1
|
El-Housiny S, Fouad AG, El-Bakry R, Zaki RM, Afzal O, El-Ela FIA, Ghalwash MM. In Vitro and in vivo characterization of nasal pH-Responsive in-situ hydrogel of Candesartan-loaded invasomes as a potential stroke treatment. Drug Deliv Transl Res 2025; 15:1626-1645. [PMID: 39259459 DOI: 10.1007/s13346-024-01700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Candesartan (CDN) is a useful anti-stroke medication because it lowers blood pressure, inflammation, oxidative stress, angiogenesis and apoptosis. However, CDN has limited efficacy due to its low solubility and poor bioavailability. This study set out to develop nasal pH-responsive in situ hydrogel of CDN-loaded invasomes a (PRHCLI) for enhancing CDN's release, penetration, bioavailability, and effectiveness as a possible treatment for stroke. Based on the results of the pre-formulation investigation, the optimum CLI formulation for intravasomal delivery of CDN was determined to be 3% of phospholipid, 0.16% of cholesterol, 3% of ethanol, and 1% of cineole. The optimum formulation significantly enhanced CDN permeation and release by 2.06-fold and 59.06%, respectively. The CLI formulation was added to a mixture of chitosan (0.67%w/v) and glyceryl monooleate (0.27%v/v) to develop PRHCLI. The PRHCLI formulation enhanced the release and permeation of CDN relative to free CDN by 2.15 and 2.76 folds, respectively. An experimental rat stroke model was utilized for in vivo studies to evaluate the bioavailability, effectiveness, and toxicity of the PRHCLI formulation. The nasal PRHCLI drops increased the CDN's bioavailability by 3.20-fold compared to oral free CDN. Increased grip strength and decreased flexion, spontaneous motor activity, and Morris Water Maze scores in comparison to oral free CDN showed that nasal PRHCLI drops have better anti-stroke activity. The toxicity evaluation revealed the safety of nasal PRHCLI. Hence, nasal PRHCLI drops may represent a promising avenue as a stroke therapy.
Collapse
Affiliation(s)
- Shaimaa El-Housiny
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
- Faculty of Pharmacy, Beni-Suef University, El-Shahid/Shehata Ahmed Hijaz St, Beni-Suef, Egypt.
| | - Rana El-Bakry
- Department of Pharmacology and Toxicology, EL Saleheya EL Gadida University, EL Saleheya El Gadida, Sharkia, Egypt
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, Saudi Arabia
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Maha M Ghalwash
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
2
|
Kuo YC, Lin CW, Tai CK. Etoposide-loaded lipopolymer nanoparticles promote Smac minetic activity against inhibitor of apoptosis protein for glioblastoma treatment. BIOMATERIALS ADVANCES 2025; 170:214185. [PMID: 39879864 DOI: 10.1016/j.bioadv.2025.214185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Encapsulated BV6 and SM164, two bivalent second mitochondria-derived activator of caspase (Smac) mimetics, in etoposide (ETO)-lipopolymer nanoparticles (NPs) have been developed to deplete inhibitor of apoptosis proteins (IAP), impair DNA, and produce antagonistic effects on glioblastoma multiforme (GBM) in nude mice. The NPs, composed of cocoa butter (CB) and polyvinyl alcohol (PVA), were stabilized by glycerol monostearate and Pluronic F-127, and grafted with transferrin (Tf) and wheat germ agglutinin (WGA) to dock the blood-brain barrier (BBB) and degenerated dopaminergic neurons. The dual-targeting NPs increased the BBB permeability of BV6, SM164 and ETO via recognizing Tf receptor (TfR) and N-acetylglucosamine that are abundantly expressed on brain microvascular endothelial cells. The sustained release of BV6, SM164 and ETO from CB-PVA-NPs for 48 h resulted in a reduction of about 40 % in the viability of U87MG cells and human brain cancer stem cells. Hematoxylin and eosin staining of the brain in GBM mice revealed atypical mitosis of cancer cells and a considerable decrease in tumor cell density after treatment with Tf-WGA-BV6-SM164-ETO-NPs. Compared to untreated mice, the current ETO preparation carrying Smac mimetics reduced cellular IAP-1 expression to about 33 % and X-linked IAP expression to about 42 %, while enhanced about 3.8-fold caspase-3, indicating the effectiveness of the nanocarriers in accelerating apoptosis of GBM cells. Tf-WGA-CB-PVA-NPs can be promising to upgrade BV6 and SM164 activity by ETO in clinical trials for GBM management.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - Chia-Wei Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Chien-Kuo Tai
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
3
|
Ruan H, Geng X, Situ Z, Shen Q, Ye T, Chen X, Su W. From In Vivo Predictive Dissolution to Virtual Bioequivalence: A GastroPlus ®-Driven Framework for Generic Candesartan Cilexetil Tablets. Pharmaceuticals (Basel) 2025; 18:562. [PMID: 40283997 PMCID: PMC12030460 DOI: 10.3390/ph18040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Candesartan cilexetil, a Biopharmaceutics Classification System (BCS) II prodrug, demonstrates compromised bioavailability attributable to its limited aqueous solubility coupled with P-glycoprotein (P-gp)-mediated efflux and hepatic first-pass metabolism, thereby introducing complexities in generic drug bioequivalence assessments. With the rapid advancement of computational technologies, the integration of biorelevant dissolution methodologies with physiologically based pharmacokinetic (PBPK) modeling is emerging as a transformative paradigm in advancing bioequivalence evaluation strategies for generic drug products. This study presents a GastroPlus®-driven framework integrating in vivo predictive dissolution (IPD) and virtual bioequivalence (VBE) to evaluate the quality consistency of generic candesartan cilexetil tablets. Methods: By developing an oral PBPK model in GastroPlus®, we established an IPD method using a phosphate-buffer-based flow-through cell dissolution apparatus. In vitro dissolution profiles of generic tablets from four manufacturers were measured and incorporated into the model to perform VBE simulations. Results: The results demonstrated that only the product from Company A achieved virtual bioequivalence with the reference product, aligning with real-world quality consistency assessments. Conclusions: The proposed framework exhibited robust predictive capability, bridging in vitro dissolution data to in vivo bioequivalence outcomes, thereby offering a cost-effective and efficient strategy for formulation optimization and preclinical bioequivalence evaluation of generic drugs.
Collapse
Affiliation(s)
- Hao Ruan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China;
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, NMPA Key Laboratory for Core Technology of Generic Drug Evaluation, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Xiaoting Geng
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, NMPA Key Laboratory for Core Technology of Generic Drug Evaluation, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Zijing Situ
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qian Shen
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, NMPA Key Laboratory for Core Technology of Generic Drug Evaluation, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Tianjian Ye
- Zhejiang Yongning Pharmaceutical Co., Ltd., Taizhou 318020, China
| | - Xin Chen
- Zhejiang Yongning Pharmaceutical Co., Ltd., Taizhou 318020, China
| | - Weike Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China;
| |
Collapse
|
4
|
Anwar W, Kassem AM, Salama A, Zidan MF, Ibrahim AH, Elbahwy IA, Barakat EH, Faris TM, Elsayad MK, Samy AM, Elsayed MMA, Abdelaziz AE. Optimisation of albendazole delivery and assessment of anticancer potential in hepatocellular carcinoma (HepG2 cells) using surface modified nanostructured lipid carriers. J Microencapsul 2025; 42:161-176. [PMID: 39819283 DOI: 10.1080/02652048.2025.2451848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
This study evaluated albendazole (ABZ) nanostructured lipid carriers (NLCs) for hepatocellular carcinoma treatment. ABZ-NLCs were prepared using emulsification-ultrasonication and optimised using a Box-Behnken design. Independent variables-lipids concentration (X1), surfactant concentration (X2), and sonication duration (X3)-were assessed for their effect on mean diameter (Y1), PDI (Y2), and entrapment efficiency (Y3). The optimised formulation exhibited a mean diameter of 166.13 ± 3.72 nm, a PDI of 0.17 ± 0.01, a zeta potential of -39.86 ± 1.84 mV, an entrapment efficiency of 94.25 ± 6.12%, and a loading capacity of 99.93 ± 7.15 mg/g. Following chitosan coating (ABZ-CS-NLCs), all parameters were maintained, and the zeta potential developed to +24.61 ± 1.32 mV, improving cellular interaction. The cytotoxicity assays revealed that ABZ-CS-NLCs were more effective than uncoated NLCs and free ABZ, with an IC50 value of 8.89 μM in HepG2 cells. Overall, ABZ-CS-NLCs demonstrate a promising and effective delivery platform for targeted hepatic cancer therapy.
Collapse
Affiliation(s)
- Walid Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed F Zidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Ahmed H Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Ibrahim A Elbahwy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Elsaied H Barakat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Tarek M Faris
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Maged K Elsayad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Ahmed M Samy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Mahmoud M A Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Abdelaziz E Abdelaziz
- Pharmaceutical Technology Department, Faculty of Pharmacy, Kafrelshiekh University, Kafrelshiekh, Egypt
| |
Collapse
|
5
|
Lemasson O, Briançon S, Bourgeaux V, Guichard M, Valour JP, Moret GA, Bourgeois S. Are Nanostructured Lipid Carriers (NLC) better than Solid Lipid Nanoparticles (SLN) for delivering abiraterone acetate through the gastrointestinal tract? Int J Pharm 2024; 667:124869. [PMID: 39490790 DOI: 10.1016/j.ijpharm.2024.124869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Abiraterone acetate (AbA) is a progesterone derivative indicated for the treatment of metastatic prostate cancer. This BCS (Biopharmaceutics Classification System) Class IV molecule has an extremely poor oral bioavailability (<10 %), notably due to its very low water solubility and intestinal permeability. Among the few existing galenic strategies to improve AbA's oral bioavailability, lipid nanoparticles such as Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) are relevant nanovectors. The objective of this study is to develop and compare SLN and NLC for oral delivery of abiraterone acetate. Both SLN and NLC are biocompatible, biodegradable and produced by high pressure homogenization (HPH), an ecological-friendly manufacturing process, organic solvent-free and easily scalable. The HPH process allowed the formation of AbA-loaded SLN and NLC with particle size lower than 160 nm and high encapsulation efficiencies. The addition of a liquid lipid significantly reduced the mean diameter of the nanoparticles, reflecting the greater benefit of the NLC formulation compared to SLN. Both SLN and NLC formulations offered an important protection of AbA in intestinal media, with a better stability for NLC. When encapsulated in SLN or NLC, the AbA is strongly retained by the nanoparticles, whatever the dissolution medium, which means that both formulas are able to protect and retain the drug in the intestinal tract, right up to its delivery to the enterocytes surface. High concentrations of nanoparticles were administered without cytotoxicity, especially for the NLC, which provides a real added value in terms of biocompatibility with Caco-2 cells. Finally, the nanoparticles were able to penetrate into enterocytes by the transcellular route, demonstrating an intense cellular internalization.
Collapse
Affiliation(s)
- Oksana Lemasson
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Stéphanie Briançon
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France
| | - Vanessa Bourgeaux
- Skyepharma Production SAS, 55 rue du Montmurier, F-38070 Saint-Quentin-Fallavier, France
| | - Marion Guichard
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France
| | - Jean-Pierre Valour
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Géraldine Agusti Moret
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Sandrine Bourgeois
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France.
| |
Collapse
|
6
|
Aldhubiab B, Almuqbil RM, Shehata TM, Soliman WE, Elsewedy HS. Nanotechnological prospective for enhancing the antibacterial activity of mupirocin and cinnamon essential oil: a combination therapy. Front Pharmacol 2024; 15:1468374. [PMID: 39588151 PMCID: PMC11586216 DOI: 10.3389/fphar.2024.1468374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Backgrounds The aim of the current study was to develop a distinctive nanolipid formulation, namely, nanostructured lipid carrier (NLC), which would deliver an antibacterial medication such as mupirocin (MP). Additionally, cinnamon essential oil (CEO), which is reported to exhibit antibacterial activity, was utilized in the development process in an attempt to improve the influence of MP. Methods As a consequence, different MP-NLC formulations were developed using the central composite design (CCD) approach. One optimized formula was selected and incorporated within the pre-formulated gel matrix, providing the MP-NLC-gel formula for efficient topical application. MP-NLC-gel was assessed for its physical characteristics to check its suitability for topical application and evaluated for its in vitro drug release over 6 h. Furthermore, it studied the formulation for its stability at different conditions; 25°C ± 2°C and at 4°C ± 3°C for 6 months. Finally, the formulation was examined for its antibacterial performance against gram-positive and -negative bacteria. Results The developed topical NLC-gel formulation demonstrated pH 5.8, viscosity 14,510 cP, and spreadability 58.1 mm, which were seemed to be satisfactory properties for successful topical application. The drug was released successfully for over 6 h with 52.9%. Additionally, it was stable in both storage conditions for 6 months since it displayed non-significant variations in its evaluated characteristics compared to those of fresh preparation. Ultimately, the developed gel formulation could inhibit the growth of different bacterial strains, especially gram-negative strains. Conclusion To sum up, these findings would demonstrate the efficiency of NLC prepared with CEO and incorporating MP to be a promising antibacterial lipid nanocarrier.
Collapse
Affiliation(s)
- Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Wafaa E. Soliman
- Department of Biomedical sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura, Egypt
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Guan H, Wang M, Yu S, Wang C, Chen Q, Chen Y, Zhang W, Fan J. Candesartan Cilexetil Formulations in Mesoporous Silica: Preparation, Enhanced Dissolution In Vitro, and Oral Bioavailability In Vivo. J Pharm Sci 2024; 113:3045-3053. [PMID: 39094942 DOI: 10.1016/j.xphs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Candesartan cilexetil (CC) is one of well-tolerated antihypertensive drugs, while its poor solubility and low bioavailability limit its use. Herein, two mesoporous silica (Syloid XDP 3150 and Syloid AL-1 FP) and the corresponding amino-modified products (N-XDP 3150 and N-AL-1 FP) have been selected as the carriers of Candesartan cilexetil to prepare solid dispersion through solvent immersion, and characterized through using powder X-ray diffraction analysis, infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance spectroscopy, etc. The state of CC changed from crystalline to amorphous after loading onto the silica carriers, in which no interactions between CC and silica existed. Then, the dissolution behaviors in vitro were studied through using flow-through cell dissolution method. CC-XDP 3150 sample exhibited the most extensive dissolution, and the cumulative release of CC from it was 1.88-fold larger than that of CC. Moreover, the pharmacokinetic results in rats revealed that the relative bioavailability of CC-XDP 3150 and CC-N-XDP 3150 solid dispersions were estimated to be 326 % % and 238 % % in comparison with CC, respectively. Clearly, pore size, pore volume, and surface properties of silica carrier have remarkable effect on loading, dissolution and bioavailability of CC. In brief, this work will provide valuable information in construction of mesoporous silica-based delivery system toward poorly water-soluble drugs.
Collapse
Affiliation(s)
- Huijian Guan
- School of Chemistry, South China Normal University, Key Laboratory of Process Control and Quality Evaluation of Chiral Drugs, Guangdong Provincial Drug Administration, Guangzhou Key Laboratory of Biomedical Analytical Chemistry, Guangzhou 510006, China
| | - Miao Wang
- Department of Pharmaceutical Excipients, Guangdong Institute for Drug Control, Key Laboratory of Quality Control and Evaluation of Pharmaceutical Excipients, State Drug Administration, Guangzhou 510663, China
| | - Shaowen Yu
- Department of Pharmaceutical Excipients, Guangdong Institute for Drug Control, Key Laboratory of Quality Control and Evaluation of Pharmaceutical Excipients, State Drug Administration, Guangzhou 510663, China
| | - Caimei Wang
- Department of Pharmaceutical Excipients, Guangdong Institute for Drug Control, Key Laboratory of Quality Control and Evaluation of Pharmaceutical Excipients, State Drug Administration, Guangzhou 510663, China
| | - Qi Chen
- Drug Safety Evaluation Center, Drug Safety Evaluation Center, Guangdong Institute for Drug Control, Guangzhou 510663, China
| | - Ying Chen
- Department of Pharmaceutical Excipients, Guangdong Institute for Drug Control, Key Laboratory of Quality Control and Evaluation of Pharmaceutical Excipients, State Drug Administration, Guangzhou 510663, China.
| | - Weiguang Zhang
- School of Chemistry, South China Normal University, Key Laboratory of Process Control and Quality Evaluation of Chiral Drugs, Guangdong Provincial Drug Administration, Guangzhou Key Laboratory of Biomedical Analytical Chemistry, Guangzhou 510006, China
| | - Jun Fan
- School of Chemistry, South China Normal University, Key Laboratory of Process Control and Quality Evaluation of Chiral Drugs, Guangdong Provincial Drug Administration, Guangzhou Key Laboratory of Biomedical Analytical Chemistry, Guangzhou 510006, China.
| |
Collapse
|
8
|
Maghrabia AE, Boughdady MF, Khater SM, ِِAbu Hashim II, Meshali MM. Quality by design approach of apocynin loaded clove oil based nanostructured lipid carrier as a prophylactic regimen in hemorrhagic cystitis in vitro and in vivo comprehensive study. Sci Rep 2024; 14:19162. [PMID: 39160172 PMCID: PMC11333711 DOI: 10.1038/s41598-024-68721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Apocynin (APO) is a naturally occurring acetophenone with eminent anti-inflammatory and anti-oxidant peculiarities. It suffers from poor bioavailability due to low aqueous solubility. Herein, APO was loaded in a Clove oil (CO) based Nanostructured lipid carrier (NSLC) system using a simple method (ultrasonic emulsification) guided by a quality-by-design approach (23 full factorial design) to optimize the formulated NSLCs. The prepared NSLCs were evaluated regarding particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE%). The optimal formula (F2) was extensively investigated through transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Differential scanning calorimetry (DSC), X-ray diffractometry (XRD), in vitro release, and stability studies. Cytotoxicity against human urinary bladder carcinoma (T24) cell line and in vivo activity studies in rats with induced cystitis were also assessed. The results disclosed that the optimal formula (F2) had PS of 214.8 ± 5.8 nm with EE% of 79.3 ± 0.9%. F2 also exhibited a strong cytotoxic effect toward the T24 cancer cells expressed by IC50 value of 5.8 ± 1.3 µg/mL. Pretreatment with the optimal formula (orally) hinted uroprotective effect against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rat models, emphasized by histopathological, immunohistochemical, and biochemical investigations. In consideration of the simple fabrication process, APO-loaded CO-based NSLCs can hold prospective potential in the prophylaxis of oncologic and urologic diseases.
Collapse
Affiliation(s)
- Amir Elsayed Maghrabia
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Mohamed Khater
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | | |
Collapse
|
9
|
Ali ISM, Sajad UA, Abdul Rasool BK. Solid dispersion systems for enhanced dissolution of poorly water-soluble candesartan cilexetil: In vitro evaluation and simulated pharmacokinetics studies. PLoS One 2024; 19:e0303900. [PMID: 38843120 PMCID: PMC11156308 DOI: 10.1371/journal.pone.0303900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Candesartan cilexetil (CC) is a selective angiotensin II receptor antagonist widely used to treat hypertension. CC is a substrate of P-glycoprotein (P-gp), causing its efflux to the intestinal lumen. It is also practically insoluble in water and has low oral bioavailability (14%). Thus, the current study aims to improve the in vitro dissolution of CC by developing solid dispersion systems (SDSs) and corroborating the in vitro results using a simulated pharmacokinetics study. METHODS The SDSs were prepared using polyvinyl pyrrolidone (PVP) as a water-soluble polymer, Eudragit E100 (EE100) as a pH-dependent soluble carrier, and a combination of these two polymers. The saturation solubility and the dissolution rate studies of the prepared systems in three dissolution media were performed. The optimized system SE-EE5 was selected for further investigations, including DSC, XRD, FTIR, FESEM, DLS, TSEM, IVIVC convolution study, and stability studies. RESULTS The solubility of CC significantly increased by a factor of 27,037.344 when formulated as a solid dispersion matrix using EE100 at a ratio of 1:5 (w/w) drug to polymer (SE-EE5 SD), compared to the solubility of the pure drug. The mechanism of solubility and dissolution rate enhancement of CC by the optimized SDS was found to be via the conversion of the crystalline CC into the amorphous form as well as nanoparticles formation upon dissolution at a pH below 5. The instrumental analysis tests showed good compatibility between CC and EE100 and there was no chemical interaction between the drug and the polymer. Moreover, the stability tests confirmed that the optimized system was stable after three months of storage at 25°C. CONCLUSION The utilization of the solid dispersion technique employing EE 100 polymer as a matrix demonstrates significant success in enhancing the solubility, dissolution, and subsequently, the bioavailability of water-insoluble drugs like CC.
Collapse
Affiliation(s)
| | - Uday Aziz Sajad
- Pharmaceutics Department, College of Pharmacy, University of Basrah, Basrah, Iraq
- Pharmaceutics Department, College of Pharmacy, Almaaqal University, Basrah, Iraq
| | - Bazigha K. Abdul Rasool
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| |
Collapse
|
10
|
Mahajan H, Patel HS, Ray D, Aswal VK, Sharma RK, Tandel H. Mixed Pluronic/lecithin micelles formulation for oral bioavailability of candesartan cilexetil drug: in vitro characterization and in vivo pharmacokinetic investigations. Drug Dev Ind Pharm 2024; 50:23-35. [PMID: 38079333 DOI: 10.1080/03639045.2023.2293122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE This study aimed to develop a mixed polymeric micelle formulation incorporating candesartan cilexetil (CAND) drug to enhance its oral bioavailability for the better treatment of hypertension. METHODS A Box-Behnken design was utilized to optimize the CAND-incorporated mixed polymeric micelles formulation (CAND-PFLC) consisting of Pluronics (P123 and F68) and lecithin (LC). The optimized CAND-PFLC micelles formulation was characterized for size, shape, zeta potential, polydispersity index (PDI), and entrapment efficiency (%EE). An in vitro release study, ex vivo permeability investigation, and an in vivo pharmacokinetic analysis were carried out to evaluate the performance of the formulation. RESULTS The optimized CAND-PFLC micelles formulation demonstrated a spherical shape, a particle size of 44 ± 2.03 nm, a zeta potential of -7.07 ± 1.39 mV, a PDI of 0.326 ± 0.06, and an entrapment efficiency of 87 ± 3.12%. The formulation exhibited excellent compatibility, better stability, and a noncrystalline nature. An in vitro release study revealed a faster drug release of 7.98% at gastric pH in 2 hrs and 94.45% at intestinal pH within 24 hrs. The ex vivo investigation demonstrated a significantly enhanced permeability of CAND, with 94.86% in the micelle formulation compared to 9.03% of the pure drug. In vivo pharmacokinetic analysis showed a 4.11-fold increase in oral bioavailability of CAND compared to the marketed formulation. CONCLUSION The CAND-PFLC mixed micelle formulation demonstrated improved performance compared to pure CAND, indicating its potential as a promising oral drug delivery system for the effective treatment of hypertension.
Collapse
Affiliation(s)
- Homraj Mahajan
- Deartment of Pharmaceutics, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Hemil S Patel
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai, Maharashtra, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai, Maharashtra, India
| | - Rakesh K Sharma
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Hemal Tandel
- Deartment of Pharmaceutics, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
11
|
Haji Ali B, Shirvaliloo M, Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Sargazi S, Sargazi S, Sheervalilou R, Rahman MM. Nanotechnology-Based Strategies for Extended-Release Delivery of Angiotensin Receptor Blockers (ARBs): A Comprehensive Review. Chem Biodivers 2023; 20:e202301157. [PMID: 37796134 DOI: 10.1002/cbdv.202301157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
There has been a significant shift in the perception of hypertension as an important contributor to the global disease burden. Approximately 6 % and 8 % of pregnancies are affected by hypertension, which can adversely affect the mother and the fetus. Furthermore, a hypertensive individual is at increased risk of developing kidney disease, arterial hardening, eye damage, and strokes. Using angiotensin receptor blockers (ARBs) is widespread in treating hypertension, heart failure, coronary artery disease, and diabetic nephropathy. Despite this, some ARBs have limited use due to their poor oral bioavailability and water solubility. To tackle this, a variety of nanoparticle (NP)-based systems, such as polymeric NPs (i. e., dendrimers), polymeric micelles, polymer-drug conjugates, lipid NPs, nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid NPs (SLNs), nanostructured lipid carriers (NLCs), carbon-based nanocarriers, inorganic NPs, and nanocrystals, have been recently developed for efficient delivery of losartan, Valsartan (Val), Olmesartan (OLM), Telmisartan (TEL), Candesartan, Eprosartan, Irbesartan, and Azilsartan to target cells. This review article provides a literature-based comparison of the various classes of ARBs, their mechanisms of action, and an overview of the nanoformulations developed for ARB delivery and successfully applied to managing hypertension, diabetic complications, and other conditions.
Collapse
Affiliation(s)
- Bahareh Haji Ali
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir, 35100, Turkey
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran, Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
12
|
Elsewedy HS, Shehata TM, Alqahtani NK, Khalil HE, Soliman WE. Date Palm Extract ( Phoenix dactylifera) Encapsulated into Palm Oil Nanolipid Carrier for Prospective Antibacterial Influence. PLANTS (BASEL, SWITZERLAND) 2023; 12:3670. [PMID: 37960029 PMCID: PMC10648499 DOI: 10.3390/plants12213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
It is worthwhile to note that using natural products today has shown to be an effective strategy for attaining the therapeutic goal with the highest impact and the fewest drawbacks. In Saudi Arabia, date palm (Phoenix dactylifera) is considered the principal fruit owing to its abundance and incredible nutritional benefits in fighting various diseases. The main objective of the study is to exploit the natural products as well as the nanotechnology approach to obtain great benefits in managing disorders. The present investigation focused on using the powder form of date palm extract (DPE) of Khalas cultivar and incorporates it into a nanolipid formulation such as a nanostructured lipid carrier (NLC) prepared with palm oil. Using the quality by design (QbD) methodology, the most optimized formula was chosen based on the number of assigned parameters. For more appropriate topical application, the optimized DP-NLC was combined with a pre-formulated hydrogel base forming the DP-NLC-hydrogel. The developed DP-NLC-hydrogel was evaluated for various physical properties including pH, viscosity, spreadability, and extrudability. Additionally, the in vitro release of the formulation as well as its stability upon storage under two different conditions of room temperature and refrigerator were investigated. Eventually, different bacterial strains were utilized to test the antibacterial efficacy of the developed formulation. The optimized DP-NLC showed proper particle size (266.9 nm) and in vitro release 77.9%. The prepared DP-NLC-hydrogel showed acceptable physical properties for topical formulation, mainly, pH 6.05, viscosity 9410 cP, spreadability 57.6 mm, extrudability 84.5 (g/cm2), and in vitro release 42.4%. Following three months storage under two distinct conditions, the formula exhibited good stability. Finally, the antibacterial activity of the developed DP-NLC-hydrogel was evaluated and proved to be efficient against various bacterial strains.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nashi K. Alqahtani
- Department of Food Science and Technology, College of Agriculture, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Date Palm Research Center of Excellence, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| |
Collapse
|
13
|
Garcia-Tarazona YM, Morantes SJ, Gordillo JFI, Sepúlveda P, Ramos FA, Lafaurie GI. Candesartan exhibits low intrinsic permeation capacity and affects buccal tissue viability and integrity: An ex vivo study in porcine buccal mucosa. Eur J Pharm Sci 2023; 188:106495. [PMID: 37329923 DOI: 10.1016/j.ejps.2023.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Candesartan is a nonpeptide angiotensin II receptor blocker that selectively binds to angiotensin II receptor subtype 1. It is administered orally in its ester form (candesartan cilexetil). However, its poor aqueous solubility results in its low bioavailability; therefore, other routes of administration must be explored. The buccal mucosa has been extensively studied as an alternative route for drug delivery as it improves the bioavailability of drugs administered via the peroral route. Porcine buccal mucosa has been widely used as an ex vivo model to study the permeability of various diffusants; however, studies on candesartan are limited. This study aimed to evaluate the ex vivo permeation profile of candesartan and its effects on the viability and integrity of porcine buccal mucosa. Initially, we evaluated the viability, integrity, and barrier function of the buccal tissue before performing permeability tests using freshly excised tissues or tissues after 12 h of resection. Here, three indicators were used: caffeine, β-estradiol, and FD-20 penetration; mucosal metabolic activity, as determined using MTT reduction assay; and haematoxylin and eosin staining. Our results indicated that the porcine buccal mucosa preserved its viability, integrity, and barrier function before the permeation assay, allowing the passage of molecules with a molecular mass of less than 20 kDa, such as caffeine, but not β-estradiol and FD-20. Furthermore, we analyzed the intrinsic capacity of candesartan to diffuse through the fresh porcine buccal mucosa under two pH conditions. The concentration of candesartan in the receptor chamber of Franz diffusion cell was quantified using ultra-high liquid chromatography. In the permeation assay, candesartan exhibited a low intrinsic permeation capacity that impacted the buccal tissue viability and integrity, suggesting that using the buccal mucosa as an alternative route of administration requires developing a pharmaceutical formulation that reduces the adverse effects on mucosa and increasing the buccal permeability of candesartan.
Collapse
Affiliation(s)
- Yenny M Garcia-Tarazona
- Universidad El Bosque, Unidad de Investigación Básica Oral UIBO, Bogotá, Colombia; Universidad El Bosque, Facultad de Odontología, Maestría en Ciencias Odontológicas, Bogotá, Colombia
| | - Sandra Johanna Morantes
- Universidad El Bosque, Unidad de Investigación Básica Oral UIBO, Bogotá, Colombia; Facultad de Ciencias, Programa Química Farmacéutica, Grupo de Investigación en Química Aplicada INQA, Universidad El Bosque, Bogotá, Colombia.
| | | | - Paula Sepúlveda
- Facultad de Ciencias, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Freddy A Ramos
- Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gloria Inés Lafaurie
- Universidad El Bosque, Unidad de Investigación Básica Oral UIBO, Bogotá, Colombia
| |
Collapse
|
14
|
Shete MB, Deshpande AS, Shende PK. Nanostructured lipid carrier-loaded metformin hydrochloride: Design, optimization, characterization, assessment of cytotoxicity and ROS evaluation. Chem Phys Lipids 2023; 250:105256. [PMID: 36372117 DOI: 10.1016/j.chemphyslip.2022.105256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Metformin hydrochloride (MET) is commonly used in diabetes treatment. Recently, it has gained interest for its anticancer potential against a wide range of cancers. Owing to its hydrophilic nature, the delivery and clinical actions of MET are limited. Therefore, the present work aims to develop MET-encapsulated NLCs using the hot-melt emulsification and probe-sonication method. The optimization was accomplished by 33 BB design wherein lipid ratio, surfactant concentration, and sonication time were independent variables while the PS (nm), PDI, and EE (%) were dependent variables. The PS, PDI, % EE and ZP of optimized GMSMET-NLCs were found to be 114.9 ± 1.32 nm, 0.268 ± 0.04 %, 60.10 ± 2.23 %, and ZP - 15.76 mV, respectively. The morphological features, DSC and PXRD, and FTIR analyses suggested the confirmation of formation of the NLCs. Besides, optimized GMSMET-NLCs showed up to 88 % MET release in 24 h. Moreover, GMSMET-NLCs showed significant cell cytotoxicity against KB oral cancer cells compared with MET solution as shown by the reduction of IC50 values. Additionally, GMSMET-NLCs displayed significantly increased intracellular ROS levels suggesting the GMSMET-NLCs induced cell death in KB cells. GMSMET-NLCs can therefore be explored to deliver MET through different routes of administration for the effective treatment of oral cancer.
Collapse
Affiliation(s)
- Meghanath B Shete
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India; Department of Pharmaceutical Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist., Dhule 425405, Maharashtra, India
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Polepally SEZ, TSIIC Jadcherla, Hyderabad 509301, India
| | - Pravin K Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile-Parle (W), Mumbai, Maharashtra, India.
| |
Collapse
|
15
|
Harish V, Tewari D, Mohd S, Govindaiah P, Babu MR, Kumar R, Gulati M, Gowthamarajan K, Madhunapantula SV, Chellappan DK, Gupta G, Dua K, Dallavalasa S, Singh SK. Quality by Design Based Formulation of Xanthohumol Loaded Solid Lipid Nanoparticles with Improved Bioavailability and Anticancer Effect against PC-3 Cells. Pharmaceutics 2022; 14:2403. [PMID: 36365221 PMCID: PMC9699314 DOI: 10.3390/pharmaceutics14112403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Many natural products with greater therapeutic efficacy are limited to target several chronic diseases such as cancer, diabetes, and neurodegenerative diseases. Among the natural products from hops, i.e., Xanthohumol (XH), is a prenylated chalcone. The present research work focuses on the enhancement of the poor oral bioavailability and weak pharmacokinetic profile of XH. We exemplified the development of a Xanthohumol-loaded solid lipid nanoparticles (XH-SLNs) cargo system to overcome the limitations associated with its bioavailability. The XH-SLNs were prepared by a high-shear homogenization/ultrasonication method and graphical, numerical optimization was performed by using Box-Behnken Design. Optimized XH-SLNs showed PS (108.60 nm), PDI (0.22), ZP (-12.70 mV), %EE (80.20%) and an amorphous nature that was confirmed by DSC and PXRD. FE-SEM and HRTEM revealed the spherical morphology of XH-SLNs. The results of release studies were found to be 9.40% in 12 h for naive XH, whereas only 28.42% of XH was released from XH-SLNs. The slow release of drugs may be due to immobilization of XH in the lipid matrix. In vivo pharmacokinetic study was performed for the developed XH-SLNs to verify the enhancement in the bioavailability of XH than naive XH. The enhancement in the bioavailability of the XH was confirmed from an increase in Cmax (1.07-folds), AUC0-t (4.70-folds), t1/2 (6.47-folds) and MRT (6.13-folds) after loading into SLNs. The relative bioavailability of XH loaded in SLNs and naive XH was found to be 4791% and 20.80%, respectively. The cytotoxicity study of naive XH, XH-SLNs were performed using PC-3 cell lines by taking camptothecin as positive control. The results of cytotoxicity study revealed that XH-SLNs showed good cell inhibition in a sustained pattern. This work successfully demonstrated formulation of XH-SLNs with sustained release profile and improved oral bioavailability of XH with good anticancer properties against PC-3 cells.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Sharfuddin Mohd
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Pilli Govindaiah
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Malakapogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570015, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570015, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
16
|
Salim H, Jones AM. Angiotensin II receptor blockers (ARBs) and manufacturing contamination: A retrospective National Register Study into suspected associated adverse drug reactions. Br J Clin Pharmacol 2022; 88:4812-4827. [PMID: 35585835 PMCID: PMC9796460 DOI: 10.1111/bcp.15411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023] Open
Abstract
AIMS The aim of this study was to determine if any suspected adverse drug reactions (ADRs) observed with the use of angiotensin II receptor blockers (ARBs) could be linked to either (a) their unique respective physicochemical and pharmacological profiles and (b) the recently disclosed suspected carcinogenic manufacturing contaminants found in certain sartan drug class batches. METHODS The pharmacology profiles of ARBs were data-mined from the Chemical Database of bioactive molecules with drug-like properties, European Molecular Biology Laboratory (ChEMBL). Suspected ADR data (from 01/2016-10/2022, inclusive) and prescribing rates of ARBs over a 5-year prescribing window (from 09/2016 to 08/2021, inclusive) were obtained via analysis of the United Kingdom Medicines and Healthcare products Regulatory Authority (MHRA) Yellow Card drug analysis profile and Open prescribing databases, respectively. RESULTS The overall suspected ADRs and fatalities per 100 000 prescriptions identified across the ARBs studied were found to be different between the sartan drug class members (chi-squared test, P < .05). There is a greater relative rate of reports for valsartan across all investigated organ classes of ADRs, than other ARBs, despite valsartan's more limited pharmacological profile and similar physicochemical properties to other sartans. The disparity in ADR reporting rates with valsartan vs other ARBs could be due to the dissimilarity in formulation excipients, patient factors and publicity surrounding batch contaminations, amongst others. Cancer-related ADRs and fatalities per 100 000 prescriptions identified across the ARBs studied are not statistically significant (chi-squared test, P > .05) based on the datasets used over the 5-year period. CONCLUSION No connection between ARB pharmacology and their suspected ADRs could be found. No conclusion between sartan batch contaminations and increased suspected cancer-related ADRs was found.
Collapse
Affiliation(s)
- Hamisha Salim
- Medicines Safety Research Group (MSRG), School of PharmacyUniversity of BirminghamBirminghamUnited Kingdom
| | - Alan M. Jones
- Medicines Safety Research Group (MSRG), School of PharmacyUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
17
|
Van NH, Vy NT, Van Toi V, Dao AH, Lee BJ. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Jung M, Jin M, Jeon WJ, Lee H, Kim H, Won JH, Yoo H, Bai HW, Han SC, Suh H, Kang KU, Lee HK, Cho CW. Development of a long-acting tablet with ticagrelor high-loaded nanostructured lipid carriers. Drug Deliv Transl Res 2022; 13:1212-1227. [PMID: 35794353 DOI: 10.1007/s13346-022-01205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Ticagrelor (TCG), an antiplatelet agent, has low solubility and permeability; thus, there are many trials to apply the pharmaceutical technology for the enhancement of TCG solubility and permeability. Herein, we have developed the TCG high-loaded nanostructured lipid carrier (HL-NLC) and solidified the HL-NLC to develop the oral tablet. The HL-NLC was successfully fabricated and optimized with a particle size of 164.5 nm, a PDI of 0.199, an encapsulation efficiency of 98.5%, and a drug loading of 16.4%. For the solidification of HL-NLC (S-HL-NLC), the adsorbent was determined based on the physical properties of the S-HL-NLC, such as bulk density, tap density, angle of repose, Hausner ratio, Carr's index, and drug content. Florite R was chosen because of its excellent adsorption capacity, excellent physical properties, and solubility of the powder after manufacturing. Using an S-HL-NLC, the S-HL-NLC tablet with HPMC 4 K was prepared, which is showed a released extent of more than 90% at 24 h. Thus, we have developed the sustained release tablet containing the TCG-loaded HL-NLC. Moreover, the formulations have exhibited no cytotoxicity against Caco-2 cells and improved the cellular uptake of TCG. In pharmacokinetic study, compared with raw TCG, the bioavailability of HL-NLC and S-HL-NLC was increased by 293% and 323%, respectively. In conclusion, we successfully developed the TCG high-loaded NLC tablet, that exhibited a sustained release profile and enhanced oral bioavailability.
Collapse
Affiliation(s)
- Minwoo Jung
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Minki Jin
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Woo-Jin Jeon
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - HaeSoo Lee
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Haeun Kim
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Jong-Hee Won
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Hyelim Yoo
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Hyoung-Woo Bai
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea.,Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Su-Cheol Han
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea
| | - Hearan Suh
- Postera Health Science Inc, Han River Misa 1st at Hyundai Knowledge Industry Center 550, Misa-daero, Hanam-si, 1005, Gyeonggi-do, South Korea
| | - Kyoung Un Kang
- Postera Health Science Inc, Han River Misa 1st at Hyundai Knowledge Industry Center 550, Misa-daero, Hanam-si, 1005, Gyeonggi-do, South Korea
| | - Hong-Ki Lee
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea.
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea.
| |
Collapse
|
19
|
Hypolipidemic Activity of Olive Oil-Based Nanostructured Lipid Carrier Containing Atorvastatin. NANOMATERIALS 2022; 12:nano12132160. [PMID: 35807995 PMCID: PMC9267979 DOI: 10.3390/nano12132160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Currently, hyperlipidemia is a growing health issue that is considered a risk factor for obesity. Controlling body weight and modifying life style in most of cases are not adequate and the condition requires medical treatment. Statin drugs (mainly Atorvastatin (ATO)), have been used broadly and for long time as medications for handling higher levels of lipid, especially bad cholesterol, which accordingly controls the prevalence of obesity. Still, the obstacle that stands in front of any formulation is the poor solubility of the drug. Low solubility of ATO came up with poor absorption as well as poor bioavailability. This paved the way for the present study, which aimed to exploit nanotechnology and develop certain nanolipid carriers that could accommodate hydrophobic drugs, such as ATO. Nanostructured lipid carrier (NLC) containing ATO was fabricated using olive oil. Olive oil is natural plant oil possessing confirmed hypolipidemic activity that would help in improving the efficacy of the formulation. Via applying the Quality by Design (QbD) approach, one NLC formula was selected to be optimized based on appropriate size and higher entrapment. Optimized ATO-NLC was scrutinized for zeta potential, in vitro study and kinetic profile. Moreover, stability testing and in vivo hypolipidemic behavior was conducted. The optimized NLC formulation seemed to show particle size (254.23 nm) with neutral zeta potential (−1.77 mV) and entrapment efficiency (69.56%). The formulation could be prolonged for 12 h and provided higher % of release (97.17%). Stability testing confirmed the role of modifying the surface of the formulation with PEG-DSPE in providing a highly stable formulation that could withstand three months storage in two altered conditions. Ultimately, optimized ATO-NLC could successfully lower total cholesterol level in rats induced with obesity and fed a high-fat diet. Remarkably, ATO-NLC prepared with olive oil, in addition to shielding its surface, would provide a stable formulation that holds up the synergistic action between olive oil and ATO.
Collapse
|
20
|
Elsewedy HS, Shehata TM, Soliman WE. Shea Butter Potentiates the Anti-Bacterial Activity of Fusidic Acid Incorporated into Solid Lipid Nanoparticle. Polymers (Basel) 2022; 14:2436. [PMID: 35746012 PMCID: PMC9228747 DOI: 10.3390/polym14122436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Fusidic acid (FA) is an efficient anti-bacterial drug proven to be efficient against a wide range of bacteria. Nevertheless, the main restriction in its formulation is the limited solubility. To avoid such an obstacle, the drug is incorporated into the lipid core of the nanolipid formulation. Consequently, the present study was an attempt to formulate nanolipid preparation, mainly, solid lipid nanoparticle (SLN) integrating FA. FA-SLN was prepared using shea butter as a lipid phase owing to its reported anti-bacterial activity. Different FA-SLNs were fabricated using the central composite design (CCD) approach. The optimized formula was selected and integrated into a hydrogel base to be efficiently used topically. FA-SLN-hydrogel was evaluated for its character, morphology, in vitro release and stability. The formula was examined for irritation reaction and finally evaluated for its anti-bacterial performance. The optimized formula showed particle size 283.83 nm and entrapment 73.057%. The formulated FA-SLN-hydrogel displayed pH 6.2, viscosity 15,610 cP, spreadability 51.1 mm and in vitro release 64.6% following 180 min. FA-SLN-hydrogel showed good stability for three months at different conditions (room temperature and refrigerator). It exhibited no irritation reaction on the treated rats. Eventually, shea butter displayed a noteworthy effect against bacterial growth that improved the effect of FA. This would indicate prospective anti-bacterial activity of FA when combined with shea butter in SLN formulation as a promising nanocarrier.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Ash Sharqiyah, Zagazig 44519, Egypt
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
| |
Collapse
|
21
|
|
22
|
Mady OY, Abulmeaty MMA, Donia AA, Al-Khureif AA, Al-Shoubki AA, Abudawood M, Abdel Moety DA. Formulation and Bioavailability of Novel Mucoadhesive Buccal Films for Candesartan Cilexetil in Rats. MEMBRANES 2021; 11:membranes11090659. [PMID: 34564476 PMCID: PMC8471814 DOI: 10.3390/membranes11090659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022]
Abstract
Candesartan cilexetil (CC) is an antihypertensive drug. It has low solubility and faces hepatic first-pass metabolism after oral ingestion. We formulated bioadhesive buccal films and studied the respective drug pharmacokinetics. Different bioadhesive films were prepared (40, 80, 120, 160, 200, and 240 mg CC per film) by using the solvent casting method. The drug concentrations used affect the drug entrapment mechanism, which was reflected in the film physicochemical properties like thickness, weight, drug content, bioadhesion, and drug release. Low drug concentration (F2, 40 mg per film) led to minute drug crystal dispersion while increasing the drug concentration (F7, 240 mg per film) showed drug crystal encapsulation, which affects the drug release. The drug pharmacokinetic from the prepared films was studied compared to the oral form by serial blood sampling via an inserted catheter in the carotid of rats. High-Performance Liquid Chromatography assay was used to measure the plasma concentration of CC in different forms. Compared to other films, the F2 showed the highest maximal concentration (Cmax) and the lowest elimination half-life (t1/2). Bioadhesion buccal film of CC has better bioavailability, especially at low concentrations. The ease, robustness, and ruggedness of the preparation suggests the same procedure for drugs like CC.
Collapse
Affiliation(s)
- Omar Y. Mady
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt
- Correspondence: (O.Y.M.); (M.M.A.A.); Tel.: +20-1141819661 (O.Y.M.); +966-458155983 (M.M.A.A.)
| | - Mahmoud M. A. Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: (O.Y.M.); (M.M.A.A.); Tel.: +20-1141819661 (O.Y.M.); +966-458155983 (M.M.A.A.)
| | - Ahmed A. Donia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Menofia University, Shebin El-Kom 13829, Egypt;
| | - Abdulaziz A. Al-Khureif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 10219, Saudi Arabia;
| | - Adam A. Al-Shoubki
- Department of Pharmaceutics, Faculty of Pharmacy, Omar Al-Mukhtar University, Al-Bayda 0463, Libya;
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Doaa A. Abdel Moety
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
23
|
AbuElfadl A, Boughdady M, Meshali M. New Peceol™/Span™ 60 Niosomes Coated with Chitosan for Candesartan Cilexetil: Perspective Increase in Absolute Bioavailability in Rats. Int J Nanomedicine 2021; 16:5581-5601. [PMID: 34429601 PMCID: PMC8378936 DOI: 10.2147/ijn.s324171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Candesartan cilexetil (CC), a prodrug of candesartan (CDT), is a class II BCS drug that suffers from poor oral bioavailability because of low aqueous solubility, P-gp efflux and first-pass metabolism. The absolute bioavailability reported for CC was only 15% and the methods to increase it remain elusive, thus the aim of our work was to prepare new CC-loaded niosomes encompassing, for the first time, glycerol monooleate GMO (Peceol™), as P-gp efflux inhibitor and promoter of lymphatic transport with Span™ 60 as bioenhancer. The prepared niosomes were further coated with chitosan for augmenting the CC oral absorption. METHODS The niosomes were prepared by thin film hydration method through quality by design approach, using two levels of each of three critical process parameters (CPPs), namely, XA (the molar ratio of surfactant mixture to cholesterol) at a ratio of 1:1 or 2:1; XB (the molar ratio of Span™ 60 to Peceol™) at a ratio of 1:1 or 2:1; and XC (the drug amount) at 15 mg or 30 mg. The investigated critical quality attributes (CQAs) were entrapment efficiency percent, particle size, and polydispersity index. The optimized uncoated and chitosan coated formulations were subjected to DSC and stability study. In vitro drug release, biocompatibility with Caco-2 cells and lastly the absolute bioavailability evaluation in rats were assessed. RESULTS The physical properties of the optimized and stable niosomes were satisfactory. The ingredients were compatible with each other and biocompatible with Caco-2 cells. The synergistic combination of Peceol™ and Span™ 60 probably surmounted the P-gp efflux with an increase in oral absolute bioavailability of niosomes to five times that of CC suspension. CONCLUSION The new niosomal formulations of CC containing Peceol™ with Span™ 60 and cholesterol either uncoated or coated with chitosan were a successful paradigm in achieving high oral absolute bioavailability and increased Caco-2 cells biocompatibility.
Collapse
Affiliation(s)
- Aya AbuElfadl
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mariza Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mahasen Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Ghanem HA, Nasr AM, Hassan TH, Elkhoudary MM, Alshaman R, Alattar A, Gad S. Comprehensive Study of Atorvastatin Nanostructured Lipid Carriers through Multivariate Conceptualization and Optimization. Pharmaceutics 2021; 13:178. [PMID: 33525642 PMCID: PMC7911144 DOI: 10.3390/pharmaceutics13020178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of the current study is to establish a comprehensive experimental design for the screening and optimization of Atorvastatin-loaded nanostructured lipid carriers (AT-NLCs). Initially, combined D-optimal screening design was applied to find the most significant factors affecting AT-NLCs properties. The studied variables included mixtures of solid and liquid lipids, the solid/liquid lipid ratio, surfactant type and concentration, homogenization speed as well as sonication time. Then, the variables homogenization speed (A), the ratio of solid lipid/liquid lipid (B), and concentration of the surfactant (C) were optimized using a central composite design. Particle size, polydispersity index, zeta potential, and entrapment efficiency were chosen as dependent responses. The optimized AT-NLCs demonstrated a nanometric size (83.80 ± 1.13 nm), Polydispersity Index (0.38 ± 0.02), surface charge (-29.65 ± 0.65 mV), and high drug incorporation (93.1 ± 0.04%). Fourier Transform Infrared Spectroscopy (FTIR) analysis showed no chemical interaction between Atorvastatin and the lipid mixture. Differential Scanning Calorimetry (DSC) analysis of the AT-NLCs suggested the transformation of Atorvastatin crystal into an amorphous state. Administration of the optimized AT-NLCs led to a significant reduction (p < 0.001) in serum levels of rats' total cholesterol, triglycerides, and low-density lipoproteins. This change was histologically validated by reducing the relevant steatosis of the liver.
Collapse
Affiliation(s)
- Heba A. Ghanem
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Al Qantarah Sharq 41636, Egypt;
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, North Sinai 45511, Egypt
| | - Tamer H. Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mahmoud M. Elkhoudary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt;
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 471, Saudi Arabia; (R.A.); (A.A.)
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 471, Saudi Arabia; (R.A.); (A.A.)
| | - Shadeed Gad
- Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|