1
|
Lewandowski M, Carmina M, Knümann L, Sai M, Willems S, Kasch T, Pollinger J, Knapp S, Marschner JA, Chaikuad A, Merk D. Structure-Guided Design of a Highly Potent Partial RXR Agonist with Superior Physicochemical Properties. J Med Chem 2024; 67:2152-2164. [PMID: 38237049 DOI: 10.1021/acs.jmedchem.3c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Retinoid X receptors (RXRs, NR2B1-3) hold therapeutic potential in oncology, neurodegeneration, and metabolic diseases, but traditional RXR agonists mimicking the natural ligand 9-cis retinoic acid exhibit poor physicochemical properties, pharmacokinetics, and safety profiles. Improved RXR ligands are needed to exploit RXR modulation as a promising therapeutic concept in various indications beyond its current role in second-line cancer treatment. Here, we report the co-crystal structure of RXR in complex with a novel pyrimidine-based ligand and the structure-informed optimization of this scaffold to highly potent and highly soluble RXR agonists. Focused structure-activity relationship elucidation and rigidization resulted in a substantially optimized partial RXR agonist with low nanomolar potency, no cytotoxic activity, and very favorable physicochemical properties highlighting this promising scaffold for the development of next-generation RXR targeting drugs.
Collapse
Affiliation(s)
- Max Lewandowski
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Melania Carmina
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Loris Knümann
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Minh Sai
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sabine Willems
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Till Kasch
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
2
|
Adouvi G, Nawa F, Ballarotto M, Rüger LA, Knümann L, Kasch T, Arifi S, Schubert-Zsilavecz M, Willems S, Marschner JA, Pabel J, Merk D. Structural Fusion of Natural and Synthetic Ligand Features Boosts RXR Agonist Potency. J Med Chem 2023; 66:16762-16771. [PMID: 38064686 DOI: 10.1021/acs.jmedchem.3c01435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The retinoid X receptors (RXRs) are ligand-activated transcription factors involved in, for example, differentiation and apoptosis regulation. Currently used reference RXR agonists suffer from insufficient specificity and poor physicochemical properties, and improved tools are needed to capture the unexplored therapeutic potential of RXR. Endogenous vitamin A-derived RXR ligands and the natural product RXR agonist valerenic acid comprise acrylic acid residues with varying substitution patterns to engage the critical ionic contact with the binding site arginine. To mimic and exploit this natural ligand motif, we probed its structural fusion with synthetic RXR modulator scaffolds, which had profound effects on agonist activity and remarkably boosted potency of an oxaprozin-derived RXR agonist chemotype. Bioisosteric replacement of the acrylic acid to overcome its pan-assay interference compounds (PAINS) character enabled the development of a highly optimized RXR agonist chemical probe.
Collapse
Affiliation(s)
- Gustave Adouvi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Felix Nawa
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Marco Ballarotto
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Lorena Andrea Rüger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Loris Knümann
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Till Kasch
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | | | - Sabine Willems
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jörg Pabel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
3
|
Sofińska K, Batys P, Cernescu A, Ghosh D, Skirlińska-Nosek K, Barbasz J, Seweryn S, Wilkosz N, Riek R, Szymoński M, Lipiec E. Nanoscale insights into the local structural rearrangements of amyloid-β induced by bexarotene. NANOSCALE 2023; 15:14606-14614. [PMID: 37614107 DOI: 10.1039/d3nr01608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A better understanding of the abnormal protein aggregation and the effect of anti-aggregation agents on the fibrillation pathways and the secondary structure of aggregates can determine strategies for the early treatment of dementia. Herein, we present a combination of experimental and theoretical studies providing new insights into the influence of the anti-aggregation drug bexarotene on the secondary structure of individual amyloid-β aggregates and its primary aggregation. The molecular rearrangements and the spatial distribution of β-sheets within individual aggregates were monitored at the nanoscale with infrared nanospectroscopy. We observed that bexarotene limits the parallel β-sheets formation, known to be highly abundant in fibrils at later phases of the amyloid-β aggregation composed of in-register cross-β structure. Moreover, we applied molecular dynamics to provide molecular-level insights into the investigated system. Both theoretical and experimental results revealed that bexarotene slows down the protein aggregation process via steric effects, largely prohibiting the antiparallel to parallel β-sheet rearrangement. We also found that bexarotene interacts not only via the single hydrogen bond formation with the peptide backbone but also with the amino acid side residue via a hydrophobic effect. The studied model of the drug-amyloid-β interaction contributes to a better understanding of the inhibition mechanism of the amyloid-β aggregation by the small molecule drugs. However, our nanoscale findings need to meet in vivo research requiring different analytical approaches.
Collapse
Affiliation(s)
- Kamila Sofińska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | | | - Dhiman Ghosh
- ETH Zürich, Laboratory of Physical Chemistry, 8093 Zürich, Switzerland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Jakub Barbasz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Sara Seweryn
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Natalia Wilkosz
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Reymonta 19, 30-059 Krakow, Poland
| | - Roland Riek
- ETH Zürich, Laboratory of Physical Chemistry, 8093 Zürich, Switzerland
| | - Marek Szymoński
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| | - Ewelina Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| |
Collapse
|
4
|
Adouvi G, Isigkeit L, López-García Ú, Chaikuad A, Marschner JA, Schubert-Zsilavecz M, Merk D. Rational Design of a New RXR Agonist Scaffold Enabling Single-Subtype Preference for RXRα, RXRβ, and RXRγ. J Med Chem 2023; 66:333-344. [PMID: 36533416 DOI: 10.1021/acs.jmedchem.2c01266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The three retinoid X receptor subtypes (RXRα, RXRβ, RXRγ) exhibit critical regulatory roles in cell proliferation and differentiation, metabolism, and inflammation. Due to their importance in nuclear receptor signaling, RXRs are widely distributed and pan-RXR agonists cause adverse effects, but the three highly conserved RXR ligand binding sites render the development of subtype-selective ligands a major challenge. We have fused elements of known RXR ligands to obtain a new RXR agonist chemotype on which minor structural modifications enabled the development of tools with single-subtype preference for RXRα, RXRβ, and RXRγ. Molecular modeling indicated different binding conformations and interaction patterns with the RXR LBDs as factors of preferential binding. In a phenotypic adipocyte differentiation experiment, only the RXRα preferential tool enhanced the adipogenic effects of pioglitazone, suggesting this subtype as particularly relevant in adipogenesis and highlighting the set of subtype-preferential RXR agonist tools as suitable for functional cellular studies.
Collapse
Affiliation(s)
- Gustave Adouvi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Úrsula López-García
- Department of Pharmacy, Ludwig-Maximilians-Universität München,81377 Munich, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität München,81377 Munich, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München,81377 Munich, Germany
| |
Collapse
|
5
|
Wang Z, Xie Y, Yu M, Yang S, Lu Y, Du G. Recent Advances on the Biological Study of Pharmaceutical Cocrystals. AAPS PharmSciTech 2022; 23:303. [DOI: 10.1208/s12249-022-02451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
|
6
|
Insight into the Formation of Cocrystal and Salt of Tenoxicam from the Isomer and Conformation. Pharmaceutics 2022; 14:pharmaceutics14091968. [PMID: 36145717 PMCID: PMC9504695 DOI: 10.3390/pharmaceutics14091968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Tenoxicam (TNX) is a new non-steroidal anti-inflammatory drug that shows a superior anti-inflammatory effect and has the advantages of a long half-life period, a fast onset of action, a small dose, complete metabolism, and good tolerance. Some compounds often have tautomerism, and different tautomers exist in different crystalline forms. TNX is such a compound and has three tautomers. TNX always exists as the zwitterionic form in cocrystals. When the salt is formed, TNX exists in the enol form, which exhibits two conformations depending on whether a proton is gained or lost. Currently, the crystal structure of the keto form is not in the Cambridge Structural Database (CSD). Based on the analysis of existing crystal structures, we derived a simple rule for what form of TNX exists according to the pKa value of the cocrystal coformer (CCF) and carried out validation tests using three CCFs with different pKa values, including p-aminosalicylic acid (PAS), 3,5-dinitrobenzoic acid (DNB), and 2,6-dihydroxybenzoic acid (DHB). The molecular surface electrostatic potential (MEPS) was combined with the pKa rule to predict the interaction sites. Finally, two new cocrystals (TNX-PAS and TNX-DNB) and one salt (TNX-DHB) of TNX were obtained as expected. The differences between the cocrystals and salt were distinguished by X-ray diffraction, vibration spectra, thermal analysis, and dissolution measurements. To further understand the intermolecular interactions in these cocrystals and salt, the lattice energy and energy decomposition analysis (EDA) were used to explain them from the perspective of energy. The results suggest that the melting point of the CCF determines that of the cocrystal or salt, the solubility of the CCF itself plays an important role, and the improvement of the solubility after salt formation is not necessarily better than that of API or its cocrystals.
Collapse
|
7
|
A co-crystal berberine-ibuprofen improves obesity by inhibiting the protein kinases TBK1 and IKKɛ. Commun Biol 2022; 5:807. [PMID: 35962183 PMCID: PMC9374667 DOI: 10.1038/s42003-022-03776-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Berberine (BBR) exerts specific therapeutic effects on various diseases such as diabetes, obesity, and other inflammation-associated diseases. However, the low oral bioavailability (below 1%) of berberine due to its poor solubility and membrane permeability limits its clinical use. In this paper, we have prepared a 1:1 co-crystal berberine-ibuprofen (BJ) using drug salt metathesis and co-crystal technology. Pharmacokinetic studies demonstrate a 3-fold increase in vivo bioavailability of BJ compared to that of BBR, and BJ is more effective in treating obesity and its related metabolism in vitro and in vivo. We also find that BJ promotes mitochondrial biogenesis by inhibiting TBK1 and inducing AMP-activated protein kinase (AMPK) phosphorylation, and BJ increases adipocyte sensitivity to catecholamine by inhibiting IKKε. Together, our findings support that co-crystal BJ is likely to be an effective agent for treating obesity and its related metabolic diseases targeting TBK1 and IKKε.
Collapse
|
8
|
Singh L, Kaur L, Singh G, Dhawan RK, Kaur M, Kaur N, Singh P. Determination of Alteration in Micromeritic Properties of a Solid Dispersion: Brunauer-Emmett-Teller Based Adsorption and Other Structured Approaches. AAPS PharmSciTech 2022; 23:209. [PMID: 35902454 PMCID: PMC9333898 DOI: 10.1208/s12249-022-02367-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
The present study is focused on the use of solid dispersion technology to triumph over the solubility-related problems of bexarotene which is currently used for treating various types of cancer and has shown potential inhibitory action on COVID-19 main protease and human ACE2 receptors. It is based on comparison of green locust bean gum and synthetic poloxamer as polymers using extensive mechanistic methods to explore the mechanism behind solubility enhancement and to find suitable concentration of drug to polymer ratio to prepare porous 3rd generation solid dispersion. The prepared solid dispersions were characterized using different studies like X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), differential scanning calorimetry (DSC), and particle size analysis in order to determine the exact changes occurred in the product which are responsible for enhancing solubility profiles of an insoluble drug. The results showed different profiles for particle size, solubility, dissolution rate, porosity, BET, and Langmuir specific surface area of prepared solid dispersions by using different polymers. In addition to the comparison of polymers, the BET analysis deeply explored the changes occurred in all dispersions when the concentration of polymer was increased. The optimized solid dispersion prepared with MLBG using lyophilization technique showed reduced particle size of 745.7±4.4 nm, utmost solubility of 63.97%, pore size of 211.597 Å, BET and Langmuir specific surface area of 5.6413 m2/g and 8.2757 m2/g, respectively.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India
| | - Lakhvir Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India.
| | - Gurjeet Singh
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India
| | - R K Dhawan
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India
| | - Manjeet Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India
| | - Navdeep Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143001, India
| | - Prabhpreet Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143001, India
| |
Collapse
|
9
|
Cocrystals of Praziquantel with Phenolic Acids: Discovery, Characterization, and Evaluation. Molecules 2022; 27:molecules27062022. [PMID: 35335384 PMCID: PMC8956121 DOI: 10.3390/molecules27062022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Solvent-assisted grinding (SAG) and solution slow evaporation (SSE) methods are generally used for the preparation of cocrystals. However, even by using the same solvent, active pharmaceutical ingredient (API), and cocrystal coformer (CCF), the cocrystals prepared using the two methods above are sometimes inconsistent. In the present study, in the cocrystal synthesis of praziquantel (PRA) with polyhydroxy phenolic acid, including protocatechuic acid (PA), gallic acid (GA), and ferulic acid (FA), five different cocrystals were prepared using SAG and SSE. Three of the cocrystals prepared using the SAG method have the structural characteristics of carboxylic acid dimer, and two cocrystals prepared using the SSE method formed cocrystal solvates with the structural characteristics of carboxylic acid monomer. For phenolic acids containing only one phenolic hydroxyl group (ferulic acid), when preparing cocrystals with PRA by using SAG and SSE, the same product was obtained. In addition, the weak molecular interactions that were observed in the cocrystal are explained at the molecular level by using theoretical calculation methods. Finally, the in vitro solubility of cocrystals without crystal solvents and in vivo bioavailability of PRA-FA were evaluated to further understand the influence on the physicochemical properties of API for the introduction of CCF.
Collapse
|
10
|
Guan D, Xuan B, Wang C, Long R, Jiang Y, Mao L, Kang J, Wang Z, Chow SF, Zhou Q. Improving the Physicochemical and Biopharmaceutical Properties of Active Pharmaceutical Ingredients Derived from Traditional Chinese Medicine through Cocrystal Engineering. Pharmaceutics 2021; 13:2160. [PMID: 34959440 PMCID: PMC8704577 DOI: 10.3390/pharmaceutics13122160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023] Open
Abstract
Active pharmaceutical ingredients (APIs) extracted and isolated from traditional Chinese medicines (TCMs) are of interest for drug development due to their wide range of biological activities. However, the overwhelming majority of APIs in TCMs (T-APIs), including flavonoids, terpenoids, alkaloids and phenolic acids, are limited by their poor physicochemical and biopharmaceutical properties, such as solubility, dissolution performance, stability and tabletability for drug development. Cocrystallization of these T-APIs with coformers offers unique advantages to modulate physicochemical properties of these drugs without compromising the therapeutic benefits by non-covalent interactions. This review provides a comprehensive overview of current challenges, applications, and future directions of T-API cocrystals, including cocrystal designs, preparation methods, modifications and corresponding mechanisms of physicochemical and biopharmaceutical properties. Moreover, a variety of studies are presented to elucidate the relationship between the crystal structures of cocrystals and their resulting properties, along with the underlying mechanism for such changes. It is believed that a comprehensive understanding of cocrystal engineering could contribute to the development of more bioactive natural compounds into new drugs.
Collapse
Affiliation(s)
- Danyingzi Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Chengguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ruitao Long
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Jinbing Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Ziwen Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| |
Collapse
|
11
|
Schierle S, Chaikuad A, Lillich FF, Ni X, Woltersdorf S, Schallmayer E, Renelt B, Ronchetti R, Knapp S, Proschak E, Merk D. Oxaprozin Analogues as Selective RXR Agonists with Superior Properties and Pharmacokinetics. J Med Chem 2021; 64:5123-5136. [PMID: 33793232 DOI: 10.1021/acs.jmedchem.1c00235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The retinoid X receptors (RXR) are ligand-activated transcription factors involved in multiple regulatory networks as universal heterodimer partners for nuclear receptors. Despite their high therapeutic potential in many pathologies, targeting of RXR has only been exploited in cancer treatment as the currently available RXR agonists suffer from exceptional lipophilicity, poor pharmacokinetics (PK), and adverse effects. Aiming to overcome the limitations and to provide improved RXR ligands, we developed a new potent RXR ligand chemotype based on the nonsteroidal anti-inflammatory drug oxaprozin. Systematic structure-activity relationship analysis enabled structural optimization toward low nanomolar potency similar to the well-established rexinoids. Cocrystal structures of the most active derivatives demonstrated orthosteric binding, and in vivo profiling revealed superior PK properties compared to current RXR agonists. The optimized compounds were highly selective for RXR activation and induced RXR-regulated gene expression in native cellular and in vivo settings suggesting them as excellent chemical tools to further explore the therapeutic potential of RXR.
Collapse
Affiliation(s)
- Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Felix F Lillich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Stefano Woltersdorf
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Beatrice Renelt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Riccardo Ronchetti
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|