1
|
Darweesh RS, Al-Qawasmi FS, Khanfar MS. Ezetimibe oral solid lipid nanoparticle by effervescent dispersion method: in vitro characterization and in vivo pharmacokinetic study in rats. Pharm Dev Technol 2025; 30:268-279. [PMID: 39989184 DOI: 10.1080/10837450.2025.2471461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Ezetimibe (EZT) is a class II drug of the Biopharmaceutics classification system (BCS), with limited aqueous solubility and high permeability. This study aims to enhance the solubility and oral bioavailability of EZT by developing EZT solid lipid nanoparticles (SLNs). EZT-SLNs were developed through the effervescent dispersion technique. Different amounts of Tween-80, Compritol ATO 888, and mannitol as cryoprotectant were used. F11 was the optimum formula with 154 nm in size and 90.26% entrapment efficiency. It demonstrates significant enhancements in solubility across various pH values. In addition, F11 shows a significantly higher drug release than pure EZT at all time points, and that's related to the reduction in the particle size and increasing its surface area along with the transformation from a crystalline state to an amorphous state. The powder X-ray diffraction and Differential Scanning Calorimetry tests confirmed this conversion from crystalline form to amorphous. The in vivo animal study demonstrated that the Cmax and AUC 0 ∞ of the EZT-SLNs group were significantly higher than the pure EZT group, after oral administration. In conclusion, EZT-SLNs with enhanced in vitro and in vivo properties were successfully developed using the effervescent dispersion technique.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Farah S Al-Qawasmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Cho DY, Lee JG, Kim MJ, Cho HJ, Cho JH, Kim KS. Approaches for Inclusion Complexes of Ezetimibe with Cyclodextrins: Strategies for Solubility Enhancement and Interaction Analysis via Molecular Docking. Int J Mol Sci 2025; 26:1686. [PMID: 40004150 PMCID: PMC11855275 DOI: 10.3390/ijms26041686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to improve the solubility of ezetimibe (EZT), which has low aqueous solubility, by preparing complexes using β-cyclodextrin (β-CD) derivatives. Phase solubility studies and Job's plot confirmed a high apparent stability constant for EZT with β-CD and even higher constants with its derivatives, establishing a 1:1 stoichiometric ratio. The composites were prepared using spray drying over a range of molar ratios, and their physicochemical properties were evaluated using techniques such as scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FT-IR). Saturation solubility and in vitro dissolution tests revealed that solubility increased with higher CD molar ratios. EZT/RM-β-CD inclusion complexes (ICs) and EZT/DM-β-CD ICs exhibited a similar solubility, which was greater than that of EZT/HP-β-CD ICs and EZT/SBE-β-CD ICs (where RM, DM, HP, and SEB represent H, CH3, -CH2-CHOH-CH3 and -(CH2)4-SO3Na synthetic derivatives, respectively). Most complexes, except for EZT/SBE-β-CD at 1:2 or higher ratios, showed superior solubility compared with EZT powder and commercial products. Molecular docking simulations confirmed EZT inclusion within the CD, revealing hydrogen bonds and binding energies that aligned with solubility trends. These findings suggest that EZT complexes with β-CD derivatives significantly improve solubility, highlighting their potential for developing more effective oral solid formulations for hyperlipidemia treatment.
Collapse
Affiliation(s)
- Dae-Yeong Cho
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Jeong-Gyun Lee
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Moon-Jung Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Hyuk-Jun Cho
- Department of Innovative Drug Discovery and Development, College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea;
| | - Jung-Hyun Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| |
Collapse
|
3
|
Emmanuel S, Asare EA, Du T, Xie H, Liang D, Gao S. Species Differences in Ezetimibe Glucuronidation. Metabolites 2024; 14:569. [PMID: 39590805 PMCID: PMC11597066 DOI: 10.3390/metabo14110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Peclinical and clinical studies have revealed that ezetimibe, an approved cholesterol-absorption inhibitor, is rapidly and extensively metabolized to a more potent metabolite, ezetimibe glucuronide. Since different species are commonly used in the pharmacokinetic and pharmacodynamic studies of ezetimibe, it is essential to determine the species difference in glucuronidation of ezetimibe in order to accurately evaluate ezetimibe's pharmacokinetics and pharmacodynamics. The purpose of the study was to compare species differences in ezetimibe glucuronidation rates using intestinal microsomes from humans, rats, mice, monkeys, and dogs. METHOD Intestinal microsomes from different species were used to assess the ezetimibe glucuronidation rates. Multiple substrate concentrations at 0.5, 2, 5, 10, 20, 30, 40, and 50 µM were tested and fitted into the Michaelis-Menten model to determine the enzyme kinetic parameters. RESULTS The results showed that the glucuronidation rates with these tested species were significantly different. Kinetic studies revealed that the maximum metabolic rate (Vmax) was higher in monkeys (3.87 ± 0.22 nmol/mg/min) than that in rat (2.40 ± 0.148 nmol/mg/min) and mouse (2.23 ± 0.10 nmol/mg/min), and then human (1.90 ± 0.08 nmol/mg/min) and dog (1.19 ± 0.06 nmol/mg/min). The CLint was an 8.17-fold difference among these species, following the order of mouse > dog > human > rat = monkey. CONCLUSIONS The study revealed that the rate of ezetimibe glucuronidation in the intestine was different in different species and has an impact on ezetimibe glucuronidation in the intestine. When analyzing the pharmacodynamics, pharmacokinetics, or toxicology of ezetimibe using different models, these species differences must be taken into consideration.
Collapse
Affiliation(s)
| | | | | | | | | | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA; (S.E.); (E.A.A.); (T.D.); (H.X.); (D.L.)
| |
Collapse
|
4
|
Weecharangsan W, Lee RJ. Enhanced dissolution rates of glibenclamide through solid dispersions on microcrystalline cellulose and mannitol, combined with phosphatidylcholine. Drug Dev Ind Pharm 2024; 50:297-305. [PMID: 38385210 DOI: 10.1080/03639045.2024.2321388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE This study aimed to investigate the impact of physical solid dispersions of spray-dried glibenclamide (SG) on the surface of microcrystalline cellulose (MC) and mannitol (M) surfaces, as well as their combination with phosphatidylcholine (P), on enhancing the dissolution rate of glibenclamide (G). METHODS Solid dispersions were prepared using varying proportions of 1:1, 1:4, and 1:10 for SG on the surface of MC (SGA) and M (SGM), and then combined with P, in a proportion of 1:4:0.02 using spray drying. The particle size, specific surface area, scanning electron microscopy (SEM), X-ray diffraction (XRD), and dissolution rate of SGA and SGM were characterized. RESULTS SEM analysis revealed successful adhesion of SG onto the surface of the carrier surfaces. XRD showed reduced crystalline characteristic peaks for SGA, while SGM exhibited a sharp peaks pattern. Both SGA and SGM demonstrated higher dissolution rates compared to SG and G alone. Furthermore, the dissolution rates of the solid dispersions of SG, MC and P (SGAP), and SG, M, and P (SGMP) were sequentially higher than that of SGA and SGM. CONCLUSIONS The study suggests that physical solid dispersions of SG on MC and M, along with their combination with P, can effectively enhance the dissolution rate of G. These findings may be valuable in developing of oral solid drug dosage forms utilizing SGA, SGM, SGAP, and SGMP.
Collapse
Affiliation(s)
- Wanlop Weecharangsan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Roy P, Kumari N, Pandey N, Gour A, Raj A, Srividya B, Nandi U, Ghosh A. Development of ezetimibe eutectic with improved biopharmaceutical and mechanical properties to design an optimized oral solid dosage formulation. Pharm Dev Technol 2022; 27:989-998. [PMID: 36322702 DOI: 10.1080/10837450.2022.2143525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eutectics are multicomponent systems which are an alternative to the conventional techniques for modulating the biopharmaceutical properties of a pharmaceutical. Ezetimibe (ETZ) is a hypocholesterolemic agent with limited dissolution, poor water solubility, and subsequently demonstrates low oral bioavailability. Additionally, ETZ exhibits poor mechanical properties, leading to difficulties in developing dosage forms through direct compression. The present work highlights the applicability of eutectics in the simultaneous improvement of physicochemical along with mechanical properties of ETZ. A pharmaceutical eutectic of ETZ with succinimide (SUC) was prepared by mechanochemical grinding and thoroughly characterized using thermoanalytical, X-ray diffraction, and spectroscopic methods. Intrinsic dissolution rate and pharmacokinetic analysis were also performed for ezetimibe-succinimide (ETZ-SUC) eutectic in contrast to pure ETZ. The eutectic demonstrated ∼2-fold increase in the solubility and dissolution rate. In pharmacokinetic studies, the area under the curve (AUC) for ETZ-SUC eutectic (28.03 ± 2.22 ng*h/mL) was found to be higher than ETZ (8.98 ± 0.36 ng*h/mL), indicating improved oral bioavailability for eutectics. Also, it was observed that enhanced material functionality aids in designing directly compressed tablets, where the eutectic formulation showed an improved dissolution profile over the ETZ formulation. The study demonstrates that eutectic conglomerates could be utilized to develop ideal oral solid dosage formulations.
Collapse
Affiliation(s)
- Parag Roy
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India.,Department of Pharmacy, Muzaffarpur Institute of Technology, Muzaffarpur, Muzaffarpur, India
| | - Noopur Pandey
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Abhishek Gour
- PK-PD, Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Amit Raj
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - B Srividya
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Utpal Nandi
- PK-PD, Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
6
|
Dayar E, Pechanova O. Targeted Strategy in Lipid-Lowering Therapy. Biomedicines 2022; 10:1090. [PMID: 35625827 PMCID: PMC9138651 DOI: 10.3390/biomedicines10051090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Dyslipidemia is characterized by a diminished lipid profile, including increased level of total cholesterol and low-density lipoprotein cholesterol (LDL-c) and reduced level of high-density lipoprotein cholesterol (HDL-c). Lipid-lowering agents represent an efficient tool for the prevention or reduction of progression of atherosclerosis, coronary heart diseases and metabolic syndrome. Statins, ezetimibe, and recently proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are the most effective and used drugs in clinical lipid-lowering therapy. These drugs are mainly aimed to lower cholesterol levels by different mechanisms of actions. Statins, the agents of the first-line therapy-known as 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors-suppress the liver cholesterol synthesis. Ezetimibe as the second-line therapy can decrease cholesterol by inhibiting cholesterol absorption. Finally, the PCSK9 inhibitors act as an inducer of LDL excretion. In spite of their beneficial lipid-lowering properties, many patients suffer from their serious side effects, route of administration, or unsatisfactory physicochemical characteristics. Clinical demand for dose reduction and the improvement of bioavailability as well as pharmacodynamic and pharmacokinetic profile has resulted in the development of a new targeted therapy that includes nanoparticle carriers, emulsions or vaccination often associated with another more subtle form of administration. Targeted therapy aims to exert a more potent drug profile with lipid-lowering properties either alone or in mutual combination to potentiate their beneficial effects. This review describes the most effective lipid-lowering drugs, their favorable and adverse effects, as well as targeted therapy and alternative treatments to help reduce or prevent atherosclerotic processes and cardiovascular events.
Collapse
Affiliation(s)
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| |
Collapse
|
7
|
Fang Y, Niu H, Guo Y, Bao Y, Ma Y. Preparation, optimization and bioavailability studies of the bergenin solid dispersion pellets. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Kim W, Kim JS, Choi HG, Jin SG, Cho CW. Novel ezetimibe-loaded fibrous microparticles for enhanced solubility and oral bioavailability by electrospray technique. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Jiang T, Han L, Lu E, He W, Du S, Sha X. Design and Characterization of HY-038 Solid Dispersions via Spray Drying Technology: In Vitro and In Vivo Evaluations. AAPS PharmSciTech 2021; 22:267. [PMID: 34750638 DOI: 10.1208/s12249-021-02135-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to prepare HY-038 solid dispersions (SDs) with single carrier at high drug loading and then forming a tablet to enhance solubility, dissolution, and bioavailability via spray drying technology. At the same time, we hope to develop a more convenient in vitro method to predict the absorption behavior of different formulations in vivo. Different solid dispersions, varying in drug/polymer ratios, were prepared. Infrared spectroscopy, differential scanning calorimetry, scanning electron microscope, and X-ray diffraction were used to perform solid-state characterizations of the pure drug and SDs. Contact angle of water, dissolution in pH = 6.8 phosphate buffer, and in vivo absorption in dogs were studied. As a result, solid-state characterization demonstrated the transformation of the crystalline HY-038 to an amorphous state in the solid dispersions, and the in vivo exposure followed with the trend of the dissolution curve combined with contact angle. Compared with the prototype formulation, the Cmax and AUC0-∞ of optimized formulation SD2 (HY-038-HPMCAS 3:1) increased by about 5 ~ 9 times at the same dose. More importantly, the SD2 formulation showed approximately linear increases in Cmax and AUC0-∞ as the dose increased from 50 to 100 mg, while the prototype formulation reached absorption saturation at 50 mg. SD2 (HY-038-HPMCAS 3:1) was selected as the best formulation for the downstream development.
Collapse
|
10
|
Faraji E, Mohammadi M, Mahboobian MM. Development of the Binary and Ternary Atorvastatin Solid Dispersions: In Vitro and In Vivo Investigations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6644630. [PMID: 34527740 PMCID: PMC8437629 DOI: 10.1155/2021/6644630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
The object of this study was to prepare binary and ternary solid dispersions of atorvastatin (ATR) by the melting method using PEGs and poloxamer 188 (P188) as the carriers, singly and in combination with each other. Dissolution behavior, solubility studies, X-ray diffractometry, differential scanning calorimetry, and Fourier transform infrared spectroscopy were studied. Furthermore, antihyperlipidemic activities of formulations were compared to each other by serum lipid analyses in hyperlipidemic rats. Based on the results, the highest dissolution efficiency (DE30 = 83%) was obtained by binary systems consisted of ATR and P188. Also, no additional improvement was observed in dissolution properties of ternary solid dispersion formulations. Solubility studies showed enhancement of ATR phase solubility in water and a buffer solution containing P188 or PEG 10000. Furthermore, saturated solubility of ATR in the buffer solution improved more than twofold in the optimized ternary dispersion system. No crystalline changes occurred in PEG-based formulations; meanwhile, partial amorphization happened in the ATR-P188 combination. Finally, the in vivo study in hyperlipidemic rats exhibited a rapid decrease in the lipid profile of all formulations compared to ATR (after 7 days). Moreover, reduction of serum triglycerides and total cholesterol on the 14th day in the ATR group (p value < 0.01) was less than solid dispersion or physical mixing preparations (p value < 0.001). These findings proved the appropriate influence of using PEG and P188 in solid dispersion systems for the improvement of the therapeutic efficiency of ATR.
Collapse
Affiliation(s)
- Elahe Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Guarnizo-Herrero V, Torrado-Salmerón C, Torres Pabón NS, Torrado Durán G, Morales J, Torrado-Santiago S. Study of Different Chitosan/Sodium Carboxymethyl Cellulose Proportions in the Development of Polyelectrolyte Complexes for the Sustained Release of Clarithromycin from Matrix Tablets. Polymers (Basel) 2021; 13:polym13162813. [PMID: 34451351 PMCID: PMC8400629 DOI: 10.3390/polym13162813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
This study investigated the combination of different proportions of cationic chitosan and anionic carboxymethyl cellulose (CMC) for the development of polyelectrolyte complexes to be used as a carrier in a sustained-release system. Analysis via scanning electron microscopy (SEM) Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) confirmed ionic interactions occur between the chitosan and carboxymethyl cellulose chains, which increases drug entrapment. The results of the dissolution study in acetate buffer (pH 4.2) showed significant increases in the kinetic profiles of clarithromycin for low proportions of chitosan/carboxymethyl cellulose tablets, while the tablets containing only chitosan had high relaxation of chitosan chains and disintegrated rapidly. The Korsmeyer–Peppas kinetic model for the different interpolymer complexes demonstrated that the clarithromycin transport mechanism was controlled by Fickian diffusion. These results suggest that the matrix tablets with different proportions of chitosan/carboxymethyl cellulose enhanced the ionic interaction and enabled the prolonged release of clarithromycin.
Collapse
Affiliation(s)
- Víctor Guarnizo-Herrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (V.G.-H.); (C.T.-S.)
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (V.G.-H.); (C.T.-S.)
| | - Norma Sofía Torres Pabón
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain; (N.S.T.P.); (G.T.D.)
| | - Guillermo Torrado Durán
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain; (N.S.T.P.); (G.T.D.)
| | - Javier Morales
- Department of Science and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile;
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (V.G.-H.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-091-394-1620
| |
Collapse
|
12
|
Hamed R, Mohamed EM, Sediri K, Khan MA, Rahman Z. Development of stable amorphous solid dispersion and quantification of crystalline fraction of lopinavir by spectroscopic-chemometric methods. Int J Pharm 2021; 602:120657. [PMID: 33930489 DOI: 10.1016/j.ijpharm.2021.120657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to improve the dissolution of the poorly soluble drug lopinavir (LPV) by preparing amorphous solid dispersions (ASDs) using solvent evaporation method. The ASD formulations were prepared with ternary mixtures of LPV, Eudragit® E100, and microcrystalline cellulose (MCC) at various weight ratios. The ASDs were subjected to solid-state characterization and in vitro drug dissolution testing. Chemometric models based on near infrared spectroscopy (NIR) and NIR-hyperspectroscopy (NIR-H) data were developed using the partial least squares (PLS) regression and externally validated to estimate the percent of the crystalline LPV in the ASD. Initially, the solid-state characterization data of ASDs showed transformation of the drug from crystalline to amorphous. Negligible fraction of crystalline LPV was present in the ASD (3%). Compared to pure LPV, ASDs showed faster and higher drug dissolution (<2% vs. 60.3-73.5%) in the first 15 min of testing. The ASD was stable against crystallization during stability testing at 40 °C/75% for a month. In conclusion, the prepared ASD was stable against devitrification and enhance the dissolution of LPV.
Collapse
Affiliation(s)
- Rania Hamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States; Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Eman M Mohamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States; Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khaldia Sediri
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States; Laboratory of Applied Chemistry, ACTR univ. Ain Temouchent DGRCT, BP 248, 46000 Ain Temouchent, Algeria
| | - Mansoor A Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
13
|
Benavent C, Torrado-Salmerón C, Torrado-Santiago S. Development of a Solid Dispersion of Nystatin with Maltodextrin as a Carrier Agent: Improvements in Antifungal Efficacy against Candida spp. Biofilm Infections. Pharmaceuticals (Basel) 2021; 14:ph14050397. [PMID: 33922089 PMCID: PMC8143483 DOI: 10.3390/ph14050397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to improve the treatment of Candida albicans biofilms through the use of nystatin solid dispersions developed using maltodextrins as a hyperosmotic carrier. Characterization studies by differential scanning calorimetry, X-ray diffraction, dissolution studies, and particle size analysis were performed to evaluate changes in nystatin crystallinity. Antifungal activity and anti-biofilm efficacy were assessed by microbiological techniques. The results for nystatin solid dispersions showed that the enhancement of antifungal activity may be related to the high proportions of maltodextrins. Anti-biofilm assays showed a significant reduction (more than 80%) on biofilm formation with SD-N:MD [1:6] compared to the nystatin reference suspension. The elaboration process and physicochemical properties of SD-N:MD [1:6] could be a promising strategy for treatment of Candida biofilms.
Collapse
Affiliation(s)
- Carlos Benavent
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.B.); (C.T.-S.)
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.B.); (C.T.-S.)
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.B.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-091-394-1620
| |
Collapse
|
14
|
Torrado-Salmerón C, Guarnizo-Herrero V, Henriques J, Seiça R, Sena CM, Torrado-Santiago S. Multiparticulate Systems of Ezetimibe Micellar System and Atorvastatin Solid Dispersion Efficacy of Low-Dose Ezetimibe/Atorvastatin on High-Fat Diet-Induced Hyperlipidemia and Hepatic Steatosis in Diabetic Rats. Pharmaceutics 2021; 13:421. [PMID: 33804727 PMCID: PMC8004026 DOI: 10.3390/pharmaceutics13030421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to develop multiparticulate systems with a combination of ezetimibe micellar systems and atorvastatin solid dispersions using croscarmellose as a hydrophilic vehicle and Kolliphor RH40 as a surfactant. The presence of a surfactant with low hydrophilic polymer ratios produces the rapid dissolution of ezetimibe through a drug-polymer interaction that reduces its crystallinity. The solid dispersion of atorvastatin with low proportions of croscarmellose showed drug-polymer interactions sufficient to produce the fast dissolution of atorvastatin. Efficacy studies were performed in diabetic Goto-Kakizaki rats with induced hyperlipidemia. The administration of multiparticulate systems of ezetimibe and atorvastatin at low (2 and 6.7 mg/kg) and high (3 and 10 mg/kg) doses showed similar improvements in levels of cholesterol, triglycerides, lipoproteins, alanine transaminase, and aspartate transaminase compared to the high-fat diet group. Multiparticulate systems at low doses (2 and 6.7 mg/kg of ezetimibe and atorvastatin) had a similar improvement in hepatic steatosis compared to the administration of ezetimibe and atorvastatin raw materials at high doses (3 and 10 mg/kg). These results confirm the effectiveness of solid dispersions with low doses of ezetimibe and atorvastatin to reduce high lipid levels and hepatic steatosis in diabetic rats fed a high-fat diet.
Collapse
Affiliation(s)
- Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.)
| | - Víctor Guarnizo-Herrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.)
| | - Joana Henriques
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000‐548 Coimbra, Portugal; (J.H.); (R.S.); (C.M.S.)
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000‐548 Coimbra, Portugal; (J.H.); (R.S.); (C.M.S.)
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Cristina M. Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000‐548 Coimbra, Portugal; (J.H.); (R.S.); (C.M.S.)
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
15
|
Rocha LP, Cabral LM, Pinto EC, de Sousa VP. Ezetimibe: A Review of Analytical Methods for the Drug Substance, Pharmaceutical Formulations and Biological Matrices. Crit Rev Anal Chem 2020; 52:1078-1093. [PMID: 33347374 DOI: 10.1080/10408347.2020.1857222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ezetimibe (EZM) is a selective inhibitor of the sterol transporter Niemann-Pick C1-Like 1 in the small intestine used as an adjunctive therapy to lower cholesterol levels in cases of hyperlipidemia. The goal of this work was to summarize the main physical-chemical, pharmacological and pharmacokinetic characteristics of EZM, as well as to describe the main analytical methodologies for the quantification of the drug. Methods described in the United States Pharmacopeia for EZM raw material and tablets were also presented. The drug has a large number of process-related impurities and degradation products and needs strict quality control of its impurities. Specific chiral methods for the evaluation of its chiral impurities are also a need for EZM. The main advantages and disadvantages of the compiled analytical methods were presented, as well as the limits of detection and quantitation. The fastest and most efficient methods were highlighted. Most methods for analyzing EZM used C8 or C18 stationary phases in gradient mode with binary mobile phases containing acetonitrile and an acidic buffer solution with ultraviolet detection. For analysis of EZM in biological matrices, liquid chromatography-tandem mass spectrometry is generally employed using electron spray ionization in negative ionization mode using multiple reaction monitoring. Different methods in the literature evaluate a large number of impurities for EZM, however new stability-indicating high-performance liquid chromatography methods for the drug are still needed.
Collapse
Affiliation(s)
- Letícia Pereira Rocha
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Costa Pinto
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|