College, Hubei University of Education, Wuhan, 430205, China.
| |
Collapse
|
32
|
Sutar Y, Fulton SR, Paul S, Altamirano S, Mhatre S, Saeed H, Patel P, Mallick S, Bhat R, Patravale VB, Chauhan H, Nielsen K, Date AA. Docusate-Based Ionic Liquids of Anthelmintic Benzimidazoles Show Improved Pharmaceutical Processability, Lipid Solubility, and in Vitro Activity against Cryptococcus neoformans. ACS Infect Dis 2021; 7:2637-2649. [PMID: 34467755 PMCID: PMC8884109 DOI: 10.1021/acsinfecdis.1c00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the existing therapeutic modalities for the treatment of cryptococcal meningitis (CM) have suboptimal efficacy, repurposing existing drugs for the treatment of CM is of great interest. The FDA-approved anthelmintic benzimidazoles, albendazole, mebendazole, and flubendazole, have demonstrated potent but variable in vitro activity against Cryptococcus neoformans, the predominant fungal species responsible for CM. We performed molecular docking studies to ascertain the interaction of albendazole, mebendazole, and flubendazole with a C. neoformans β-tubulin structure, which revealed differential binding interactions and explained the different in vitro efficacies reported previously and observed in this investigation. Despite their promising in vitro efficacy, the repurposing of anthelmintic benzimidazoles for oral CM therapy is significantly hampered due to their high crystallinity, poor pharmaceutical processability, low and pH-dependent solubility, and drug precipitation upon entering the intestine, all of which result in low and variable oral bioavailability. Here, we demonstrate that the anthelmintic benzimidazoles can be transformed into partially amorphous low-melting ionic liquids (ILs) with a simple metathesis reaction using amphiphilic sodium docusate as a counterion. In vitro efficacy studies on a laboratory reference and a clinical isolate of C. neoformans showed 2- to 4-fold lower IC90 values for docusate-based ILs compared to the pure anthelmintic benzimidazoles. Furthermore, using a C. neoformans strain with green fluorescent protein (GFP)-tagged β-tubulin and albendazole and its docusate IL as model candidates, we showed that the benzimidazoles and their ILs reduce the viability of C. neoformans by interfering with its microtubule assembly. Unlike pure anthelmintic benzimidazoles, the docusate-based ILs showed excellent solubility in organic solvents and >30-fold higher solubility in bioavailability-enhancing lipid vehicles. Finally, the docusate ILs were successfully incorporated into SoluPlus, a self-assembling biodegradable polymer, which upon dilution with water formed polymeric micelles with a size of <100 nm. Thus, the development of docusate-based ILs represents an effective approach to improve the physicochemical properties and potency of anthelmintic benzimidazoles to facilitate their repurposing and preclinical development for CM therapy.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sophie R Fulton
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sagarkumar Paul
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Susmit Mhatre
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Hiwa Saeed
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Pratikkumar Patel
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Roopal Bhat
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Pharmaceutics, Shree Chanakya Education Society's Indira College of Pharmacy, Tathawade, Pune, Maharashtra 411033, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Harsh Chauhan
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abhijit A Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
33
|
Fallah Z, Zare EN, Khan MA, Iftekhar S, Ghomi M, Sharifi E, Tajbakhsh M, Nikfarjam N, Makvandi P, Lichtfouse E, Sillanpaa M, Varma RS. Ionic liquid-based antimicrobial materials for water treatment, air filtration, food packaging and anticorrosion coatings. Adv Colloid Interface Sci 2021; 294:102454. [PMID: 34102390 DOI: 10.1016/j.cis.2021.102454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Efforts to widen the scope of ionic liquids applications across diverse research areas have flourished in the last two decades with developments in understanding and tailoring their physical, chemical, and biological properties. The promising applications of ionic liquids-based materials as antimicrobial systems is due to their ability and flexibility to be tailored in varying sizes, morphologies, and surface charges. Ionic liquids are also considered as greener materials. Common methods for the preparation of ionic liquid-based materials include crosslinking, loading, grafting, and combination of ionic liquids with other polymeric materials. Recent research focuses on the tuning of the biological properties to design novel ionic liquids-based antimicrobial materials. Here, the properties, synthesis and applications of ionic liquids and ionic liquids-based materials are reviewed with focus on antimicrobial activities applied to water treatment, air filtration, food packaging, and anticorrosion.
Collapse
|
34
|
Ahmad Sajid T, Jamal MA, Saeed M, Atta-ul-Haq, Muneer M. Elucidation of molecular interactions between amino acid and imidazolium based ionic liquid in an aqueous system: Volumetric and acoustic studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Caparica R, Júlio A, Fernandes F, Araújo MEM, Costa JG, Santos de Almeida T. Upgrading the Topical Delivery of Poorly Soluble Drugs Using Ionic Liquids as a Versatile Tool. Int J Mol Sci 2021; 22:4338. [PMID: 33919354 PMCID: PMC8122351 DOI: 10.3390/ijms22094338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies are continuously being carried out in pursuit of formulations with higher performance. Problems such as poor drug solubility, which hinders drug incorporation into delivery systems and bioavailability, or limitations concerning the stability and performance of the formulations may cause difficulties, since solving all these drawbacks at once is a huge challenge. Ionic liquids (ILs), due to their tunable nature, may hypothetically be synthesized for a particular application. Therefore, predicting the impact of a particular combination of ions within an IL in drug delivery could be a useful strategy. Eight ILs, two choline amino acid ILs, two imidazole halogenated ILs, and four imidazole amino acid ILs, were prepared. Their applicability at non-toxic concentrations, for improving solubility and the incorporation of the poorly soluble, ferulic, caffeic, and p-coumaric acids, as well as rutin, into topical emulsions, was assessed. Next, the impact of the ILs on the performance of the formulations was investigated. Our study showed that choosing the appropriate IL leads to a clear upgrade of a topical emulsion, by optimizing multiple features of its performance, such as improving the delivery of poorly soluble drugs, altering the viscosity, which may lead to better sensorial features, and increasing the stability over time.
Collapse
Affiliation(s)
- Rita Caparica
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.C.); (A.J.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Júlio
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.C.); (A.J.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Filipe Fernandes
- School of Sciences and Health Technologies, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Maria Eduarda M. Araújo
- CQE, and Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal;
| | - João Guilherme Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.C.); (A.J.)
| | - Tânia Santos de Almeida
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.C.); (A.J.)
| |
Collapse
|
36
|
Hartmann DO, Shimizu K, Rothkegel M, Petkovic M, Ferraz R, Petrovski Ž, Branco LC, Canongia Lopes JN, Silva Pereira C. Tailoring amphotericin B as an ionic liquid: an upfront strategy to potentiate the biological activity of antifungal drugs. RSC Adv 2021; 11:14441-14452. [PMID: 35423994 PMCID: PMC8697833 DOI: 10.1039/d1ra00234a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Aspergillus species are the primary cause of invasive aspergillosis, which afflicts hundreds of thousands of patients yearly, with high mortality rates. Amphotericin B is considered the gold standard in antifungal drug therapy, due to its broad-spectrum activity and rarely reported resistance. However, low solubility and permeability, as well as considerable toxicity, challenge its administration. Lipid formulations of amphotericin B have been used to promote its slow release and diminish toxicity, but these are expensive and adverse health effects of their prolonged use have been reported. In the past decades, great interest emerged on converting biologically active molecules into an ionic liquid form to overcome limitations such as low solubility or polymorphisms. In this study, we evaluated the biological activity of novel ionic liquid formulations where the cholinium, cetylpyridinium or trihexyltetradecylphosphonium cations were combined with an anionic form of amphotericin B. We observed that two formulations increased the antifungal activity of the drug, while maintaining its mode of action. Molecular dynamics simulations showed that higher biological activity was due to increased interaction of the ionic liquid with the fungal membrane ergosterol compared with amphotericin B alone. Increased cytotoxicity could also be observed, probably due to greater interaction of the cation with cholesterol, the main sterol in animal cells. Importantly, one formulation also displayed antibacterial activity (dual functionality), likely preserved from the cation. Collectively, the data set ground for the guided development of ionic liquid formulations that could improve the administration, efficacy and safety of antifungal drugs or even the exploitation of their dual functionality.
Collapse
Affiliation(s)
- Diego O Hartmann
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA) Av. da República Oeiras 2780-157 Portugal
| | - Karina Shimizu
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Maika Rothkegel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA) Av. da República Oeiras 2780-157 Portugal
| | - Marija Petkovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA) Av. da República Oeiras 2780-157 Portugal
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto 4400-330 Porto Portugal.,LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687 4169-007 Porto Portugal
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 2829-516 Caparica Portugal
| | - Luís C Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 2829-516 Caparica Portugal
| | - José N Canongia Lopes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA) Av. da República Oeiras 2780-157 Portugal
| |
Collapse
|
37
|
Cetylpyridinium picrate: Spectroscopy, conductivity and DFT investigation of the structure of a new ionic liquid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Vrancianu CO, Dobre EG, Gheorghe I, Barbu I, Cristian RE, Chifiriuc MC. Present and Future Perspectives on Therapeutic Options for Carbapenemase-Producing Enterobacterales Infections. Microorganisms 2021; 9:730. [PMID: 33807464 PMCID: PMC8065494 DOI: 10.3390/microorganisms9040730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are included in the list of the most threatening antibiotic resistance microorganisms, being responsible for often insurmountable therapeutic issues, especially in hospitalized patients and immunocompromised individuals and patients in intensive care units. The enzymatic resistance to carbapenems is encoded by different β-lactamases belonging to A, B or D Ambler class. Besides compromising the activity of last-resort antibiotics, CRE have spread from the clinical to the environmental sectors, in all geographic regions. The purpose of this review is to present present and future perspectives on CRE-associated infections treatment.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Elena Georgiana Dobre
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Ilda Barbu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
39
|
de Juan Mora B, Filipe L, Forte A, Santos MM, Alves C, Teodoro F, Pedrosa R, Ribeiro Carrott M, Branco LC, Gago S. Boosting Antimicrobial Activity of Ciprofloxacin by Functionalization of Mesoporous Silica Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13020218. [PMID: 33562597 PMCID: PMC7914840 DOI: 10.3390/pharmaceutics13020218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are very promising nanomaterials for treating bacterial infections when combined with pharmaceutical drugs. Herein, we report the preparation of two nanomaterials based on the immobilization of ciprofloxacin in mesoporous silica nanoparticles, either as the counter-ion of the choline derivative cation (MSN-[Ch][Cip]) or via anchoring on the surface of amino-group modified MSNs via an amide bond (MSN-Cip). Both nanomaterials were characterized by TEM, FTIR and solution 1H NMR spectroscopies, elemental analysis, XRD and N2 adsorption at 77 K in order to provide the desired structures. No cytotoxicity from the prepared mesoporous nanoparticles on 3T3 murine fibroblasts was observed. The antimicrobial activity of the nanomaterials was determined against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Klebsiella pneumoniae) bacteria and the results were promising against S. aureus. In the case of B. subtilis, both nanomaterials exhibited higher antimicrobial activity than the precursor [Ch][Cip], and in the case of K. pneumoniae they exhibited higher activity than neutral ciprofloxacin.
Collapse
Affiliation(s)
- Blanca de Juan Mora
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Luís Filipe
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Andreia Forte
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Fernando Teodoro
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Manuela Ribeiro Carrott
- Centro de Química de Évora, LAQV-REQUIMTE, Instituto de Investigação e Formação Avançada, Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, 7000-671 Évora, Portugal;
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
- Correspondence: (L.C.B.); (S.G.)
| | - Sandra Gago
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
- Correspondence: (L.C.B.); (S.G.)
| |
Collapse
|
40
|
Santos MM, Branco LC. Ionic Liquids and Deep Eutectic Solvents for Application in Pharmaceutics. Pharmaceutics 2020; 12:E909. [PMID: 32977668 PMCID: PMC7598637 DOI: 10.3390/pharmaceutics12100909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023] Open
Abstract
Over the last few decades, Ionic Liquids (ILs) and Deep Eutectic Solvents (DES) have been studied academically throughout many fields of chemical and biological research, including pharmaceutical sciences, due to their highly tunable physical, chemical and physicochemical properties [...].
Collapse
Affiliation(s)
- Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
41
|
Prudêncio C, Vieira M, Van der Auweraer S, Ferraz R. Recycling Old Antibiotics with Ionic Liquids. Antibiotics (Basel) 2020; 9:E578. [PMID: 32899785 PMCID: PMC7558273 DOI: 10.3390/antibiotics9090578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are considered one of the great "miracles" of the 20th century. Now in the 21st century in the post-antibiotic era, the miracle is turning into a nightmare, due to the growing problem of the resistance of microorganisms to classic antimicrobials and the non-investment by the pharmaceutical industry in new antimicrobial agents. Unfortunately, the current COVID-19 pandemic has demonstrated the global risks associated with uncontrolled infections and the various forms of impact that such a pandemic may have on the economy and on social habits besides the associated morbidity and mortality. Therefore, there is an urgent need to recycle classic antibiotics, as is the case in the use of ionic liquids (ILs) based on antibiotics. Thus, the aim of the present review is to summarize the data on ILs, mainly those with antimicrobial action and especially against resistant strains. The main conclusions of this article are that ILs are flexible due to their ability to modulate cations and anions as a salt, making it possible to combine the properties of both and multiplying the activity of separate cations and anions. Also, these compounds have low cost methods of production, which makes it highly attractive to explore them, especially as antimicrobial agents and against resistant strains. ILs may further be combined with other therapeutic strategies, such as phage or lysine therapy, enhancing the therapeutic arsenal needed to fight this worldwide problem of antibacterial resistance. Thus, the use of ILs as antibiotics by themselves or together with phage therapy and lysine therapy are promising alternatives against pathogenic microorganisms, and may have the possibility to be used in new ways in order to restrain uncontrolled infections.
Collapse
Affiliation(s)
- Cristina Prudêncio
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, P-4200-072 Porto, Portugal; (M.V.); (S.V.d.A.)
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, P-4200-072 Porto, Portugal; (M.V.); (S.V.d.A.)
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Seppe Van der Auweraer
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, P-4200-072 Porto, Portugal; (M.V.); (S.V.d.A.)
- Odisee University of applied sciences, Technology Campus Ghent, 26, 1000 Brussels, Belgium
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, P-4200-072 Porto, Portugal; (M.V.); (S.V.d.A.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal
| |
Collapse
|
42
|
Santos MM, Alves C, Silva J, Florindo C, Costa A, Petrovski Ž, Marrucho IM, Pedrosa R, Branco LC. Antimicrobial Activities of Highly Bioavailable Organic Salts and Ionic Liquids from Fluoroquinolones. Pharmaceutics 2020; 12:pharmaceutics12080694. [PMID: 32717808 PMCID: PMC7464485 DOI: 10.3390/pharmaceutics12080694] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
As the development of novel antibiotics has been at a halt for several decades, chemically enhancing existing drugs is a very promising approach to drug development. Herein, we report the preparation of twelve organic salts and ionic liquids (OSILs) from ciprofloxacin and norfloxacin as anions with enhanced antimicrobial activity. Each one of the fluoroquinolones (FQs) was combined with six different organic hydroxide cations in 93-100% yield through a buffer-assisted neutralization methodology. Six of those were isomorphous salts while the remaining six were ionic liquids, with four of them being room temperature ionic liquids. The prepared compounds were not toxic to healthy cell lines and displayed between 47- and 1416-fold more solubility in water at 25 and 37 °C than the original drugs, with the exception of the ones containing the cetylpyridinium cation. In general, the antimicrobial activity against Klebsiella pneumoniae was particularly enhanced for the ciprofloxacin-based OSILs, with up to ca. 20-fold decreases of the inhibitory concentrations in relation to the parent drug, while activity against Staphylococcus aureus and the commensal Bacillus subtilis strain was often reduced. Depending on the cation-drug combination, broad-spectrum or strain-specific antibiotic salts were achieved, potentially leading to the future development of highly bioavailable and safe antimicrobial ionic formulations.
Collapse
Affiliation(s)
- Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| | - Celso Alves
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
| | - Joana Silva
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
| | - Catarina Florindo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (C.F.); (I.M.M.)
| | - Alexandra Costa
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
| | - Isabel M. Marrucho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (C.F.); (I.M.M.)
| | - Rui Pedrosa
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| |
Collapse
|
43
|
Teixeira S, Santos MM, Fernandes MH, Costa-Rodrigues J, Branco LC. Alendronic Acid as Ionic Liquid: New Perspective on Osteosarcoma. Pharmaceutics 2020; 12:pharmaceutics12030293. [PMID: 32213930 PMCID: PMC7151258 DOI: 10.3390/pharmaceutics12030293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Herein the quantitative synthesis of eight new mono- and dianionic Organic Salts and Ionic Liquids (OSILs) from alendronic acid (ALN) is reported by following two distinct sustainable and straightforward methodologies, according to the type of cation. The prepared ALN-OSILs were characterized by spectroscopic techniques and their solubility in water and biological fluids was determined. An evaluation of the toxicity towards human healthy cells and also human breast, lung and bone (osteosarcoma) cell lines was performed. Globally, it was observed that the monoanionic OSILs showed lower toxicity than the corresponding dianionic structures to all cell types. The highest cytotoxic effect was observed in OSILs containing a [C2OHMIM] cation, in particular [C2OHMIM][ALN]. The latter showed an improvement in IC50 values of ca. three orders of magnitude for the lung and bone cancer cell lines as well as fibroblasts in comparison with ALN. The development of OSILs with high cytotoxicity effect towards the tested cancer cell types, and containing an anti-resorbing molecule such as ALN may represent a promising strategy for the development of new pharmacological tools to be used in those pathological conditions.
Collapse
Affiliation(s)
- Sónia Teixeira
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.T.); (M.H.F.); (J.C.-R.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Maria H. Fernandes
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.T.); (M.H.F.); (J.C.-R.)
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - João Costa-Rodrigues
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.T.); (M.H.F.); (J.C.-R.)
- ESS—Escola Superior de Saúde, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Rua D. Moisés Alves Pinho 190, 4900-314 Viana do Castelo, Portugal
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Correspondence:
| |
Collapse
|