1
|
Yu C, Huang F, Wang L, Liu M, Chow WA, Ling X, Li F, Cook-Wiens G, Li L, Cui X. Targeted Treatment of Sarcomas by Single Protein Encapsulated Doxorubicin with Undetectable Cardiotoxicity and Superior Efficacy. Cancers (Basel) 2025; 17:881. [PMID: 40075728 PMCID: PMC11899045 DOI: 10.3390/cancers17050881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
As rare tumors, sarcomas represent ~0 [...].
Collapse
Affiliation(s)
- Changjun Yu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
- Sunstate Biosciences LLC, 118 S. Berkeley Ave, Pasadena, CA 91107, USA; (L.W.); (M.L.)
| | - Faqing Huang
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Leslie Wang
- Sunstate Biosciences LLC, 118 S. Berkeley Ave, Pasadena, CA 91107, USA; (L.W.); (M.L.)
| | - Mengmeng Liu
- Sunstate Biosciences LLC, 118 S. Berkeley Ave, Pasadena, CA 91107, USA; (L.W.); (M.L.)
| | - Warren A. Chow
- Division of Hematology and Oncology, Department of Medicine, UCI Health, Orange, CA 92868, USA;
| | - Xiang Ling
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA; (X.L.); (F.L.)
- Canget BioTekpharma LLC, 701 Ellicott Street, Buffalo, NY 14203, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA; (X.L.); (F.L.)
| | - Galen Cook-Wiens
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Linrong Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China;
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Fang W, Yu K, Zhang S, Jiang L, Zheng H, Huang Q, Li F. Shape Matters: Impact of Mesoporous Silica Nanoparticle Morphology on Anti-Tumor Efficacy. Pharmaceutics 2024; 16:632. [PMID: 38794294 PMCID: PMC11125244 DOI: 10.3390/pharmaceutics16050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
A nanoparticle's shape is a critical determinant of its biological interactions and therapeutic effectiveness. This study investigates the influence of shape on the performance of mesoporous silica nanoparticles (MSNs) in anticancer therapy. MSNs with spherical, rod-like, and hexagonal-plate-like shapes were synthesized, with particle sizes of around 240 nm, and their other surface properties were characterized. The drug loading capacities of the three shapes were controlled to be 47.46%, 49.41%, and 46.65%, respectively. The effects of shape on the release behaviors, cellular uptake mechanisms, and pharmacological behaviors of MSNs were systematically investigated. Through a series of in vitro studies using 4T1 cells and in vivo evaluations in 4T1 tumor-bearing mice, the release kinetics, cellular behaviors, pharmacological effects, circulation profiles, and therapeutic efficacy of MSNs were comprehensively assessed. Notably, hexagonal-plate-shaped MSNs loaded with PTX exhibited a prolonged circulation time (t1/2 = 13.59 ± 0.96 h), which was approximately 1.3 times that of spherical MSNs (t1/2 = 10.16 ± 0.38 h) and 1.5 times that of rod-shaped MSNs (t1/2 = 8.76 ± 1.37 h). This research underscores the significance of nanoparticles' shapes in dictating their biological interactions and therapeutic outcomes, providing valuable insights for the rational design of targeted drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Weixiang Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kailing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Songhan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lai Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiaoling Huang
- Hangzhou Third People’s Hospital, Hangzhou 310009, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
3
|
Brans V, Gray MD, Sezgin E, Stride EPJ. Protein-Decorated Microbubbles for Ultrasound-Mediated Cell Surface Manipulation. ACS APPLIED BIO MATERIALS 2023; 6:5746-5758. [PMID: 38048163 PMCID: PMC10731656 DOI: 10.1021/acsabm.3c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Delivering cargo to the cell membranes of specific cell types in the body is a major challenge for a range of treatments, including immunotherapy. This study investigates employing protein-decorated microbubbles (MBs) and ultrasound (US) to "tag" cellular membranes of interest with a specific protein. Phospholipid-coated MBs were produced and functionalized with a model protein using a metallochelating complex through an NTA(Ni) and histidine residue interaction. Successful "tagging" of the cellular membrane was observed using microscopy in adherent cells and was promoted by US exposure. Further modification of the MB surface to enable selective binding to target cells was then achieved by functionalizing the MBs with a targeting protein (transferrin) that specifically binds to a receptor on the target cell membrane. Attachment and subsequent transfer of material from MBs functionalized with transferrin to the target cells significantly increased, even in the absence of US. This work demonstrates the potential of these MBs as a platform for the noninvasive delivery of proteins to the surface of specific cell types.
Collapse
Affiliation(s)
- Veerle
A. Brans
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DL, U.K.
| | - Michael D. Gray
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DL, U.K.
| | - Erdinc Sezgin
- Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Eleanor P. J. Stride
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DL, U.K.
| |
Collapse
|
4
|
Suwannasom N, Sriaksorn N, Thepmalee C, Khoothiam K, Prapan A, Bäumler H, Thephinlap C. Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:1127-1140. [PMID: 38034473 PMCID: PMC10682534 DOI: 10.3762/bjnano.14.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Curcumin (CUR), a polyphenolic compound, shows promising biological properties, particularly antioxidant activity. However, its medical applications are limited due to its low water solubility, bioavailability, and pH-instability. CUR-loaded albumin microparticles (CUR-HSA-MPs) of submicron size in the range of 800 to 900 nm and a zeta potential of -15 mV were prepared. The CUR loading efficiency was up to 65%. A maximum release of 37% of the encapsulated CUR was observed within 6 h when the CUR-HSA-MPs were dispersed in 50% ethanol in PBS at pH 7, while in RPMI 1640 medium the release was 7%. This demonstrates a sustainable release. The in vitro cytotoxicity of CUR-HSA-MPs showed promising anticancer potential against human hepatocellular carcinoma (Huh-7) and human breast adenocarcinoma (MCF-7) cell lines, although this effect was less pronounced in human dermal fibroblasts (HDFB) and human cholangiocyte (MMN) cell lines. Confocal microscopy was used to confirm the uptake of CUR-HSA-MPs by cancer cells. Our studies revealed that HSA-MPs are potentially promising vehicles for increasing the solubility and bioavailability of CUR.
Collapse
Affiliation(s)
- Nittiya Suwannasom
- Division of Biochemistry, School of Medical Sciences, University of Phayao 56000, Thailand
| | - Netsai Sriaksorn
- Division of Biochemistry, School of Medical Sciences, University of Phayao 56000, Thailand
| | - Chutamas Thepmalee
- Division of Biochemistry, School of Medical Sciences, University of Phayao 56000, Thailand
| | - Krissana Khoothiam
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Ausanai Prapan
- Division of Microbiology, School of Medical Sciences, University of Phayao 56000, Thailand
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chonthida Thephinlap
- Division of Biochemistry, School of Medical Sciences, University of Phayao 56000, Thailand
| |
Collapse
|
5
|
Pourmadadi M, Yazdian F, Koulivand A, Rahmani E. Green synthesized polyvinylpyrrolidone/titanium dioxide hydrogel nanocomposite modified with agarose macromolecules for sustained and pH-responsive release of anticancer drug. Int J Biol Macromol 2023; 240:124345. [PMID: 37054860 DOI: 10.1016/j.ijbiomac.2023.124345] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Cancer, as one of the most challenging diseases of the last century, has a significant number of patients and deaths every year. Various strategies have been explored for the treatment of cancer. Chemotherapy is one of the methods of treating cancer. Doxorubicin is one of the compounds used in chemotherapy to kill cancer cells. Due to their unique properties and low toxicity, metal oxide nanoparticles are effective in combination therapy and increase the effectiveness of anti-cancer compounds. The limited in vivo circulatory period, poor solubility, and inadequate penetration of doxorubicin (DOX) restrict its use in cancer treatment, notwithstanding its attractive characteristics. It is possible to circumvent some of the difficulties in cancer therapy by using green synthesized pH-responsive nanocomposite consisting of polyvinylpyrrolidone (PVP), titanium dioxide (TiO2) modified with agarose (Ag) macromolecules. TiO2 incorporation into the PVP-Ag nanocomposite resulted in limited increased loading and encapsulation efficiencies from 41 % to 47 % and 84 % to 88.5 %, respectively. DOX diffusion among normal cells is prevented by the PVP-Ag-TiO2 nanocarrier at pH = 7.4, though the acidic intracellular microenvironments activate the PVP-Ag-TiO2 nanocarrier at pH = 5.4. Characterization of the nanocarrier was performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrophotometry, field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), and zeta potential. The average particle size and the zeta potential of the particles showed values of 349.8 nm and +57 mV, respectively. In vitro release after 96 h showed a release rate of 92 % at pH 7.4 and a release rate of 96 % at pH 5.4. Meanwhile, the initial release after 24 h was 42 % for pH 7.4 and 76 % for pH 5.4. As shown by an MTT analysis on MCF-7 cells, the toxicity of DOX-loaded PVP-Ag-TiO2 nanocomposite was substantially greater than that of unbound DOX and PVP-Ag-TiO2. After integrating TiO2 nanomaterials into the PVP-Ag-DOX nanocarrier, flow cytometry data showed a greater stimulation of cell death. These data indicate that the DOX-loaded nanocomposite is a suitable alternative for drug delivery systems.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Ali Koulivand
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
6
|
Jeshvaghani PA, Pourmadadi M, Yazdian F, Rashedi H, Khoshmaram K, Nigjeh MN. Synthesis and characterization of a novel, pH-responsive sustained release nanocarrier using polyethylene glycol, graphene oxide, and natural silk fibroin protein by a green nano emulsification method to enhance cancer treatment. Int J Biol Macromol 2023; 226:1100-1115. [PMID: 36435465 DOI: 10.1016/j.ijbiomac.2022.11.226] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
In this study, for the first time, by employing a simple and efficient double nano-emulsification method and using sweet almond oil as the organic phase, polyethylene glycol (PEG)/graphene oxide (GO)/silk fibroin (SF) hydrogel-nanocomposite was synthesized. The aim of the research was to fabricate a biocompatible targeted pH-sensitive sustained release carrier, improve the drug loading capacity and enhance the anticancer effect of doxorubicin (DOX) drug. The obtained values for the entrapment (%EE) and loading efficacy (%LE) were 87.75 ± 0.7 % and 46 ± 1 %, respectively, and these high values were due to the use of GO with a large specific surface area and the electrostatic interaction between the drug and SF. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses confirmed the presence of all the components in the nanocomposite and the suitable interaction between them. Based on the results of dynamic light scattering analysis (DLS) and zeta potential analysis, the mean size of the carrier particles and its surface charge were 293.7 nm and -102.9 mV, respectively. The high negative charge was caused by the presence of hydroxyl groups in GO and SF and it caused proper stability of the nanocomposite. The spherical core-shell structure with its homogeneous surface was also observed in the field emission scanning electron microscopy (FE-SEM) image. The cumulative release percentage of the nanocarrier reached 95.75 after 96 h and it is higher in the acidic environment at all times. The results of fitting the release data to the kinetic models suggested that the mechanism of release was dissolution-controlled anomalous at pH 7.4 and diffusion-controlled anomalous at pH 5.4. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry showed an increase in toxicity on MCF-7 cells and improved apoptotic cell death compared to the free drug. Consequently, the findings of this research introduced and confirmed PEG/GO/SF nanocomposite as an attractive novel drug delivery system for pH-sensitive and sustained delivery of chemotherapeutic agents in biomedicine.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Keyvan Khoshmaram
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Mona Navaei Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
7
|
Tumor Cell Capture Using Platelet-Based and Platelet-Mimicking Modified Human Serum Albumin Submicron Particles. Int J Mol Sci 2022; 23:ijms232214277. [PMID: 36430755 PMCID: PMC9694380 DOI: 10.3390/ijms232214277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The co-localization of platelets and tumor cells in hematogenous metastases has long been recognized. Interactions between platelets and circulating tumor cells (CTCs) contribute to tumor cell survival and migration via the vasculature into other tissues. Taking advantage of the interactions between platelets and tumor cells, two schemes, direct and indirect, were proposed to target the modified human serum albumin submicron particles (HSA-MPs) towards tumor cells. HSA-MPs were constructed by the Co-precipitation-Crosslinking-Dissolution (CCD) method. The anti-CD41 antibody or CD62P protein was linked to the HSA-MPs separately via 1-ethyl-3-(-3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) EDC/NHS chemistry. The size of modified HSA-MPs was measured at approximately 1 µm, and the zeta potential was around -24 mV. Anti-CD41-HSA-MPs adhered to platelets as shown by flowcytometry and confocal laser scanning microscopy. In vitro, we confirmed the adhesion of platelets to tumor lung carcinoma cells A549 under shearing conditions. Higher cellular uptake of anti-CD41-HSA-MPs in A549 cells was found in the presence of activated platelets, suggesting that activated platelets can mediate the uptake of these particles. RNA-seq data in the Cancer Cell Lineage Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) database showed the expression of CD62P ligands in different types of cancers. Compared to the non-targeted system, CD62P-HSA-MPs were found to have higher cellular uptake in A549 cells. Our results suggest that the platelet-based and platelet-mimicking modified HSA-MPs could be promising options for tracking metastatic cancer.
Collapse
|
8
|
Steffen A, Xiong Y, Georgieva R, Kalus U, Bäumler H. Bacterial safety study of the production process of hemoglobin-based oxygen carriers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:114-126. [PMID: 35145832 PMCID: PMC8805039 DOI: 10.3762/bjnano.13.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Hemoglobin microparticles (HbMP) produced with a three-step procedure, including coprecipitation of hemoglobin with manganese carbonate, protein cross-linking, and dissolution of the carbonate template were shown to be suitable for application as artificial oxygen carriers. First preclinical safety investigations delivered promising results. Bacterial safety plays a decisive role during the production of HbMP. Therefore, the bioburden and endotoxin content of the starting materials (especially hemoglobin) and the final particle suspension are intensively tested. However, some bacteria may not be detected by standard tests due to low concentration. The aim of this study was to investigate how these bacteria would behave in the fabrication process. Biocidal effects are known for glutaraldehyde and for ethylenediaminetetraacetic acid, chemicals that are used in the fabrication process of HbMP. It was shown that both chemicals prevent bacterial growth at the concentrations used during HbMP fabrication. In addition, the particle production was carried out with hemoglobin solutions spiked with Escherichia coli or Staphylococcus epidermidis. No living bacteria could be detected in the final particle suspensions. Therefore, we conclude that the HbMP fabrication procedure is safe in respect of bacterial contamination.
Collapse
Affiliation(s)
- Axel Steffen
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Yu Xiong
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Medical Physics, Biophysics and Radiology, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ulrich Kalus
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
9
|
Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, Bolocan A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2021; 14:18. [PMID: 35056915 PMCID: PMC8779479 DOI: 10.3390/pharmaceutics14010018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer represents one of the leading causes of morbidity and mortality worldwide, imposing an urgent need to develop more efficient treatment alternatives. In this respect, much attention has been drawn from conventional cancer treatments to more modern approaches, such as the use of nanotechnology. Extensive research has been done for designing innovative nanoparticles able to specifically target tumor cells and ensure the controlled release of anticancer agents. To avoid the potential toxicity of synthetic materials, natural nanoparticles started to attract increasing scientific interest. In this context, this paper aims to review the most important natural nanoparticles used as active ingredients (e.g., polyphenols, polysaccharides, proteins, and sterol-like compounds) or as carriers (e.g., proteins, polysaccharides, viral nanoparticles, and exosomes) of various anticancer moieties, focusing on their recent applications in treating diverse malignancies.
Collapse
Affiliation(s)
- Daniel Ion
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Nicolae Păduraru
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Florentina Mușat
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alexandra Bolocan
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
10
|
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6812. [PMID: 34832213 PMCID: PMC8619478 DOI: 10.3390/ma14226812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo's stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 50044 Bucharest, Romania
| |
Collapse
|
11
|
Caputo T, Cusano AM, Ruvo M, Aliberti A, Cusano A. Human Serum Albumin Nanoparticles as a Carrier for On-Demand Sorafenib Delivery. Curr Pharm Biotechnol 2021; 23:1214-1225. [PMID: 34445947 DOI: 10.2174/1389201022666210826152311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug delivery systems based on Human Serum Albumin (HSA) have been widely investigated due to their capability to interact with several molecules together with their nontoxicity, non-immunogenicity and biocompatibility. Sorafenib (SOR) is a kinase inhibitor used as the first-line treatment in hepatic cancer. However, because of its several intrinsic drawbacks (low solubility and bioavailability), there is a growing need for discovering new carriers able to overcome the current limitations. OBJECTIVE To study HSA particles loaded with SOR as a thermal responsive drug delivery system. METHOD A detailed spectroscopy analysis of the HSA and SOR interaction in solution was carried out in order to characterize the temperature dependence of the complex. Based on this study, the synthesis of HSA particles loaded with SOR was optimized. Particles were characterized by Dynamic Light Scattering, Atomic Force Microscopy and by spectrofluorometer. Encapsulation efficiency and in vitro drug release were quantified by RP-HPLC. RESULTS HSA particles were monodispersed in size (≈ 200 nm); encapsulation efficiency ranged from 25% to 58%. Drug release studies that were performed at 37 °C and 50 °C showed that HS5 particles achieved a drug release of 0.430 µM in 72 hours at 50 °C in PBS buffer, accomplishing a 4.6-fold overall SOR release enhancement following a temperature increase from 37 °C to 50 °C. CONCLUSION The system herein presented has the potential to exert a therapeutic action (in the nM range) triggering a sustained temperature-controllable release of relevant drugs.
Collapse
Affiliation(s)
- Tania Caputo
- CeRICT scrl Regional Center Information Communication Technology, Benevento. Italy
| | - Angela Maria Cusano
- CeRICT scrl Regional Center Information Communication Technology, Benevento. Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council, I-80134, Napoli. Italy
| | - Anna Aliberti
- Optoelectronics Group, Department of Engineering, University of Sannio, I-82100, Benevento. Italy
| | - Andrea Cusano
- CeRICT scrl Regional Center Information Communication Technology, Benevento. Italy
| |
Collapse
|
12
|
Fabrication and Characterization of Human Serum Albumin Particles Loaded with Non-Sericin Extract Obtained from Silk Cocoon as a Carrier System for Hydrophobic Substances. Polymers (Basel) 2021; 13:polym13030334. [PMID: 33494401 PMCID: PMC7865381 DOI: 10.3390/polym13030334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/06/2023] Open
Abstract
Non-sericin (NS) extract was produced from the ethanolic extract of Bombyx mori silk cocoons. This extract is composed of both carotenoids and flavonoids. Many of these compounds are composed of substances of poor aqueous solubility. Thus, this study focused on the development of a carrier system created from biocompatible and biodegradable materials to improve the biological activity of NS extracts. Accordingly, NS was incorporated into human serum albumin template particles with MnCO3 (NS-HSA MPs) by loading NS into the preformed HAS-MnCO3 microparticles using the coprecipitation crosslinking dissolution technique (CCD-technique). After crosslinking and template dissolution steps, the NS loaded HSA particles are negatively charged, have a size ranging from 0.8 to 0.9 µm, and are peanut shaped. The degree of encapsulation efficiency ranged from 7% to 57% depending on the initial NS concentration and the steps of adsorption. In addition, NS-HSA MPs were taken up by human lung adenocarcinoma (A549 cell) for 24 h. The promotion of cellular uptake was evaluated by flow cytometry and the results produced 99% fluorescent stained cells. Moreover, the results from CLSM and 3D fluorescence imaging confirmed particle localization in the cells. Interestingly, NS-HSA MPs could not induce inflammation through nitric oxide production from macrophage RAW264.7 cells. This is the first study involving the loading of non-sericin extracts into HSA MPs by CCD technique to enhance the bioavailability and biological effects of NS. Therefore, HSA MPs could be utilized as a carrier system for hydrophobic substances targeting cells with albumin receptors.
Collapse
|