1
|
Si Z, Tian L, Zhou H, Lin J, Zhou J. In Vivo Interrogation of Cell-Penetrating Peptide Function: Accumulation in Tumors and the Potential as a Specific PET Probe. Bioconjug Chem 2025. [PMID: 40202497 DOI: 10.1021/acs.bioconjchem.5c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
We aimed to evaluate the biodistribution and specificity of 68Ga-DOTA-TAT and RHO-TAT using MGC-803 and HT-29 tumor cells as well as tumor-xenografted nude mice and to demonstrate its application in positron emission tomography (PET) imaging. The in vitro evaluation of 68Ga-DOTA-TAT was assessed in MGC-803 and HT-29 cell lines, and the in vivo evaluation of 68Ga-DOTA-TAT was also performed in mice bearing MGC-803 or HT-29 tumors, respectively. Fluorescence microscopy was also employed to evaluate the specificity of RHO-TAT in vitro in MGC-803 and HT-29 cells as well as ex vivo in tumor slices of the corresponding tumor models. The in vivo imaging differences between 68Ga-DOTA-TAT and 18F-FDG in MGC-803 and HT-29 tumors were also studied. The biodistribution and micro-PET results demonstrated significant uptake of 68Ga-DOTA-TAT in non-FDG-avid MGC-803 tumors, whereas there was negligible uptake in FDG-avid HT-29 tumors. RHO-TAT showed superior fluorescence microscopy imaging effects in MGC-803 cells and tumor slices but not in HT-29 cells and tumor slices, which were consistent with the in vivo results. 68Ga-DOTA-TAT combined with 18F-FDG can be applied noninvasively in cancers with PET imaging for potential patient selection and stratification. We demonstrated a higher binding of 68Ga-DOTA-TAT and RHO-TAT to MGC-803 cells as well as to non-FDG-avid MGC-803 xenografted tumors and a lower binding to HT-29 cells and FDG-avid xenografted tumors. These results suggest that TAT has the potential to be a ligand for targeting certain tumors.
Collapse
Affiliation(s)
- Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
| | - Lulu Tian
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiasheng Lin
- Department of Nuclear Medicine, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Jun Zhou
- Department of Nuclear Medicine, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| |
Collapse
|
2
|
Gonzalez JC, Park KW, Evans DB, Sharma R, Sahaym O, Gopalakrishnan S, dar AI, Valdez TA, Sharma A. Nano Approaches to Nucleic Acid Delivery: Barriers, Solutions, and Current Landscape. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70010. [PMID: 40223402 PMCID: PMC11994986 DOI: 10.1002/wnan.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Nucleic acid (NA) therapy holds tremendous potential for treating a wide range of genetic diseases by the delivery of therapeutic genes into target cells. However, significant challenges exist in safely and effectively delivering these genes to their intended locations. Viral vectors, though efficient, pose risks such as immunogenicity and mutagenesis. This has resulted in growing interest in non-viral, nanoparticle-based NA delivery systems. This review article describes various physiological barriers to NA delivery and explores nanoparticle-based NA delivery systems, including bioengineered nanoparticles, peptides, lipid nanoparticles, and polymeric nanoparticles, highlighting their unique features to overcome in vivo barriers for NA delivery. While these nanoparticle-based NA delivery systems offer a promising alternative to viral vectors, challenges related to cytotoxicity, reproducible synthesis, and cost need to be addressed. The current clinical landscape of NA delivery is also discussed, emphasizing the need for safer, scalable, and cost-effective solutions. Nanoparticles represent a promising future in NA therapy, with the possibility of developing clinically relevant, non-toxic, stable, and non-immunogenic delivery vehicles, paving the way for broader therapeutic applications and improved clinical outcomes.
Collapse
Affiliation(s)
- Joan Castaneda Gonzalez
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Ki Wan Park
- Department of Otolaryngology−Head & Neck Surgery DivisionsStanford University School of MedicineStanfordCaliforniaUSA
| | - Dallin Brian Evans
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Rishi Sharma
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Om Sahaym
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Shamila Gopalakrishnan
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Aqib Iqbal dar
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Tulio A. Valdez
- Department of Otolaryngology−Head & Neck Surgery DivisionsStanford University School of MedicineStanfordCaliforniaUSA
| | - Anjali Sharma
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| |
Collapse
|
3
|
Maani Z, Rahbarnia L, Bahadori A, Chollou KM, Farajnia S. Spotlight on HIV-derived TAT peptide as a molecular shuttle in drug delivery. Drug Discov Today 2024; 29:104191. [PMID: 39322176 DOI: 10.1016/j.drudis.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
HIV-derived TAT peptide, with a high penetration rate into cells and its nonimmunogenic and minimally toxic nature, is an attractive tool for enhancing the biodistribution of drugs and their systemic administration. Despite the presence of numerous promising preclinical investigations illustrating its capability to specifically target distinct tissues and deliver a diverse range of pharmacological agents, the efficacy of various clinical trials incorporating TAT has been impeded by several considerable obstacles. Hence, there is much need for an in-depth investigation concerning the application of TAT in drug delivery mechanisms. In this review, we have elucidated the structure of TAT and its utility in the proficient delivery of various types of bioactive molecules.
Collapse
Affiliation(s)
- Zahra Maani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical Sciences, Sarab, Iran
| | | | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Zhang H, Xu L, He Y, Zhang Z, Zhang J, Yu Q, Liu Y, Wang X, Zhang A, Wang K, Fang Y, Chen S. Tat-NR2B9c attenuates oxidative stress via inhibition of PSD95-NR2B-nNOS complex after subarachnoid hemorrhage in rats. Neuropharmacology 2024; 251:109905. [PMID: 38521229 DOI: 10.1016/j.neuropharm.2024.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Oxidative stress plays important roles in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Tat-NR2B9c has shown efficacy as a neuroprotective agent in several studies. Here, we identified the neuroprotective role of Tat-NR2B9c after SAH and its related mechanisms. The results showed that Tat-NR2B9c treatment attenuated oxidative stress, therefore alleviated neuronal apoptosis and neurological deficits after SAH. Tat-NR2B9c treatment could alleviate mitochondrial vacuolization induced by SAH. Compared to SAH + vehicle group, Tat-NR2B9c resulted in the decrease of Acetylated superoxide dismutase2 (Ac-SOD2), Bcl-2-associated X protein (Bax) and cleaved-caspase3 (CC3) protein expression, and the up-regulation of Sirtunin 3 (Sirt3) and Bcl-2 protein level. Moreover, Tat-NR2B9c attenuated excitotoxicity by inhibiting the interaction of PSD95-NR2B-nNOS. Our results demonstrated that Tat-NR2B9c inhibited oxidative stress via inhibition of PSD95-NR2B-nNOS complex formation after SAH. Tat-NR2B9c may serve as a potential treatment for SAH induced brain injury.
Collapse
Affiliation(s)
- Haocheng Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Longbiao Xu
- Department of Neurosurgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yezhao He
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jiahao Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Qian Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yibo Liu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Anke Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Haroon K, Zheng H, Wu S, Liu Z, Tang Y, Yang GY, Liu Y, Zhang Z. Engineered exosomes mediated targeted delivery of neuroprotective peptide NR2B9c for the treatment of traumatic brain injury. Int J Pharm 2024; 649:123656. [PMID: 38040392 DOI: 10.1016/j.ijpharm.2023.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Neuroprotection is one of the core treatment strategies for brain injuries including traumatic brain injury (TBI). NR2B9c is a promising neuroprotective peptide but its clinical translation is limited because of poor brain penetrability. Exosomes are naturally occurring nanovesicles having therapeutic potential for TBI as well as an efficient drug delivery carrier to the brain. Here, we engineered exosomes with neuron targeting peptide rabies virus glycoprotein (RVG29) via bio-orthogonal click chemistry technique and loaded it with NR2B9c, developing RVG-ExoNR2B9c. RVG29 conjugated exosome had higher neuron targeting efficiency compared to naïve exosomes both in vivo and in vitro. RVG-ExoNR2B9c had great cytoprotective effect against oxygen glucose deprived Neuro2a cells. Intravenous administration of RVG-ExoNR2B9c significantly improved behavioral outcomes and reduced the lesion volume after TBI injury in a mice controlled cortical impact model. Due to their multifunctionality and significant efficacy, we anticipate that RVG-ExoNR2B9c have the potential to be translated both as therapeutic agent as well as cargo delivery system to the brain for the treatment of TBI.
Collapse
Affiliation(s)
- Khan Haroon
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Haoran Zheng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shengju Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ze Liu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yingli Liu
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200025, China.
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
6
|
Diaz J, Pellois JP. Deciphering variations in the endocytic uptake of a cell-penetrating peptide: the crucial role of cell culture protocols. Cytotechnology 2023; 75:473-490. [PMID: 37841959 PMCID: PMC10575844 DOI: 10.1007/s10616-023-00591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Delivery tools, including cell-penetrating peptides (CPPs), are often inefficient due to a combination of poor endocytosis and endosomal escape. Aspects that impact the delivery of CPPs are typically characterized using tissue culture models. One problem of using cell culture is that cell culture protocols have the potential to contribute to endosomal uptake and endosomal release of CPPs. Hence, a systematic study to identify which aspects of cell culturing techniques impact the endocytic uptake of a typical CPP, the TMR-TAT peptide (peptide sequence derived from HIV1-TAT with the N-terminus labeled with tetramethylrhodamine), was conducted. Aspects of cell culturing protocols previously found to generally modulate endocytosis, such as cell density, washing steps, and cell aging, did not affect TMR-TAT endocytosis. In contrast, cell dissociation methods, media, temperature, serum starvation, and media composition all contributed to changes in uptake. To establish a range of endocytosis achievable by different cell culture protocols, TMR-TAT uptake was compared among protocols. These protocols led to changes in uptake of more than 13-fold, indicating that differences in cell culturing techniques have a cumulative effect on CPP uptake. Taken together this study highlights how different protocols can influence the amount of endocytic uptake of TMR-TAT. Additionally, parameters that can be exploited to improve CPP accumulation in endosomes were identified. The protocols identified herein have the potential to be paired with other delivery enhancing strategies to improve overall delivery efficiency of CPPs. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00591-1.
Collapse
Affiliation(s)
- Joshua Diaz
- Department of Biochemistry and Biophysics, Texas A&M University, Room 430, 300 Olsen Blvd, College Station, TX 77843-2128 USA
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, Room 430, 300 Olsen Blvd, College Station, TX 77843-2128 USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
7
|
Kato N, Yamada S, Suzuki R, Iida Y, Matsumoto M, Fumoto S, Arima H, Mukai H, Kawakami S. Development of an apolipoprotein E mimetic peptide-lipid conjugate for efficient brain delivery of liposomes. Drug Deliv 2023; 30:2173333. [PMID: 36718920 PMCID: PMC9891163 DOI: 10.1080/10717544.2023.2173333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 02/01/2023] Open
Abstract
Liposomes are versatile carriers that can encapsulate various drugs; however, for delivery to the brain, they must be modified with a targeting ligand or other modifications to provide blood-brain barrier (BBB) permeability, while avoiding rapid clearance by reticuloendothelial systems through polyethylene glycol (PEG) modification. BBB-penetrating peptides act as brain-targeting ligands. In this study, to achieve efficient brain delivery of liposomes, we screened the functionality of eight BBB-penetrating peptides reported previously, based on high-throughput quantitative evaluation methods with in vitro BBB permeability evaluation system using Transwell, in situ brain perfusion system, and others. For apolipoprotein E mimetic tandem dimer peptide (ApoEdp), which showed the best brain-targeting and BBB permeability in the comparative evaluation of eight peptides, its lipid conjugate with serine-glycine (SG)5 spacer (ApoEdp-SG-lipid) was newly synthesized and ApoEdp-modified PEGylated liposomes were prepared. ApoEdp-modified PEGylated liposomes were effectively associated with human brain capillary endothelial cells via the ApoEdp sequence and permeated the membrane in an in vitro BBB model. Moreover, ApoEdp-modified PEGylated liposomes accumulated in the brain 3.9-fold higher than PEGylated liposomes in mice. In addition, the ability of ApoEdp-modified PEGylated liposomes to localize beyond the BBB into the brain parenchyma in mice was demonstrated via three-dimensional imaging with tissue clearing. These results suggest that ApoEdp-SG-lipid modification is an effective approach for endowing PEGylated liposomes with the brain-targeting ability and BBB permeability.
Collapse
Affiliation(s)
- Naoya Kato
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Sakura Yamada
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Rino Suzuki
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshiki Iida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Makoto Matsumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hidetoshi Arima
- School of Pharmacy, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hidefumi Mukai
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Haroon K, Ruan H, Zheng H, Wu S, Liu Z, Shi X, Tang Y, Yang GY, Zhang Z. Bio-clickable, small extracellular vesicles-COCKTAIL therapy for ischemic stroke. J Control Release 2023; 363:585-596. [PMID: 37793483 DOI: 10.1016/j.jconrel.2023.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Delivering large therapeutic molecules via the blood-brain barrier to treat ischemic stroke remains challenging. NR2B9c is a potent neuroprotective peptide but it's safe and targeted delivery to the brain requires an efficient, natural, and non-immunogenic delivery technique. Small extracellular vesicles (sEVs) have shown great potential as a non-immunogenic, natural cargo delivery system; however, tailoring of its inefficient brain targeting is desired. Here, we coupled rabies virus glycoprotein 29 with sEVs surface via bio-orthogonal click chemistry reactions, followed by loading of NR2B9c, ultimately generating stroke-specific therapeutic COCKTAIL (sEVs-COCKTAIL). Primary neurons and Neuro-2a cells were cultured for in vitro and transient middle cerebral artery occlusion model was used for in vivo studies to evaluate neuron targeting and anti-ischemic stroke potential of the sEVs-COCKTAIL. Bio-clickable sEVs were selectively taken up by neurons but not glial cells. In the in vitro ischemic stroke model of oxygen-glucose deprivation, the sEVs-COCKTAIL exhibited remarkable potential against reactive oxygen species and cellular apoptosis. In vivo studies further demonstrated the brain targeting and increased half-life of bio-clickable sEVs, delivering NR2B9c to the ischemic brain and reducing stroke injury. Treatment with the sEVs-COCKTAIL significantly increased behavioral recovery and reduced neuronal apoptosis after transient middle cerebral artery occlusion. NR2B9c was delivered to neurons binding to post-synaptic density protein-95, inhibiting N-methyl-d-Aspartate receptor-mediated over production of oxidative stress and mitigating protein B-cell lymphoma 2 and P38 proteins expression. Our results provide an efficient and biocompatible approach to a targeted delivery system, which is a promising modality for stroke therapy.
Collapse
Affiliation(s)
- Khan Haroon
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haoran Zheng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shengju Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ze Liu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaojing Shi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
9
|
Zhao H, Gong L, Wu H, Liu C, Liu Y, Xiao C, Liu C, Chen L, Jin M, Gao Z, Guan Y, Huang W. Development of Novel Paclitaxel-Loaded ZIF-8 Metal-Organic Framework Nanoparticles Modified with Peptide Dimers and an Evaluation of Its Inhibitory Effect against Prostate Cancer Cells. Pharmaceutics 2023; 15:1874. [PMID: 37514059 PMCID: PMC10383971 DOI: 10.3390/pharmaceutics15071874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PC) is one of the common malignant tumors of the male genitourinary system. Here, we constructed PTX@ZIF-8, which is a metal-organic-framework-encapsulated drug delivery nanoparticle with paclitaxel (PTX) as a model drug, and further modified the synthesized peptide dimer (Di-PEG2000-COOH) onto the surface of PTX@ZIF-8 to prepare a nanotargeted drug delivery system (Di-PEG@PTX@ZIF-8) for the treatment of prostate cancer. This study investigated the morphology, particle size distribution, zeta potential, drug loading, encapsulation rate, stability, in vitro release behavior, and cytotoxicity of this targeted drug delivery system, and explored the uptake of Di-PEG@PTX@ZIF-8 by human prostate cancer Lncap cells at the in vitro cellular level, as well as the proliferation inhibition and promotion of apoptosis of Lncap cells by the composite nanoparticles. The results suggest that Di-PEG@PTX@ZIF-8, as a zeolitic imidazolate frameworks-8-loaded paclitaxel nanoparticle, has promising potential for the treatment of prostate cancer, which may provide a novel strategy for the delivery system targeting prostate cancer.
Collapse
Affiliation(s)
- Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenfei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Melander E, Eriksson C, Wellens S, Hosseini K, Fredriksson R, Gosselet F, Culot M, Göransson U, Hammarlund-Udenaes M, Loryan I. Differential Blood-Brain Barrier Transport and Cell Uptake of Cyclic Peptides In Vivo and In Vitro. Pharmaceutics 2023; 15:pharmaceutics15051507. [PMID: 37242750 DOI: 10.3390/pharmaceutics15051507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) poses major challenges to drug delivery to the CNS. SFTI-1 and kalata B1 are cyclic cell-penetrating peptides (cCPPs) with high potential to be used as scaffolds for drug delivery. We here studied their transport across the BBB and distribution within the brain to gauge the potential of these two cCPPs as scaffolds for CNS drugs. In a rat model, SFTI-1 exhibited, for a peptide, high extent of BBB transport with a partitioning of unbound SFTI-1 across the BBB, Kp,uu,brain, of 13%, while only 0.5% of kalata B1 equilibrated across the BBB. By contrast, kalata B1, but not SFTI-1, readily entered neural cells. SFTI-1, but not kalata B1, could be a potential CNS delivery scaffold for drugs directed to extracellular targets. These findings indicate that differences between the BBB transport and cellular uptake abilities of CPPs are crucial in the development of peptide scaffolds.
Collapse
Affiliation(s)
- Erik Melander
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Camilla Eriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | - Sara Wellens
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Kimia Hosseini
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Ulf Göransson
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
11
|
Þorgeirsdóttir DÝ, Andersen JH, Perch-Nielsen M, Møller LH, Grønbæk-Thorsen F, Kolberg HG, Gammelgaard B, Kristensen M. Selenomethionine as alternative label to the fluorophore TAMRA when exploiting cell-penetrating peptides as blood-brain barrier shuttles to better mimic the physicochemical properties of the non-labelled peptides. Eur J Pharm Sci 2023; 183:106400. [PMID: 36750148 DOI: 10.1016/j.ejps.2023.106400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
The cell-penetrating peptides (CPPs) Tat and penetratin are frequently explored as shuttles for drug delivery across the blood-brain barrier (BBB). CPPs are often labelled with fluorophores for analytical purposes, with 5(6)-carboxytetramethylrhodamine (TAMRA) being a popular choice. However, TAMRA labelling affects the physicochemical properties of the resulting fluorophore-CPP construct when compared to the CPP alone. Selenomethionine (MSe) may be introduced as alternative label, which, due to its small size and amino acid nature, likely results in minimal alterations of the peptide physicochemical properties. With this study we compared, head-to-head, the effect of MSe and TAMRA labelling of Tat and penetratin with respect to their physicochemical properties, and investigated effects hereof on brain capillary endothelial cell (BCEC) models. TAMRA labelling positively affected the ability of the peptides to adhere to the cell membranes as well being internalized into the BCECs when compared to MSe labelling. TAMRA labelling of penetratin added toxicity to the BCECs to a higher extent than TAMRA labelling of Tat, whereas MSe labelling did not affect the cellular viability. Both TAMRA and MSe labelling of penetratin decreased the barrier integrity of BCEC monolayers, but not to an extent that improved transport of the paracellular marker 14C-mannitol. In conclusion, MSe labelling of Tat and penetratin adds minimal alterations to the physicochemical properties of these CPPs and their resulting effects on BCECs, and thereby represents a preferred alternative to TAMRA for peptide quantification purposes.
Collapse
Affiliation(s)
- Dagmar Ýr Þorgeirsdóttir
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Jeppe Hofman Andersen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Marcus Perch-Nielsen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Laura Hyrup Møller
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Freja Grønbæk-Thorsen
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Hannah Grønbech Kolberg
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Bente Gammelgaard
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Mie Kristensen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
12
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
13
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
14
|
Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. J Funct Biomater 2022; 13:125. [PMID: 36135560 PMCID: PMC9504125 DOI: 10.3390/jfb13030125] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
Diseases affecting the central nervous system (CNS) are among the most disabling and the most difficult to cure due to the presence of the blood-brain barrier (BBB) which represents an impediment from a therapeutic and diagnostic point of view as it limits the entry of most drugs. The use of biocompatible polymer nanoparticles (NPs) as vehicles for targeted drug delivery to the brain arouses increasing interest. However, the route of administration of these vectors remains critical as the drug must be delivered without being degraded to achieve a therapeutic effect. An innovative approach for the administration of drugs to the brain using polymeric carriers is represented by the nose-to-brain (NtB) route which involves the administration of the therapeutic molecule through the neuro-olfactory epithelium of the nasal mucosa. Nasal administration is a non-invasive approach that allows the rapid transport of the drug directly to the brain and minimizes its systemic exposure. To date, many studies involve the use of polymer NPs for the NtB transport of drugs to the brain for the treatment of a whole series of disabling neurological diseases for which, as of today, there is no cure. In this review, various types of biodegradable polymer NPs for drug delivery to the brain through the NtB route are discussed and particular attention is devoted to the treatment of neurological diseases such as Glioblastoma and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
15
|
Kucharz K, Kutuzov N, Zhukov O, Mathiesen Janiurek M, Lauritzen M. Shedding Light on the Blood-Brain Barrier Transport with Two-Photon Microscopy In Vivo. Pharm Res 2022; 39:1457-1468. [PMID: 35578062 DOI: 10.1007/s11095-022-03266-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Treatment of brain disorders relies on efficient delivery of therapeutics to the brain, which is hindered by the blood-brain barrier (BBB). The work of Prof. Margareta Hammarlund-Udenaes was instrumental in understanding the principles of drug delivery to the brain and developing new tools to study it. Here, we show how some of the concepts developed in her research can be translated to in vivo 2-photon microscopy (2PM) studies of the BBB. We primarily focus on the methods developed in our laboratory to characterize the paracellular diffusion, adsorptive-mediated transcytosis, and receptor-mediated transcytosis of drug nanocarriers at the microscale, illustrating how 2PM can deepen our understanding of the mechanisms of drug delivery to the brain.
Collapse
Affiliation(s)
- Krzysztof Kucharz
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolay Kutuzov
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oleg Zhukov
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Mathiesen Janiurek
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
16
|
Smaga I, Wydra K, Witek K, Surówka P, Suder A, Pieniążek R, Caffino L, Fumagalli F, Sanak M, Filip M. Intravenous administration of Tat-NR2B9c peptide, a PSD95 inhibitor, attenuates reinstatement of cocaine-seeking behavior in rats. Behav Brain Res 2022; 416:113537. [PMID: 34416299 DOI: 10.1016/j.bbr.2021.113537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Cocaine use disorder is a serious, chronic and relapsing disease of the nervous system, for which effective treatments do not yet exist. Recently, the role of the N-methyl-d-aspartate (NMDA) receptor subunit GluN2B has been highlighted in cocaine abstinence followed by extinction training. Since the GluN2B subunit is stabilized at synaptic level by the interaction with its scaffolding protein PSD95, in this study we aimed at investigating efficacy of Tat-NR2B9c peptide, a PSD95 inhibitor, which disrupts the interaction of PSD95 with GluN2B, in the attenuation of cocaine seeking-behavior or cue-induced reinstatement. We found that Tat-NR2B9c, administered intravenously, attenuated the reinstatement of active lever presses induced by a priming dose of cocaine or by drug-associated conditioned stimuli. At the same time, the GluN2B/PSD95 complex levels were decreased in the ventral hippocampus of rats that previously self-administered cocaine injected with Tat-NR2B9c during cocaine- or cue-induced reinstatement. In conclusion, we here provide the first evidence showing that the disruption of the GluN2B/PSD95 complexes during cocaine abstinence followed by extinction training may represent a useful strategy to reduce reinstatement of cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland.
| | - Karolina Wydra
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| | - Kacper Witek
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| | - Paulina Surówka
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Pharmacology, Affective Cognitive Neuroscience Laboratory, Smętna 12, PL 31-343, Kraków, Poland
| | - Agata Suder
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| | - Renata Pieniążek
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066, Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343, Kraków, Poland
| |
Collapse
|
17
|
Frøslev P, Franzyk H, Ozgür B, Brodin B, Kristensen M. Highly cationic cell-penetrating peptides affect the barrier integrity and facilitates mannitol permeation in a human stem cell-based blood-brain barrier model. Eur J Pharm Sci 2021; 168:106054. [PMID: 34728364 DOI: 10.1016/j.ejps.2021.106054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/03/2022]
Abstract
The blood-brain barrier (BBB) allows passive permeation of only a limited number of, primarily lipophilic, low-molecular weight drugs that obey the so-called "rule of CNS likeness". Therefore, novel strategies to facilitate drug delivery across the BBB are needed. Cell-penetrating peptides (CPPs) enable delivery of various therapeutic cargoes into cells and may potentially serve as shuttles for delivery of brain-specific drugs across the BBB. The CPPs Tat47-57 and penetratin are prototypical cationic CPPs, whereas apidaecin and oncocin belong to the group of proline-rich cationic antimicrobial peptides displaying CPP-like properties. The aim of the present study was to investigate the potential of Tat47-57, penetratin, apidaecin, and oncocin for interaction with and permeation of the BBB in vitro. We also studied whether the CPPs facilitated permeation of the paracellular flux marker mannitol as well as the transcellular flux marker propranolol. The peptides were labelled with the fluorophore 6-TAMRA (T) for visualization and quantification purposes. CPP membrane-adherence, membrane-embedding, and cellular uptake as well as barrier-permeation were evaluated in murine brain capillary endothelial cells (bEND3) and human induced pluripotent stem cell-derived (Bioni-010c) brain capillary endothelial-like monolayers. The cationic and the proline-rich cationic CPPs were taken up into the Bioni-010c monolayers. T-Tat47-57, T-apidaecin, and T-oncocin also permeated Bioni-010c monolayers, whereas T-penetratin did not. However, both T-Tat47-57 and T-penetratin affected the barrier integrity to a degree that facilitated permeation of 14C-mannitol. These results may therefore pave the way for future CPP-mediated brain delivery of small drugs that do not obey the "rule of CNS likeness".
Collapse
Affiliation(s)
- Patrick Frøslev
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Burak Ozgür
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Mie Kristensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.
| |
Collapse
|
18
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
19
|
Live Cell Imaging of Peptide Uptake Using a Microfluidic Platform. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers 2021; 9:1904773. [PMID: 34003072 DOI: 10.1080/21688370.2021.1904773] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The negative surface charge of brain microvessel endothelial cells is derived from the special composition of their membrane lipids and the thick endothelial surface glycocalyx. They are important elements of the unique defense systems of the blood-brain barrier. The tissue-specific properties, components, function and charge of the brain endothelial glycocalyx have only been studied in detail in the past 15 years. This review highlights the importance of the negative surface charge in the permeability of macromolecules and nanoparticles as well as in drug interactions. We discuss surface charge and glycoxalyx changes in pathologies related to the brain microvasculature and protective measures against glycocalyx shedding and damage. We present biophysical techniques, including a microfluidic chip device, to measure surface charge of living brain endothelial cells and imaging methods for visualization of surface charge and glycocalyx.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|