1
|
Tarek M, El-Gogary RI, Kamel AO. A new era of psoriasis treatment: Drug repurposing through the lens of nanotechnology and machine learning. Int J Pharm 2025; 673:125385. [PMID: 39999900 DOI: 10.1016/j.ijpharm.2025.125385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Psoriasis is a persistent inflammatory skin disorder characterized by hyper-proliferation and abnormal epidermal differentiation. Conventional treatments such as; topical therapies, phototherapy, systemic immune modulators, and biologics aim to relieve symptoms and improve patient quality of life. However, challenges like adverse effects, high costs, and individual response variability persist. Thus, the need for novel anti-psoriatic drugs has led to the exploration of drug repurposing, an approach that identifies new applications for existing drugs. This method is in its early stages but has gained popularity across both public and private sectors. Furthermore, artificial intelligence (AI) integration is revolutionizing the healthcare industry by enhancing efficiency, delivery, and personalization. Machine learning and deep learning algorithms have significantly impacted drug discovery, repurposing, and designing new molecules or drug delivery carriers. Nanotechnology, in addition to AI, plays a pivotal role in targeting repurposed drugs via the topical route with suitable nanocarriers. This method overcomes challenges associated with oral delivery, such as systemic toxicities, slow onset of action, first-pass effect, and poor bioavailability. This review addresses the practice of repurposing existing drugs for managing psoriasis, discussing the challenges of conventional therapy and how the incorporation of nanotechnology and AI can overcome these hurdles, facilitating the discovery of anti-psoriatic drugs and presenting promising strategies for novel therapeutics. Additionally, it discusses the general benefits of drug repurposing compared to de novo drug development and the potential drawbacks of drug repurposing.
Collapse
Affiliation(s)
- Mahmoud Tarek
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Bondi A, Pula W, Benedusi M, Trinchera G, Baldisserotto A, Manfredini S, Ortore MG, Pepe A, Mariani P, Stuart MCA, Valacchi G, Esposito E. Gossypin-Loaded Ethosome Gel for Cutaneous Administration: A Preliminary Study on Melanoma Cells. Antioxidants (Basel) 2025; 14:186. [PMID: 40002373 PMCID: PMC11852004 DOI: 10.3390/antiox14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
A preformulative study was conducted to produce and characterize ethosomes for the transdermal delivery of gossypin. This plant-derived compound possesses many pharmacological properties, including antitumoral potential. Ethosome dispersions were designed as transdermal delivery systems for gossypin, employing two different production procedures. The evaluation of vesicle size distribution by photon correlation spectroscopy, morphology by cryogenic transmission electron microscopy, and gossypin entrapment capacity, as well as in vitro release and permeation by vertical diffusion cells, enabled us to select a production strategy based on the injection of a phosphatidylcholine ethanolic solution in water. Indeed, vesicles prepared by this method were almost unilamellar and measured roughly 150 nm mean diameter while displaying an entrapment capacity higher than 94%. Moreover, vesicles prepared by the ethanol injection method enabled us to control gossypin release and to improve its permeation with respect to the solution of the drug. To obtain semi-solid forms suitable for cutaneous gossypin administration, ethosome dispersions were thickened with 0.5% w/w xanthan gum, selected by a spreadability test. These ethosome gels were then further characterized by small- and wide-angle X-ray scattering, while their antioxidant activity was demonstrated in vitro by a radical scavenging assay. Finally, in vitro biological studies were conducted on A375 melanoma cell lines. Namely, wound healing and cell migration assays confirmed the potential antitumoral effect of gossypin, especially when loaded in the selected ethosomal gel. The promising results suggest further investigation of the potential of gossypin-loaded ethosomal gel in the treatment of melanoma.
Collapse
Affiliation(s)
- Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (W.P.)
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (W.P.)
| | - Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Giulia Trinchera
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy;
| | - Anna Baldisserotto
- Department of Life Science and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (S.M.)
| | - Stefano Manfredini
- Department of Life Science and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (S.M.)
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, I-60131 Ancona, Italy; (M.G.O.); (A.P.); (P.M.)
| | - Alessia Pepe
- Department of Life and Environmental Sciences, Marche Polytechnic University, I-60131 Ancona, Italy; (M.G.O.); (A.P.); (P.M.)
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Marche Polytechnic University, I-60131 Ancona, Italy; (M.G.O.); (A.P.); (P.M.)
| | - Marc C. A. Stuart
- Facility Manager Electron Microscopy, University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy;
- Animal Science Department, Plants for Human Health Institute, NC State University, NC Research Campus, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (W.P.)
| |
Collapse
|
3
|
Hallan SS, Ferrara F, Cortesi R, Sguizzato M. Potential of the Nano-Encapsulation of Antioxidant Molecules in Wound Healing Applications: An Innovative Strategy to Enhance the Bio-Profile. Molecules 2025; 30:641. [PMID: 39942745 PMCID: PMC11820390 DOI: 10.3390/molecules30030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Naturally available antioxidants offer remarkable medicinal applications in wound healing. However, the encapsulation of these phytoactive moieties into suitable nano-scale drug delivery systems has always been challenging due to their inherent characteristics, such as low molecular weight, poor aqueous solubility, and inadequate skin permeability. Here, we provide a systematic review focusing on the major obstacles hindering the development of various lipid and polymer-based drug transporters to carry these cargos to the targeted site. Additionally, this review covers the possibility of combining the effects of a polymer and a lipid within one system, which could increase the skin permeability threshold. Moreover, the lack of suitable physical characterization techniques and the challenges associated with scaling up the progression of these nano-carriers limit their utility in biomedical applications. In this context, consistent progressive approaches for addressing these shortcomings are introduced, and their prospects are discussed in detail.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| |
Collapse
|
4
|
Qin D, Cui Y, Zheng M, Yang Z, Wang X. Preparation of Ethosome Gel with Total Flavonoids from Vernonia anthelmintica (L.) Willd. for the Treatment of Vitiligo. Gels 2025; 11:73. [PMID: 39852044 PMCID: PMC11764766 DOI: 10.3390/gels11010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Vernonia anthelmintica (L.) Willd. is a traditional medicinal herb in Chinese medicine, extensively used by various ethnic groups due to the numerous advantages derived from its total flavonoids. These benefits encompass anti-inflammatory and antioxidant effects, and the promotion of melanin production, showcasing its significant efficacy in addressing vitiligo. To improve transdermal absorption and enhance the antioxidant effectiveness of the treatment, ethosome containing total flavonoids were prepared utilizing the ultrasound injection technique. The resulting ethosome was then carefully mixed with 0.7% Carbomer 934 gel in equal parts, yielding a gel concentration of 0.302 mg/g. This formulation produced small, consistent ethosome that exhibited high encapsulation efficiency and notable stability. In vitro analyses demonstrated sustained release characteristics of the gel and considerable therapeutic effectiveness against vitiligo resulting from hydroquinone exposure. Histological examinations performed through hematoxylin and eosin (H&E) staining of mouse skin revealed increased melanin production and increased activities of tyrosinase (TYR), cholinesterase (CHE), and mouse monoamine oxidase (MAO), while levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were reduced. These findings underscore the promising effectiveness of this treatment strategy and validate the efficacy of the dosage form.
Collapse
|
5
|
Nabila F, Islam R, Yamin L, Yoshirou K, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M. Transdermal Insulin Delivery Using Ionic Liquid-Mediated Nanovesicles for Diabetes Treatment. ACS Biomater Sci Eng 2025; 11:402-414. [PMID: 39686755 PMCID: PMC11808643 DOI: 10.1021/acsbiomaterials.4c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Transdermal insulin delivery is a promising method for diabetes management, providing the potential for controlled, sustained release and prolonged insulin effectiveness. However, the large molecular weight of insulin hinders its passive absorption through the stratum corneum (SC) of the skin, and high doses of insulin are required, which limits the commercial viability. We developed ethosome (ET) and trans-ethosome (TET) nanovesicle formulations containing a biocompatible lipid-based ionic liquid, [EDMPC][Lin], dissolved in 35% ethanol. TET formulations were obtained by adding isopropyl myristate (IPM), Tween-80, or Span-20 as surfactants to ET formulations. Dynamic light scattering, ζ-potential, transmission electron microscopy, and confocal laser scanning microscopy studies revealed that the nanovesicles had a stable particle size. The formulations remained stable at 4 °C for more than 3 months. ET and TET formulations containing IPM (TET1) significantly (p < 0.0001) enhanced the transdermal penetration of FITC-tagged insulin (FITC-Ins) in both mouse and pig skin, compared with that of the control FITC-Ins solution and other TET formulations, by altering the molecular structure of the SC layer. These nanovesicles were found to be biocompatible and nonirritants (cell viability >80%) in the in vitro and in vivo studies on three-dimensional (3D) artificial human skin and a diabetic mouse model, respectively. The ET and TET1 formulations were applied to the skin of diabetic mice at an insulin dosage of 30 IU/kg. The nanovesicle formulations significantly reduced blood glucose levels (BGLs) compared with the initial high BGL value (>150 mg/dL). The nanovesicle-treated mice maintained low BGLs for over 15 h, as opposed to only 2 h in the injection group. The ET and TET1 formulations reduced the BGLs by 62 and 34%, respectively, of the initial value. These ET and TET1 formulations have a high potential for use in commercial transdermal insulin patches, enhancing comfort and adherence in diabetes treatment.
Collapse
Affiliation(s)
- Fahmida
Habib Nabila
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rashedul Islam
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Li Yamin
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kawaguchi Yoshirou
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced
Transdermal Drug Delivery System Center, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced
Transdermal Drug Delivery System Center, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced
Transdermal Drug Delivery System Center, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Ahmad S, d'Avanzo N, Mancuso A, Barone A, Cristiano MC, Carresi C, Mollace V, Celia C, Fresta M, Paolino D. Skin Tolerability of Oleic Acid Based Nanovesicles Designed for the Improvement of Icariin and Naproxen Percutaneous Permeation. ACS APPLIED BIO MATERIALS 2024; 7:7852-7860. [PMID: 38608313 DOI: 10.1021/acsabm.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Deformable nanovesicles have a crucial role in topical drug delivery through the skin, due to their capability to pass intact the stratum corneum and epidermis (SCE) and significantly increase the efficacy and accumulation of payloads in the deeper layers of the skin. Namely, lipid-based ultradeformable nanovesicles are versatile and load bioactive molecules with different physicochemical properties. For this reason, this study aims to make oleic acid based nanovesicles (oleosomes) for the codelivery of icariin and sodium naproxen and increase their permeation through the skin. Oleosomes have suitable physicochemical properties and long-term stability for a potential dermal or transdermal application. The inclusion of oleic acid in the lipid bilayer increases 3-fold the deformable properties of oleosomes compared to conventional liposomes and significantly improves the percutaneous permeation of icariin and sodium naproxen through the human SCE membranes compared to hydroalcoholic solutions of both drugs. The tolerability studies on human volunteers demonstrate that oleosomes are safer and speed up the recovery of transepidermal water loss (TEWL) baselines compared to saline solution. These results highlight promising properties of icariin/sodium naproxen coloaded oleosomes for the treatment of skin disorders and suggest the potential future applications of these nanovesicles for further in vivo experiments.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Nicola d'Avanzo
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonella Barone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- UdA-TechLab, Research Center, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Tian M, Zhang Z, Wang L, Lei F, Wang Z, Ma X, Gong Z, Wang J, He J, Wang D. Preparation of Paeonol Ethosomes by Microfluidic Technology Combined with Gaussians and Evaluation of Biological Activity by Zebrafish. ACS OMEGA 2024; 9:44425-44435. [PMID: 39524614 PMCID: PMC11541796 DOI: 10.1021/acsomega.4c05830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Paeonol, a monoterpene glycoside compound, has extensive pharmacological activities. However, its applications are restricted by poor water solubility and low bioavailability. In this study, paeonol ethosomes (PAE-ethosomes) were successfully prepared with a microfluidic method by optimizing the single factors and RSM test. The enhanced PAE-ethosomes were assessed using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vesicle size (VS), zeta potential (ZP), and polydispersity index (PDI). Density functional theory analysis was employed to verify the molecular interaction. The optimized RSM conditions were a phospholipid concentration of 6 mg/mL, a cholesterol concentration of 1 mg/mL, and a total flow rate of 600 μL/min with a presumed value of 60.3% and confirmation results of 61.2 ± 0.3%. The prepared PAE-ethosomes showed better storage stability and a slow-release effect. The Q n of PAE-ethosomes rose from 167.0 ± 15.8 to 272.0 ± 16.4 μg/cm2 after 24 h, which was substantially greater than that from a 25% hydroethanolic solution of paeonol, according to in vitro skin retention and transdermal absorption. The Q s of PAE-ethosomes in the skin increased by 225% with 265.5 ± 15.4 vs 81.8 ± 8.2 μg/cm2, compared with 25% hydroethanolic solution of paeonol. Molecular interaction between paeonol and lecithin by Gaussians showed that the paeonol compound may have a higher probability of spreading in the hydrophilic phosphate group ("head") position for the PAE-ethosomes. The Tg (Lyz: EGFP) transgenic zebrafish results showed that PAE-ethosomes had better anti-inflammatory effects than paeonol. The microfluidic approach was efficient with good characteristics in physics and pharmacology with the potential in pharmaceutical use.
Collapse
Affiliation(s)
- Mingfa Tian
- School
of Pharmaceutical Sciences and Qingdao Academy of Chinese Medical
Sciences, Shandong University of Traditional
Chinese Medicine, Jinan 250355, China
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Zhiqi Zhang
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Li Wang
- Jinan
Vocational College of Engineering Department: Youth Leagure Committee, Jinan 250200, China
| | - Futing Lei
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Zheng Wang
- Department
of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
- Department
of Reproductive Medicine, The Affiliated
Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xianzheng Ma
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Zhengfu Gong
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Jianchun Wang
- Shandong
Jinte Safety Technology Co., Ltd., Jinan 250102, China
- Shandong
Giant E-Tech Co., Ltd., Jinan 250102, China
| | - Jixiang He
- School
of Pharmaceutical Sciences and Qingdao Academy of Chinese Medical
Sciences, Shandong University of Traditional
Chinese Medicine, Jinan 250355, China
| | - Daijie Wang
- School
of Pharmaceutical Sciences and Qingdao Academy of Chinese Medical
Sciences, Shandong University of Traditional
Chinese Medicine, Jinan 250355, China
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| |
Collapse
|
8
|
Yang Y, Zhang X, Yang Y, Gao P, Fan W, Zheng T, Yang W, Tang Y, Cai K. A two-pronged approach to inhibit ferroptosis of MSCs caused by the iron overload in postmenopausal osteoporosis and promote osseointegration of titanium implant. Bioact Mater 2024; 41:336-354. [PMID: 39161794 PMCID: PMC11331706 DOI: 10.1016/j.bioactmat.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent condition among elderly women. After menopause, women exhibit decreased iron excretion, which is prone to osteoporosis. To design a specific titanium implant for PMOP, we first analyze miRNAs and DNA characteristics of postmenopausal patients with and without osteoporosis. The results indicate that iron overload disrupts iron homeostasis in the pathogenesis of PMOP. Further experiments confirm that iron overload can cause lipid peroxidation and ferroptosis of MSCs, thus breaking bone homeostasis. Based on the findings above, we have designed a novel Ti implant coated with nanospheres of caffeic acid (CA) and deferoxamine (DFO). CA can bind on the Ti surface through the two adjacent phenolic hydroxyls and polymerize into polycaffeic acid (PCA) dimer, as well as the PCA nanospheres with the repetitive 1,4-benzodioxan units. DFO was grafted with PCA through borate ester bonds. The experimental results showed that modified Ti can inhibit the ferroptosis of MSCs in the pathological environment of PMOP and promote osseointegration in two main ways. Firstly, DFO was released under high oxidative stress, chelating with excess iron and decreasing the labile iron pool in MSCs. Meanwhile, CA and DFO activated the KEAP1/NRF2/HMOX1 pathway in MSCs and reduced the level of intracellular lipid peroxidation. So, the ferroptosis of MSCs is inhibited by promoting the SLC7A11/GSH/GPX4 pathway. Furthermore, the remained CA coating on the Ti surface could reduce the extracellular oxidative stress and glutathione level. This study offers a novel inspiration for the specific design of Ti implants in the treatment of PMOP.
Collapse
Affiliation(s)
- Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xianhui Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wuzhe Fan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tao Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yu Tang
- Orthopedics Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
9
|
Wang P, Hong S, Cao C, Guo S, Wang C, Chen X, Wang X, Song P, Li N, Xu R. Ethosomes-mediated tryptanthrin delivery as efficient anti-psoriatic nanotherapy by enhancing topical drug absorption and lipid homeostasis. J Nanobiotechnology 2024; 22:584. [PMID: 39334378 PMCID: PMC11438247 DOI: 10.1186/s12951-024-02860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Psoriasis is a chronic, relapsing, and refractory immune-mediated skin disease with the etiology and pharmaceutical targets remaining unsatisfactorily addressed. Topical herbal-derived compounds, such as tryptanthrin (Tryp), have been considered as an alternative therapy for psoriasis due to their lower costs and fewer side effects compared to other therapies. However, the effectiveness of topically administered drugs is substantially limited by the thickened pathological skin barrier and the low bioavailability of drugs in the deeper layers of the lesion. Ethosomes, being a novel phospholipid-based vesicle system with high content of ethanol, have been implicated in enhancing topical drug absorption and restoring psoriatic lesions. In this study, taking advantages of ethosomes as a soft and malleable drug carrier, we constructed the Tryp-loaded ethosome (Tryp-ES) through a one-step microfluidics-based technique. The optimal formulation of Tryp-ES was achieved by adding amino-acid-derived surfactant sodium lauroyl glutamate, and Tryp-ES exhibited homogeneous particle size and favorable stability at room temperature. In vitro evaluations showed that Tryp of Tryp-ES could be easily internalized into cells and accumulated in cell nuclei, hence inhibited the abnormally proliferated keratinocytes by inducing apoptosis. In vivo and in vitro assessment using psoritic skin of mice revealed that Tryp-ES had preferred skin retention and permeation of loaded drugs within the initial 1 h of topical administration, which could be attributed to transient disintegrations of cell membranes by ethosomes, thus improved cellular fluidity and permeability. Notably, a synergistic effect of ethosomes and Tryp was found in psoriatic mice. Tryp-ES-treated mice showed substantially ameliorated symptoms of psoriasis and reduced pathological alterations due to hyperplasia, inflammation and angiogenesis, without detectable local or systemic toxicities. Interestingly, lipidomics analysis confirmed that the supplementation of phospholipids, as in the form of ethosome vehicles, was an alterantive strategy to relieve psoriatic pathologies. Taken together, this study provides a novel impact for ethosomal topical delivery of Tryp and underlines their potential as an effective therapy for the management of psoriasis.
Collapse
Affiliation(s)
- Pengyu Wang
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shihao Hong
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Can Cao
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shijie Guo
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen Wang
- Central Instrument Facility, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xi Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinnan Wang
- Central Instrument Facility, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
10
|
Cortesi R, Sguizzato M, Ferrara F. Lipid-based nanosystems for wound healing. Expert Opin Drug Deliv 2024; 21:1191-1211. [PMID: 39172249 DOI: 10.1080/17425247.2024.2391473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Wounds, resulting from traumas, surgery, burns or diabetes, are important medical problems due to the complexity of wound healing process regarding healing times and healthcare costs. Nanosystems have emerged as promising candidates in this field thank to their properties and versatile applications in drugs delivery. AREAS COVERED Lipid-based nanosystems (LBN) are described for wound treatment, highlighting their different behaviors when interacting with the cutaneous tissue. The role of nanosystems in delivering mostly natural compounds on skin as well as the technological and engineering strategies to increase their efficiency in wound healing effect are reviewed. Finally, in vitro, ex-vivo and in vivo studies are reported. EXPERT OPINION LBN have shown promise in addressing the challenges of wound healing as they can improve the stability of drugs used in wound therapy, leading to higher efficacy and fewer adverse effects as compared to traditional formulations. LBNs being involved in the inflammatory and proliferation stages of the wound healing process, enable the modification of wound healing through multiple ways. In addition, the use of new technologies, including 3D bioprinting and photobiomodulation, may lead to potential breakthroughs in wound healing. This would provide clinicians with more potent forms of therapy for wound healing.
Collapse
Affiliation(s)
- Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
- Biotechnology InterUniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
- Biotechnology InterUniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (Docpas), University of Ferrara, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Mazzotta E, Chieffallo M, Muzzalupo R, Spingola M, Caputo P, Romeo M, Ioele G. Formulation of Polymeric Micelles to Increase the Solubility and Photostability of Caffeic Acid. Molecules 2024; 29:3329. [PMID: 39064907 PMCID: PMC11279489 DOI: 10.3390/molecules29143329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeic acid (CA), a hydrophobic polyphenol with various pharmacological activities, exhibits a low aqueous solubility and sensitivity to light. In order to improve its chemical properties and overcome the limits in its application, the compound was loaded in P123 micelles (MCs) prepared using two polymer concentrations (10 and 20% w/w, MC10 and MC20). The micelles were characterised in terms of the size distribution, zeta potential, drug encapsulation efficiency, rheology, and cumulative drug release. Micellar formulations exhibited sizes in the range of 11.70 and 17.70 nm and a good polydispersion, indicating the formation of relatively small-sized micelles, which is favourable for drug delivery applications. Additionally, the stability and antioxidant profiles of the free CA and the CA loaded in micelles were studied. The results obtained on the free CA showed the formation of photodegradation products endowed with higher DPPH scavenging activity with respect to the pure compound. Instead, it was found that the incorporation of CA into the micelles significantly increased its solubility and decreased the photodegradation rate. Overall, the results indicate the successful formation of P123 micelles loaded with CA, with promising characteristics such as a small size, good encapsulation efficiency, sustained release profile, and improved light stability. These findings suggest the potentiality of these micelles as a delivery system for CA, thus enhancing its bioavailability.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.C.); (M.S.); (M.R.); (G.I.)
| | - Martina Chieffallo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.C.); (M.S.); (M.R.); (G.I.)
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.C.); (M.S.); (M.R.); (G.I.)
| | - Miriana Spingola
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.C.); (M.S.); (M.R.); (G.I.)
| | - Paolino Caputo
- Department of Chemistry and Chemical Technologies, Cubo 14/D, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy;
| | - Martina Romeo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.C.); (M.S.); (M.R.); (G.I.)
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.C.); (M.S.); (M.R.); (G.I.)
| |
Collapse
|
12
|
Esposito E, Pecorelli A, Ferrara F, Lila MA, Valacchi G. Feeding the Body Through the Skin: Ethosomes and Transethosomes as a New Topical Delivery System for Bioactive Compounds. Annu Rev Food Sci Technol 2024; 15:53-78. [PMID: 38941493 DOI: 10.1146/annurev-food-072023-034528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Because the feeding of our body through the oral route can be associated with many drawbacks due to the degradation of natural molecules during transit in the gastrointestinal tract, a transdermal delivery strategy, usually employed in the pharmaceutical field, can present an effective alternative for delivery of bioactives and nutrients from foods. In this review, the chance to feed the body with nutritive and bioactive molecules from food through transdermal administration is discussed. Various nanotechnological devices employed for topical and transdermal delivery of bioactive compounds are described. In addition, mechanisms underlying their potential use in the delivery of nutritive molecules, as well as their capability to efficaciously reach the dermis and promote systemic distribution, are detailed.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Department of Animal Science, North Carolina State University, Kannapolis, North Carolina, USA;
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
13
|
Yasser M, El Naggar EE, Elfar N, Teaima MH, El-Nabarawi MA, Elhabal SF. Formulation, optimization and evaluation of ocular gel containing nebivolol Hcl-loaded ultradeformable spanlastics nanovesicles: In vitro and in vivo studies. Int J Pharm X 2024; 7:100228. [PMID: 38317829 PMCID: PMC10839649 DOI: 10.1016/j.ijpx.2023.100228] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
The study aims to improve the ocular delivery of Nebivolol HCL (NBV) belonging to the Biopharmaceutics classification system (BCSII) by using spanlastic nanovesicles (SNVs) for ophthalmic delivery and incorporating them into hydroxypropyl methylcellulose gel with ketorolac tromethamine (KET) as an anti-inflammatory to improve glaucoma complications like Conjunctivitis. SNVs were prepared by ethanol injection technique using span (60) as a surfactant and labrasol as an edge activator (EA). The impact of formulation factors on SNVs properties was investigated using a Box-Behnken design. In vitro evaluations showed that the formulations (F1, F4, and F14), containing Span 60 and labrasol as EA (25%, 50%, and 25%), exhibited high EE% with low PS and high ZP and DI. Additionally, 61.72 ± 0.77%, 58.97 ± 1.44%, and 56.20 ± 2.32% of the NBV amount were released from F1, F4, and F14 after 5 h, compared to 93.94 ± 1.21% released from drug suspension. The selected formula (G1), containing F1 in combination with KET and 2% w/w HPMC, exhibited 76.36 ± 0.90% drug release after 12 h. Ex vivo Confocal laser scanning revealed a high penetration of NBV-SNVs gel that ascertained the results of the in-vitro study. In vivo studies showed a significant decrease in glaucoma compared to drug suspension, and histopathological studies showed improvement in glaucomatous eye retinal atrophy. G1 is considered a promising approach to improving ocular permeability, absorption, and anti-inflammatory activity, providing a safer alternative to current regimens.
Collapse
Affiliation(s)
- Mohamed Yasser
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutical technology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Eman E. El Naggar
- Department of Pharmaceutical technology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nehal Elfar
- Department of Pharmaceutical technology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| |
Collapse
|
14
|
Hameed H, Faheem S, Khan MA, Hameed A, Ereej N, Ihsan H. Ethosomes: a potential nanovesicular carrier to enhancing the drug delivery against skin barriers. J Microencapsul 2024; 41:204-225. [PMID: 38456667 DOI: 10.1080/02652048.2024.2326085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Ethosomes, which are liposomes like structures, mainly composed primarily of ethanol, have attracted considerable attention due to their potential to enhance the drug permeation via skin. The article discusses the formulation and preparation methods of ethosomes, offering insights into the various factors that influence their size, shape, and stability. Moreover, it explores the techniques used to assess the physicochemical properties of ethosomes and their impact on drug delivery effectiveness. The article also elucidates the mechanism by which ethosomes enhance skin permeation, emphasising their ability to modify the lipid structure and fluidity of the stratum corneum. Additionally, the review investigates the applications of ethosomes in diverse drug delivery scenarios, including the delivery of small molecules, peptides, and phytoconstituents. It highlights the potential of ethosomes to improve drug bioavailability, extend drug release, and achieve targeted delivery to specific skin layers or underlying tissues.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck, Lubeck, Germany
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hafsa Ihsan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
15
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
16
|
Kothapalli P, Vasanthan M. Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: a comprehensive review. Ther Deliv 2024; 15:135-155. [PMID: 38214118 DOI: 10.4155/tde-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Bioactive compounds derived from plants have been investigated for treating various pathological conditions. However, the utilization of these compounds has challenges such as instability, low solubility and bioavailability. To overcome these challenges, the encapsulation of bioactive molecules with in a novel nano carrier system enabling effective delivery and clinical translation has become essential. Lipid-based nanocarriers provide versatile platforms for encapsulating and delivering bioactive compounds and overcome the challenges. These novel carriers can improve solubility, stability, improved drug retention and therapeutic efficacy of plant derived bioactive compounds. The current review evaluates the challenges in delivery of plant bioactives and highlights the potential of various lipid-based nano carriers designed to improve its therapeutic efficacy.
Collapse
Affiliation(s)
- Pavithra Kothapalli
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Tamilnadu, 603203, India
| |
Collapse
|
17
|
Abu-Huwaij R, Zidan AN. Unlocking the potential of cosmetic dermal delivery with ethosomes: A comprehensive review. J Cosmet Dermatol 2024; 23:17-26. [PMID: 37393573 DOI: 10.1111/jocd.15895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND In a world where hair loss, acne, and skin whitening are common concerns, ethosomes emerge as a captivating breakthrough in cosmetic drug delivery. METHOD This review provides a comprehensive overview of the ethosomal system and assesses its potential as an effective nanocarrier for delivering active ingredients to the skin. The focus is on exploring their applications in various pathologies, particularly skin disorders such as acne, hair loss, and skin pigmentation. RESULTS Ethosomes are a novel type of vesicular nanocarrier composed of high concentrations of ethanol (20-45%) and phospholipids. Their unique structure and composition make them an ideal choice for transporting active ingredients through the skin, offering targeted and effective treatment. The inclusion of ethanol in ethosomes' composition gives them distinctive properties, including flexibility, deformability, and stability, facilitating deep penetration into the skin and enhancing medication deposition. Moreover, ethosomes improved theoverall drug-loading capacity, and specificity of target treatment CONCLUSION: Ethosomes represent a unique and suitable approach for delivering active cosmetic ingredients in the treatment of hair loss, acne, and skin whitening, presenting a versatile alternative to traditional dermal delivery systems. Despite the challenges associated with their complex preparation and sensitivity to temperature and humidity, the remarkable potential benefits of ethosomes cannot be ignored. Further research is crucial to unlock their full potential, understand their limitations, and refine their formulations and administration methods. Ethosomes hold the promise of transforming the way we address these cosmetic concerns, offering an exciting glimpse into the future of advanced skincare solutions.
Collapse
|
18
|
Bin Jardan YA, Ahad A, Raish M, Al-Jenoobi FI. Preparation and Characterization of Transethosome Formulation for the Enhanced Delivery of Sinapic Acid. Pharmaceutics 2023; 15:2391. [PMID: 37896151 PMCID: PMC10609874 DOI: 10.3390/pharmaceutics15102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Sinapic acid (SA) is a bioactive phenolic acid; its diverse properties are its anti-inflammatory, antioxidant, anticancer, and antibacterial activities. The bioactive compound SA is poorly soluble in water. Our goal was to formulate SA-transethosomes using thin-film hydration. The prepared formulations were examined for various parameters. In addition, the optimized formulation was evaluated for surface morphology, in-vitro penetration studies across the Strat M®, and its antioxidant activity. The optimized formulation (F5) exhibited 74.36% entrapment efficacy. The vesicle size, zeta potential, and polydispersity index were found to be 111.67 nm, -7.253 mV, and 0.240, respectively. The surface morphology showed smooth and spherical vesicles of SA-transethosomes. In addition, the prepared SA-transethosomes exhibited enhanced antioxidant activity. The SA-transethosomes demonstrated considerably greater penetration across the Strat M® membrane during the study. The flux of SA and SA-transethosomes through the Strat M® membrane was 1.03 ± 0.07 µg/cm2/h and 2.93 ± 0.16 µg/cm2/h. The enhancement ratio of SA-transethosomes was 2.86 ± 0.35 compared to the control. The SA-transethosomes are flexible nano-sized vesicles and are able to penetrate the entrapped drug in a higher concentration. Hence, it was concluded that SA-transethosome-based approaches have the potential to be useful for accentuating the penetrability of SA across the skin.
Collapse
Affiliation(s)
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
19
|
Isopencu GO, Covaliu-Mierlă CI, Deleanu IM. From Plants to Wound Dressing and Transdermal Delivery of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2661. [PMID: 37514275 PMCID: PMC10386126 DOI: 10.3390/plants12142661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Transdermal delivery devices and wound dressing materials are constantly improved and upgraded with the aim of enhancing their beneficial effects, biocompatibility, biodegradability, and cost effectiveness. Therefore, researchers in the field have shown an increasing interest in using natural compounds as constituents for such systems. Plants, as an important source of so-called "natural products" with an enormous variety and structural diversity that still exceeds the capacity of present-day sciences to define or even discover them, have been part of medicine since ancient times. However, their benefits are just at the beginning of being fully exploited in modern dermal and transdermal delivery systems. Thus, plant-based primary compounds, with or without biological activity, contained in gums and mucilages, traditionally used as gelling and texturing agents in the food industry, are now being explored as valuable and cost-effective natural components in the biomedical field. Their biodegradability, biocompatibility, and non-toxicity compensate for local availability and compositional variations. Also, secondary metabolites, classified based on their chemical structure, are being intensively investigated for their wide pharmacological and toxicological effects. Their impact on medicine is highlighted in detail through the most recent reported studies. Innovative isolation and purification techniques, new drug delivery devices and systems, and advanced evaluation procedures are presented.
Collapse
Affiliation(s)
- Gabriela Olimpia Isopencu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| | - Cristina-Ileana Covaliu-Mierlă
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Iuliana-Mihaela Deleanu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| |
Collapse
|
20
|
Advances and trends in encapsulation of essential oils. Int J Pharm 2023; 635:122668. [PMID: 36754179 DOI: 10.1016/j.ijpharm.2023.122668] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
There is a huge concern regarding the potential carcinogenic and mutagenic risks associated with the usage of synthetic chemicals as preservatives in various consumer products such as food and pharmaceutical formulations. In this aspect, there is a need for the development of alternative natural preservatives to replace these synthetic chemicals. More recently, naturally occurring essential oils have emerged as popular ingredients owing to their unique characteristics like antioxidant and antimicrobial activity, to enrich and enhance the functional properties of consumer products. However, due to their high volatility and hydrophobicity, their functionality is lost and their incorporation in aqueous products is challenging. One of the promising strategies to overcome this challenge is encapsulation which involves the entrapment of the essential oil inside a biocompatible material for its controlled release and increased bioavailability. Also, the choice of encapsulation method depends on the component to be encapsulated and the shell material. In this review, encapsulation in various colloidal systems that facilitate the potential delivery of essential oils is discussed. The focus is on encapsulation techniques along with their advantages and disadvantages, encapsulation efficiency, and in vitro release studies.
Collapse
|
21
|
Wang C, Lu Q, Xiang Y, Yin Y, Li J, Liu Y, Wu X. Enhanced biocompatibility of silk sericin/caffeic acid nanoparticles by red blood cell membranes cloaking. Int J Biol Macromol 2023; 238:124133. [PMID: 36963548 DOI: 10.1016/j.ijbiomac.2023.124133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Caffeic acid (CA) is an antioxidant phenolic compound that enriched in coffee beans, however, its administration often restrains by the instability and low solubility. Nanoparticle encapsulation is an effective approach to improve the therapeutic activity of CA. For example, silk sericin (SS), a natural biomaterial finds applications in food, cosmetics and biomedical fields, is proved here to be an appropriate encapsulation agent for CA, and a SS/CA composite nanoparticle has been fabricated. To further improve the biocompatibility of SS/CA, a red blood cell membranes (RM) cloaking strategy is adopted. The as-formed SS/CA/RM preserves the antioxidant activity of CA, and shows satisfactory biocompatibility especially under high concentration. Hope this can provide a potential appropriative strategy to adjust the chemical stability of insoluble drugs and to improve their biocompatibility.
Collapse
Affiliation(s)
- Chunru Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingyang Lu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Xiang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yulan Yin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junyao Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yalu Liu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Daxue Road 269, Xuzhou 221002, China; Xuzhou First People's Hospital, Daxue Road 269, Xuzhou 221002, China.
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
22
|
Ethosomal Gel for Topical Administration of Dimethyl Fumarate in the Treatment of HSV-1 Infections. Int J Mol Sci 2023; 24:ijms24044133. [PMID: 36835541 PMCID: PMC9967198 DOI: 10.3390/ijms24044133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The infections caused by the HSV-1 virus induce lesions on the lips, mouth, face, and eye. In this study, an ethosome gel loaded with dimethyl fumarate was investigated as a possible approach to treat HSV-1 infections. A formulative study was conducted, evaluating the effect of drug concentration on size distribution and dimensional stability of ethosomes by photon correlation spectroscopy. Ethosome morphology was investigated by cryogenic transmission electron microscopy, while the interaction between dimethyl fumarate and vesicles, and the drug entrapment capacity were respectively evaluated by FTIR and HPLC. To favor the topical application of ethosomes on mucosa and skin, different semisolid forms, based on xanthan gum or poloxamer 407, were designed and compared for spreadability and leakage. Dimethyl fumarate release and diffusion kinetics were evaluated in vitro by Franz cells. The antiviral activity against HSV-1 was tested by plaque reduction assay in Vero and HRPE monolayer cells, while skin irritation effect was evaluated by patch test on 20 healthy volunteers. The lower drug concentration was selected, resulting in smaller and longer stable vesicles, mainly characterized by a multilamellar organization. Dimethyl fumarate entrapment in ethosome was 91% w/w, suggesting an almost total recovery of the drug in the lipid phase. Xanthan gum 0.5%, selected to thicken the ethosome dispersion, allowed to control drug release and diffusion. The antiviral effect of dimethyl fumarate loaded in ethosome gel was demonstrated by a reduction in viral growth both 1 h and 4 h post-infection. Moreover, the patch test demonstrated the safety of the ethosomal gel applied on the skin.
Collapse
|
23
|
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Dnyanesh Saindane
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Bhupendra G. Prajapati
- Dept. of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K.Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, India
| |
Collapse
|
24
|
Burdușel AC, Andronescu E. Lipid Nanoparticles and Liposomes for Bone Diseases Treatment. Biomedicines 2022; 10:biomedicines10123158. [PMID: 36551914 PMCID: PMC9775639 DOI: 10.3390/biomedicines10123158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Because of their outstanding biocompatibility, sufficient capacity to control drug release, and passive targeting capability, lipid nanoparticles are one of the world's most widely utilized drug delivery systems. However, numerous disadvantages limit the use of lipid nanoparticles in clinical settings, especially in bone regeneration, such as challenges in transporting, storing, and maintaining drug concentration in the local area. Scaffolds are frequently employed as implants to provide mechanical support to the damaged area or as diagnostic and imaging tools. On the other hand, unmodified scaffolds have limited powers in fostering tissue regeneration and curing illnesses. Liposomes offer a solid foundation for the long-term development of various commercial solutions for the effective drug delivery-assisted treatment of medical conditions. As drug delivery vehicles in medicine, adjuvants in vaccination, signal enhancers/carriers in medical diagnostics and analytical biochemistry, solubilizers for various ingredients as well as support matrices for various ingredients, and penetration enhancers in cosmetics are just a few of the industrial applications for liposomes. This review introduces and discusses the use of lipid nanoparticles and liposomes and the application of lipid nanoparticles and liposome systems based on different active substances in bone diseases.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
- Correspondence:
| |
Collapse
|
25
|
Ex Vivo Evaluation of Ethosomes and Transethosomes Applied on Human Skin: A Comparative Study. Int J Mol Sci 2022; 23:ijms232315112. [PMID: 36499432 PMCID: PMC9736248 DOI: 10.3390/ijms232315112] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, the transdermal fate of vesicular nanosystems was investigated. Particularly, ethosomes based on phosphatidylcholine 0.9% w/w and transethosomes based on phosphatidylcholine 0.9 or 2.7% w/w plus polysorbate 80 0.3% w/w as an edge activator were prepared and characterized. The vesicle mean size, morphology and deformability were influenced by both phosphatidylcholine and polysorbate 80. Indeed, the mean diameters of ethosome were around 200 nm, while transethosome's mean diameters were 146 or 350 nm in the case of phosphatidylcholine 0.9 or 2.7%, w/w, respectively. The highest deformability was achieved by transethosomes based on phosphatidylcholine 0.9%, w/w. The three types of vesicular nanosystems were applied on explanted human skin maintained in a bioreactor. Transmission electron microscopy demonstrated that all vesicles were able to enter the skin, keeping their structural integrity. Notably, the vesicle penetration capability was influenced by their physical-chemical features. Indeed, ethosomes reached keratinocytes and even the dermis, phosphatidylcholine 0.9% transethosomes were found in keratinocytes and phosphatidylcholine 2.7% transethosomes were found only in corneocytes of the outer layer. These findings open interesting perspectives for a differentiated application of these vesicles for transdermal drug delivery as a function of the cutaneous pathology to be addressed.
Collapse
|
26
|
Ferrara F, Benedusi M, Cervellati F, Sguizzato M, Montesi L, Bondi A, Drechsler M, Pula W, Valacchi G, Esposito E. Dimethyl Fumarate-Loaded Transethosomes: A Formulative Study and Preliminary Ex Vivo and In Vivo Evaluation. Int J Mol Sci 2022; 23:ijms23158756. [PMID: 35955900 PMCID: PMC9369351 DOI: 10.3390/ijms23158756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, transethosomes were investigated as potential delivery systems for dimethyl fumarate. A formulative study was performed investigating the effect of the composition of transethosomes on the morphology and size of vesicles, as well as drug entrapment capacity, using cryogenic transmission electron microscopy, photon correlation spectroscopy, and HPLC. The stability of vesicles was evaluated, both for size increase and capability to control the drug degradation. Drug release kinetics and permeability profiles were evaluated in vitro using Franz cells, associated with different synthetic membranes. The in vitro viability, as well as the capacity to improve wound healing, were evaluated in human keratinocytes. Transmission electron microscopy enabled the evaluation of transethosome uptake and intracellular fate. Based on the obtained results, a transethosome gel was further formulated for the cutaneous application of dimethyl fumarate, the safety of which was evaluated in vivo with a patch test. It was found that the phosphatidylcholine concentration affected vesicle size and lamellarity, influencing the capacity to control dimethyl fumarate’s chemical stability and release kinetics. Indeed, phosphatidylcholine 2.7% w/w led to multivesicular vesicles with 344 nm mean size, controlling the drug’s chemical stability for at least 90 days. Conversely, phosphatidylcholine 0.9% w/w resulted in 130 nm sized unilamellar vesicles, which maintained 55% of the drug over 3 months. These latest kinds of transethosomes were able to improve wound healing in vitro and were easily internalised by keratinocytes. The selected transethosome gel, loading 25 mg/mL dimethyl fumarate, was not irritant after cutaneous application under occlusion, suggesting its possible suitability in the treatment of wounds caused by diabetes mellitus or peripheral vascular diseases.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Franco Cervellati
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Leda Montesi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
27
|
A Narrative Review of the Potential Roles of Lipid-Based Vesicles (Vesiculosomes) in Burn Management. Sci Pharm 2022. [DOI: 10.3390/scipharm90030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burn injuries can have a lasting effect on people’s quality of life, as they negatively impact their physical and mental health. Then, they are likely to suffer psychological problems as a result. A serious problem is that deep burns are more challenging to treat due to their slow healing rate and susceptibility to microbial infection. Conventional topical medications used for burn treatment are sometimes ineffective because they cannot optimize their ability of transcutaneous absorption at the targeted site and accelerate healing. However, nanotechnology offers excellent prospects for developing current medical wound therapies and is capable of addressing issues such as low drug stability, water solubility, permeability, and bioavailability. The current review focuses on lipid-based vesicles (vesiculosomes) as an example of advanced delivery systems, showing their potential clinical applications in burn wound management. Vesiculosomes may help overcome impediments including the low bioavailability of active agents, offering the controlled release of drugs, increased drug stability, fewer side effects, and reduced dosing frequency, which will ultimately improve therapeutic efficacy and patient compliance. We discuss the application of various types of vesiculosomes such as liposomes, niosomes, ethosomes, cubosomes, transfersomes, and phytosomes in burn healing therapy, as these demonstrate superior skin penetration compared to conventional burn topical treatment. We also highlight their noteworthy uses in the formulation of natural products and discuss the current status as well as future perspectives of these carriers in burn management. Furthermore, the burn treatment options currently available in the market are also summarized.
Collapse
|
28
|
Jafari A, Daneshamouz S, Ghasemiyeh P, Mohammadi-Samani S. Ethosomes as dermal/transdermal drug delivery systems: applications, preparation and characterization. J Liposome Res 2022; 33:34-52. [PMID: 35695714 DOI: 10.1080/08982104.2022.2085742] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transdermal drug delivery systems (TDDSs) have gained substantial attention during the last decade. TDDS are versatile delivery systems in which active components are delivered to skin for local effects or systemic delivery of active pharmaceutical through the skin. Overcoming stratum corneum is the most challenging step of delivering drugs through the skin. Lipid-based vesicular delivery systems due to the capability of the delivery of both hydrophilic and hydrophobic drugs are becoming more popular during the recent years. Ethosomes are innovative, biocompatible, biodegradable and non-toxic form of lipid-based vesicles that efficiently enable to entrap drugs of various physicochemical properties. These are other forms of liposome which contain high amounts of ethanol in their structure that enabling ethosomes to efficiently penetrate through deeper layers of skin. Ethosomes have various compositions based on their type but are mainly composed of phospholipids, ethanol, water and the active components. Ethosomes are easily manufactured and they are superior compared to liposomes in terms of different aspects due to the presence of ethanol. The purpose of this review is to thoroughly focus on various aspects of ethosomes, including mechanism of penetration, advantages and disadvantages, characterisation and applications.
Collapse
Affiliation(s)
- Atoosa Jafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Daneshamouz
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Hallan SS, Amirian J, Brangule A, Bandere D. Lipid-Based Nano-Sized Cargos as a Promising Strategy in Bone Complications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1146. [PMID: 35407263 PMCID: PMC9000285 DOI: 10.3390/nano12071146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Bone metastasis has been considered the fatal phase of cancers, which remains incurable and to be a challenge due to the non-availability of the ideal treatment strategy. Unlike bone cancer, bone metastasis involves the spreading of the tumor cells to the bones from different origins. Bone metastasis generally originates from breast and prostate cancers. The possibility of bone metastasis is highly attributable to its physiological milieu susceptible to tumor growth. The treatment of bone-related diseases has multiple complications, including bone breakage, reduced quality of life, spinal cord or nerve compression, and pain. However, anticancer active agents have failed to maintain desired therapeutic concentrations at the target site; hence, uptake of the drug takes place at a non-target site responsible for the toxicity at the cellular level. Interestingly, lipid-based drug delivery systems have become the center of interest for researchers, thanks to their biocompatible and bio-mimetic nature. These systems possess a great potential to improve precise bone targeting without affecting healthy tissues. The lipid nano-sized systems are not only limited to delivering active agents but also genes/peptide sequences/siRNA, bisphosphonates, etc. Additionally, lipid coating of inorganic nanomaterials such as calcium phosphate is an effective approach against uncontrollable rapid precipitation resulting in reduced colloidal stability and dispersity. This review summarizes the numerous aspects, including development, design, possible applications, challenges, and future perspective of lipid nano-transporters, namely liposomes, exosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoparticulate gels to treat bone metastasis and induce bone regeneration. Additionally, the economic suitability of these systems has been discussed and different alternatives have been discussed. All in all, through this review we will try to understand how far nanomedicine is from clinical and industrial applications in bone metastasis.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Jhaleh Amirian
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (S.S.H.); (J.A.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| |
Collapse
|
30
|
Kandil SM, Soliman II, Diab HM, Bedair NI, Mahrous MH, Abdou EM. Magnesium ascorbyl phosphate vesicular carriers for topical delivery; preparation, in-vitro and ex-vivo evaluation, factorial optimization and clinical assessment in melasma patients. Drug Deliv 2022; 29:534-547. [PMID: 35156490 PMCID: PMC9040897 DOI: 10.1080/10717544.2022.2036872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ascorbic acid (vitamin C) is an antioxidant that is widely used in cosmetics in skincare products. Due to the excessive low stability of ascorbic acid in cosmetic formulations, the stabilized ascorbic acid derivative, magnesium ascorbyl phosphate (MAP) was formulated as vesicular carriers; ethosomes and niosomes. The aim was to deliver MAP at the intended site of action, the skin, for sufficient time with enhanced permeation to get an effective response. Ethosomes were formulated using a full 32 factorial design to study ethanol and phospholipid concentration effect on ethosomes properties. Niosomes were formulated using 23 factorial designs to study the effect of surfactant type, surfactant concentration and cholesterol concentration on niosomes properties. The prepared formulations were evaluated for their Entrapment efficiency, particle size, polydispersity index, zeta potential and % drug permeated. The optimized ethosomal and niosomal formulations were incorporated into carbopol gel and evaluated for their permeation, skin retention and stability. A comparative split-face clinical study was done between the ethosomal and niosomal formulations for melasma treatment using Antera 3 D® camera. The optimized ethosomal and niosomal gels showed comparable controlled permeation and higher skin retention over their ethosomes and niosomes formulations respectively. Magnesium ascorbyl phosphate ethosomal gel showed clinically and statistically significant melanin level decrease after one month while MAP niosomal gel showed clinically and statistically significant melanin level decrease after six months. A combination of MAP ethosomes and niosomes could be promising skincare formulations for melasma and hyperpigmentation short and long-term treatment.
Collapse
Affiliation(s)
- Soha M Kandil
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University of Technology and Information (MTI), Cairo, Egypt
| | - Iman I Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba M Diab
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shamas University, Cairo, Egypt
| | - Nermeen I Bedair
- Department of Dermatology, Andrology, Sexual Diseases and STDs, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Marwa H Mahrous
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University of Technology and Information (MTI), Cairo, Egypt
| | - Ebtsam M Abdou
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University of Technology and Information (MTI), Cairo, Egypt.,Department of Pharmaceutics, National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
31
|
Sicurella M, Sguizzato M, Mariani P, Pepe A, Baldisserotto A, Buzzi R, Huang N, Simelière F, Burholt S, Marconi P, Esposito E. Natural Polyphenol-Containing Gels against HSV-1 Infection: A Comparative Study. NANOMATERIALS 2022; 12:nano12020227. [PMID: 35055245 PMCID: PMC8780422 DOI: 10.3390/nano12020227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/04/2023]
Abstract
Herpes simplex virus type 1 infection commonly affects many people, causing perioral sores, as well as severe complications including encephalitis in immunocompromised patients. The main pharmacological approach involves synthetic antiviral drugs, among which acyclovir is the golden standard, often leading to resistant virus strains under long-term use. An alternative approach based on antiviral plant-derived compounds, such as quercetin and mangiferin, demonstrated an antiviral potential. In the present study, semisolid forms for cutaneous application of quercetin and mangiferin were designed and evaluated to treat HSV-1 infection. Phosphatidylcholine- and poloxamer-based gels were produced and characterized. Gel physical–chemical aspects were evaluated by rheological measurements and X-ray diffraction, evidencing the different thermoresponsive behaviors and supramolecular organizations of semisolid forms. Quercetin and mangiferin diffusion kinetics were compared in vitro by a Franz cell system, demonstrating the different gel efficacies to restrain the polyphenol diffusion. The capability of gels to control polyphenol antioxidant potential and stability was evaluated, indicating a higher stability and antioxidant activity in the case of quercetin loaded in poloxamer-based gel. Furthermore, a plaque reduction assay, conducted to compare the virucidal effect of quercetin and mangiferin loaded in gels against the HSV-1 KOS strain, demonstrated the suitability of poloxamer-based gel to prolong the polyphenol activity.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.)
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, I-60131 Ancona, Italy; (P.M.); (A.P.)
| | - Alessia Pepe
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, I-60131 Ancona, Italy; (P.M.); (A.P.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Nicolas Huang
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Fanny Simelière
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Sam Burholt
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.)
- Correspondence: (P.M.); (E.E.); Tel.: +39-0532-455230 (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.)
- Correspondence: (P.M.); (E.E.); Tel.: +39-0532-455230 (E.E.)
| |
Collapse
|
32
|
Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, di Fabrizio E. Lipid-Based Nanovesicular Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3391. [PMID: 34947740 PMCID: PMC8707227 DOI: 10.3390/nano11123391] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.
Collapse
|
33
|
Mude H, Maroju PA, Balapure A, Ganesan R, Ray Dutta J. Water-soluble caffeic acid-dopamine acid-base complex exhibits enhanced bactericidal, antioxidant, and anticancer properties. Food Chem 2021; 374:131830. [PMID: 34906806 DOI: 10.1016/j.foodchem.2021.131830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
Despite the highly potent biological characteristics, the poor water-solubility of caffeic acid (CA) limits its applications in various domains. Here, we present a facile approach, wherein CA has been treated with dopamine hydrochloride (Dopa.HCl) to obtain a water-soluble acid-base complex, which does not possess any covalent bond between the individual components and thus retains their nativity. Simple mixing of CA and Dopa.HCl did not provide water solubility to CA, but the complex became readily soluble in water when the mineral acid was scavenged using sodium bicarbonate. The obtained CA-Dopa complex had been characterized using FT-IR, 1H NMR, 13C NMR, 2D 1H-1H NOESY NMR, XPS, and DSC techniques. The complex was found to exhibit excellent bactericidal, antibiofilm, antioxidant, and anticancer properties in the physiologically relevant pH range of 5.5 to 7.5. The results have revealed the high potential of the simple acid-base complex of CA in diverse domains.
Collapse
Affiliation(s)
- Hemanjali Mude
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Pranay Amruth Maroju
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Aniket Balapure
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| |
Collapse
|
34
|
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2021; 611:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Transdermal administration has gained much attention due to the remarkable advantages such as patient compliance, drug escape from first-pass elimination, favorable pharmacokinetic profile and prolonged release properties. However, the major limitation of these systems is the limited skin penetration of the stratum corneum, the skin's most important barrier, which protects the body from the insertion of substances from the environment. Transdermal drug delivery systems are aiming to the disruption of the stratum corneum in order for the active pharmaceutical ingredients to enter successfully the circulation. Therefore, nanoparticles are holding a great promise because they can act as effective penetration enhancers due to their small size and other physicochemical properties that will be analyzed thoroughly in this report. Apart from the investigation of the physicochemical parameters, a comparison between the different types of nanoparticles will be performed. The complexity of skin anatomy and the unclear mechanisms of penetration should be taken into consideration to reach some realistic conclusions regarding the way that the described parameters affect the skin permeability. To the best of the authors knowledge, this is among the few reports on the literature describing the technology of transdermal delivery systems and how this technology affects the biological activity.
Collapse
Affiliation(s)
- Despoina Despotopoulou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
35
|
Gupta MK, Sansare V, Shrivastava B, Jadhav S, Gurav P. Comprehensive review on use of phospholipid based vesicles for phytoactive delivery. J Liposome Res 2021; 32:211-223. [PMID: 34727833 DOI: 10.1080/08982104.2021.1968430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Plant-derived phytoconstituents are well known for their therapeutic potential. It has been experimentally demonstrated that whole-plant extract or isolated phytoconstituents reveal various therapeutic potentials like hepatoprotective, antimicrobial, neuroprotective, antitumor, antioxidant, skin protectives, etc. Although these phytoconstituents have potential therapeutic benefits, their use is limited due to their poor bioavailability, stability in biological fluids, and authentication issues. These continue to be an open problem that affects the application of these valuable ancient herbal herbs in the effective treatment and management of various disease conditions. A potential solution to these difficult problems could be the loading of phytoactives in phospholipid-based vesicular systems. Phospholipid-based vesicles like liposomes, phytosomes, ethosomes as well as transfersomes were effectively utilized recently to solve drawbacks and for effective delivery of phytoactives. Several landmark studies observed better therapeutic efficacy of phytoactive loaded vesicles compared to conventional drug delivery. Thus phospholipid-based vesicles mediated phytoactive delivery is a recently developed promising and attractive strategy for better therapeutic control on disease conditions. The present short review highlights recent advances in herbal bioactive loaded phospholipid-based vesicles.
Collapse
Affiliation(s)
- Manish Kumar Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Vipul Sansare
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | | | - Santosh Jadhav
- Department of Pharmaceutical Chemistry, SVPM'S College of Pharmacy, Malegaon, India
| | - Prashant Gurav
- Department of Pharmaceutics, Indira Institute of Pharmacy, Sadavali, India
| |
Collapse
|
36
|
El-Hashemy HA. Design, formulation and optimization of topical ethosomes using full factorial design: in-vitro and ex-vivo characterization. J Liposome Res 2021; 32:74-82. [PMID: 34697998 DOI: 10.1080/08982104.2021.1955925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study aimed to develop lomefloxacin-loaded ethosomal vesicles intended to be applied topically for treating skin infections. Ethosomes were prepared using the cold method. The formulation variables were optimized using 22 factorial design and Design Expert® software for analyzing the data statistically and graphically using response surface plots. Phosphatidylcholine (X1) and ethanol (X2) were chosen as the independent variables, while the dependent variables comprised entrapment efficiency (Y1), vesicles size (Y2) and zeta potential (Y3). The optimized ethosomes were subsequently incorporated into Carbopol® 940 gel and characterized for rheological behaviour, in-vitro release, ex-vivo skin permeation and deposition. The ex-vivo permeation and skin deposition studies showed better results compared to drug solutions. In a nutshell, the ethosomal vesicles were found to be a promising carrier demonstrating enhanced topical delivery of lomefloxacin.
Collapse
Affiliation(s)
- Hadeer A El-Hashemy
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
37
|
Sicurella M, Sguizzato M, Cortesi R, Huang N, Simelière F, Montesi L, Marconi P, Esposito E. Mangiferin-Loaded Smart Gels for HSV-1 Treatment. Pharmaceutics 2021; 13:pharmaceutics13091323. [PMID: 34575399 PMCID: PMC8465222 DOI: 10.3390/pharmaceutics13091323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Infections due to HSV-1 affect many people all over the world. To counteract this pathology, usually characterized by perioral sores or by less frequent serious symptoms including keratitis, synthetic antiviral drugs are employed, such as acyclovir, often resulting in resistant viral strains under long-term use. Many plant-derived compounds, such as mangiferin and quercetin, have demonstrated antiviral potentials. In this study, smart semisolid forms based on phosphatidylcholine and Pluronic were investigated as delivery systems to administer mangiferin on skin and mucosae affected by HSV-1 infection. Particularly, lecithin organogels, Pluronic gel, and Pluronic lecithin organogels were formulated and characterized. After the selection of gel compositions, physical aspects, such as rheological behavior, spreadability, leakage, and adhesion were evaluated, suggesting a scarce suitability of the lecithin organogel for topical administration. Mangiferin was efficiently included in all type of gels. An in vitro study based on the Franz cell enabled us to find evidence of the gel capability to control drug diffusion, especially in the case of Pluronic organogel, while an in vivo study conducted on human volunteers demonstrated the safeness of all of the gels after cutaneous administration. Furthermore, a plaque reduction assay demonstrated the virucidal effect of mangiferin loaded in a Pluronic gel and a Pluronic lecithin organogel against the HSV-1 KOS strain.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
| | - Nicolas Huang
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Fanny Simelière
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Leda Montesi
- Cosmetology Center, University of Ferrara, I-44121 Ferrara, Italy;
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
- Correspondence: (P.M.); (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
- Correspondence: (P.M.); (E.E.)
| |
Collapse
|
38
|
Sguizzato M, Ferrara F, Mariani P, Pepe A, Cortesi R, Huang N, Simelière F, Boldrini P, Baldisserotto A, Valacchi G, Esposito E. "Plurethosome" as Vesicular System for Cutaneous Administration of Mangiferin: Formulative Study and 3D Skin Tissue Evaluation. Pharmaceutics 2021; 13:1124. [PMID: 34452085 PMCID: PMC8398752 DOI: 10.3390/pharmaceutics13081124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Human skin is dramatically exposed to toxic pollutants such as ozone. To counteract the skin disorders induced by the air pollution, natural antioxidants such as mangiferin could be employed. A formulative study for the development of vesicular systems for mangiferin based on phosphatidylcholine and the block copolymer pluronic is described. Plurethosomes were designed for mangiferin transdermal administration and compared to ethosome and transethosome. Particularly, the effect of vesicle composition was investigated on size distribution, inner and outer morphology by photon correlation spectroscopy, small angle X-ray diffraction, and transmission electron microscopy. The potential of selected formulations as vehicles for mangiferin was studied, evaluating encapsulation efficiency and in vitro diffusion parameters by Franz cells. The mangiferin antioxidant capacity was verified by the 2,2-diphenyl-1-picrylhydrazyl assay. Vesicle size spanned between 200 and 550 nm, being influenced by phosphatidylcholine concentration and by the presence of polysorbate or pluronic. The vesicle supramolecular structure was multilamellar in the case of ethosome or plurethosome and unilamellar in the case of transethosome. A linear diffusion of mangiferin in the case of ethosome and transethosomes and a biphasic profile in the case of plurethosomes indicated the capability of multilamellar vesicles to retain the drug more efficaciously than the unilamellar ones. The antioxidant and anti-inflammatory potential effect of mangiferin against pollutants was evaluated on 3D human skin models exposed to O3. The protective effect exerted by plurethosomes and transethosomes suggests their possible application to enhance the cutaneous antioxidant defense status.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (R.C.)
| | - Francesca Ferrara
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy;
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (P.M.); (A.P.)
| | - Alessia Pepe
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (P.M.); (A.P.)
| | - Rita Cortesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (R.C.)
| | - Nicolas Huang
- Institut Galien Paris-Saclay, CNRS, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Fanny Simelière
- Institut Galien Paris-Saclay, CNRS, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Paola Boldrini
- Center of Electron Microscopy, University of Ferrara, I-44121 Ferrara, Italy;
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy;
| | - Giuseppe Valacchi
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy;
- Animal Science Department, NC Research Campus, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Elisabetta Esposito
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (R.C.)
| |
Collapse
|
39
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
40
|
Ismail TA, Shehata TM, Mohamed DI, Elsewedy HS, Soliman WE. Quality by Design for Development, Optimization and Characterization of Brucine Ethosomal Gel for Skin Cancer Delivery. Molecules 2021; 26:molecules26113454. [PMID: 34200144 PMCID: PMC8201187 DOI: 10.3390/molecules26113454] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022] Open
Abstract
Natural products have been extensively used for treating a wide variety of disorders. In recent times, Brucine (BRU) as one of the natural medications extracted from seeds of nux vomica, was investigated for its anticancer activity. As far as we know, this is the first study on BRU anticancer activity against skin cancer. Thus, the rational of this work was implemented to develop, optimize and characterize the anticancer activity of BRU loaded ethosomal gel. Basically, thin film hydration method was used to formulate BRU ethosomal preparations, by means of Central composite design (CCD), which were operated to construct (32) factorial design. Two independent variables were designated (phospholipid percentage and ethanol percentage) with three responses (vesicular size, encapsulation efficiency and flux). Based on the desirability function, one formula was selected and incorporated into HPMC gel base to develop BRU loaded ethosomal gel. The fabricated gel was assessed for all physical characterization. In-vitro release investigation, ex-vivo permeation and MTT calorimetric assay were performed. BRU loaded ethosomal gel exhibited acceptable values for the characterization parameters which stand proper for topical application. In-vitro release investigation was efficiently prolonged for 6 h. The flux from BRU loaded ethosome was enhanced screening optimum SSTF value. Finally, in-vitro cytotoxicity study proved that BRU loaded ethosomal gel significantly improved the anticancer activity of the drug against A375 human melanoma cell lines. Substantially, the investigation proposed a strong motivation for further study of the lately developed BRU loaded ethosomal gel as a prospective therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Tamer A. Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf 36362, Saudi Arabia;
- Correspondence: ; Tel.: +966-56-478-7190
| | - Dalia I. Mohamed
- Department of Biochemistry, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig 44519, Egypt;
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf 36362, Saudi Arabia;
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf 36362, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
| |
Collapse
|
41
|
Formulative Study and Intracellular Fate Evaluation of Ethosomes and Transethosomes for Vitamin D3 Delivery. Int J Mol Sci 2021; 22:ijms22105341. [PMID: 34069489 PMCID: PMC8161393 DOI: 10.3390/ijms22105341] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
In this pilot study, ethosomes and transethosomes were investigated as potential delivery systems for cholecalciferol (vitamin D3), whose deficiency has been correlated to many disorders such as dermatological diseases, systemic infections, cancer and sarcopenia. A formulative study on the influence of pharmaceutically acceptable ionic and non-ionic surfactants allowed the preparation of different transethosomes. In vitro cytotoxicity was evaluated in different cell types representative of epithelial, connective and muscle tissue. Then, the selected nanocarriers were further investigated at light and transmission electron microscopy to evaluate their uptake and intracellular fate. Both ethosomes and transethosomes proven to have physicochemical properties optimal for transdermal penetration and efficient vitamin D3 loading; moreover, nanocarriers were easily internalized by all cell types, although they followed distinct intracellular fates: ethosomes persisted for long times inside the cytoplasm, without inducing subcellular alteration, while transethosomes underwent rapid degradation giving rise to an intracellular accumulation of lipids. These basic results provide a solid scientific background to in vivo investigations aimed at exploring the efficacy of vitamin D3 transdermal administration in different experimental and pathological conditions.
Collapse
|
42
|
Ethosomes and Transethosomes for Mangiferin Transdermal Delivery. Antioxidants (Basel) 2021; 10:antiox10050768. [PMID: 34066018 PMCID: PMC8150765 DOI: 10.3390/antiox10050768] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory activity, making it suitable for protection against cutaneous diseases. In this study ethosomes and transethosomes were designed as topical delivery systems for mangiferin. A preformulation study was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimensional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC. The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome and transethosome, transmission electron microscopy analyses were conducted, showing that both nanosystems were able to pass intact within the cells.
Collapse
|
43
|
Hallan SS, Sguizzato M, Esposito E, Cortesi R. Challenges in the Physical Characterization of Lipid Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13040549. [PMID: 33919859 PMCID: PMC8070758 DOI: 10.3390/pharmaceutics13040549] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nano-sized drug transporters have become an efficient approach with considerable commercial values. Nanomedicine is not only limited to drug delivery by means of different administration routes, such as intravenous, oral, transdermal, nasal, pulmonary, and more, but also has applications in a multitude of areas, such as a vaccine, antibacterial, diagnostics and imaging, and gene delivery. This review will focus on lipid nanosystems with a wide range of applications, taking into consideration their composition, properties, and physical parameters. However, designing suitable protocol for the physical evaluation of nanoparticles is still conflicting. The main obstacle is concerning the sensitivity, reproducibility, and reliability of the adopted methodology. Some important techniques are compared and discussed in this report. Particularly, a comparison between different techniques involved in (a) the morphologic characterization, such as Cryo-TEM, SEM, and X-ray; (b) the size measurement, such as dynamic light scattering, sedimentation field flow fractionation, and optical microscopy; and (c) surface properties, namely zeta potential measurement, is described. In addition, an amperometric tool in order to investigate antioxidant activity and the response of nanomaterials towards the skin membrane has been presented.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
44
|
Khan F, Bamunuarachchi NI, Tabassum N, Kim YM. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2979-3004. [PMID: 33656341 DOI: 10.1021/acs.jafc.0c07579] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Caffeic acid is a plant-derived compound that is classified as hydroxycinnamic acid which contains both phenolic and acrylic functional groups. Caffeic acid has been greatly employed as an alternative strategy to combat microbial pathogenesis and chronic infection induced by microbes such as bacteria, fungi, and viruses. Similarly, several derivatives of caffeic acid such as sugar esters, organic esters, glycosides, and amides have been chemically synthesized or naturally isolated as potential antimicrobial agents. To overcome the issue of water insolubility and poor stability, caffeic acid and its derivative have been utilized either in conjugation with other bioactive molecules or in nanoformulation. Besides, caffeic acid and its derivatives have also been applied in combination with antibiotics or photoirradiation to achieve a synergistic mode of action. The present review describes the antimicrobial roles of caffeic acid and its derivatives exploited either in free form or in combination or in nanoformulation to kill a diverse range of microbial pathogens along with their mode of action. The chemistry employed for the synthesis of the caffeic acid derivatives has been discussed in detail as well.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle 82200, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan 48513, South Korea
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
45
|
Hallan SS, Sguizzato M, Drechsler M, Mariani P, Montesi L, Cortesi R, Björklund S, Ruzgas T, Esposito E. The Potential of Caffeic Acid Lipid Nanoparticulate Systems for Skin Application: In Vitro Assays to Assess Delivery and Antioxidant Effect. NANOMATERIALS 2021; 11:nano11010171. [PMID: 33445433 PMCID: PMC7826983 DOI: 10.3390/nano11010171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
The object of this study is a comparison between solid lipid nanoparticles and ethosomes for caffeic acid delivery through the skin. Caffeic acid is a potent antioxidant molecule whose cutaneous administration is hampered by its low solubility and scarce stability. In order to improve its therapeutic potential, caffeic acid has been encapsulated within solid lipid nanoparticles and ethosomes. The effect of lipid matrix has been evaluated on the morphology and size distribution of solid lipid nanoparticles and ethosomes loaded with caffeic acid. Particularly, morphology has been investigated by cryogenic transmission electron microscopy and small angle X-ray scattering, while mean diameters have been evaluated by photon correlation spectroscopy. The antioxidant power has been evaluated by the 2,2-diphenyl-1-picrylhydrazyl methodology. The influence of the type of nanoparticulate system on caffeic acid diffusion has been evaluated by Franz cells associated to the nylon membrane, while to evaluate caffeic acid permeation through the skin, an amperometric study has been conducted, which was based on a porcine skin-covered oxygen electrode. This apparatus allows measuring the O2 concentration changes in the membrane induced by polyphenols and H2O2 reaction in the skin. The antioxidative reactions in the skin induced by caffeic acid administered by solid lipid nanoparticles or ethosomes have been evaluated. Franz cell results indicated that caffeic acid diffusion from ethosomes was 18-fold slower with respect to solid lipid nanoparticles. The amperometric method evidenced the transdermal delivery effect of ethosome, indicating an intense antioxidant activity of caffeic acid and a very low response in the case of SLN. Finally, an irritation patch test conducted on 20 human volunteers demonstrated that both ethosomes and solid lipid nanoparticles can be safely applied on the skin.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.)
- Biofilms—Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden;
| | - Maddalena Sguizzato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.)
| | - Markus Drechsler
- Bavarian Polymerinstitute “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy;
| | - Leda Montesi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy;
| | - Rita Cortesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.)
- Correspondence: (R.C.); (T.R.); (E.E.); Tel.: +39-0532-455259 (R.C.); +46-40-6657431 (T.R.); +39-0532-455230 (E.E.)
| | - Sebastian Björklund
- Biofilms—Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden;
| | - Tautgirdas Ruzgas
- Biofilms—Research Center for Biointerfaces, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden;
- Correspondence: (R.C.); (T.R.); (E.E.); Tel.: +39-0532-455259 (R.C.); +46-40-6657431 (T.R.); +39-0532-455230 (E.E.)
| | - Elisabetta Esposito
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.)
- Correspondence: (R.C.); (T.R.); (E.E.); Tel.: +39-0532-455259 (R.C.); +46-40-6657431 (T.R.); +39-0532-455230 (E.E.)
| |
Collapse
|